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Abstract: Understanding the spatiotemporal variations in the mass concentrations of particulate 

matter ≤2.5 µm (PM2.5) in size is important for controlling environmental pollution. Currently, 

ground measurement points of PM2.5 in China are relatively discrete, thereby limiting spatial cover-

age. Aerosol optical depth (AOD) data obtained from satellite remote sensing provide insights into 

spatiotemporal distributions for regional pollution sources. In this study, data from the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) AOD (1 km resolution) product from Moder-

ate Resolution Imaging Spectroradiometer (MODIS) and hourly PM2.5 concentration ground meas-

urements from 2015 to 2020 in Dalian, China were used. Although trends in PM2.5 and AOD were 

consistent over time, there were seasonal differences. Spatial distributions of AOD and PM2.5 were 

consistent (R2 = 0.922), with higher PM2.5 values in industrial areas. The method of cross-dividing 

the test set by year was adopted, with AOD and meteorological factors as the input variable and 

PM2.5 as the output variable. A backpropagation neural network (BPNN) model of joint cross-vali-

dation was established; the stability of the model was evaluated. The trend in the predicted values 

of BPNN was consistent with the monitored values; the estimation result of the BPNN with the 

introduction of meteorological factors is better; coefficient of determination (R2) and RMSE standard 

deviation (SD) between the predicted values and the monitored values in the test set were 0.663–

0.752 and 0.01–0.05 µg/m3, respectively. The BPNN was simpler and the training time was shorter 

compared with those of a regression model and support vector regression (SVR). This study demon-

strated that BPNN could be effectively applied to the MAIAC AOD data to estimate PM2.5 concen-

trations. 
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1. Introduction 

Particles with aerodynamic diameters of ≤2.5 µm are referred to as PM2.5, which en-

compasses a large variety of toxic and harmful substances. Environmental epidemiological 

studies have confirmed that long-term exposure to PM2.5 increases the incidence of cardi-

ovascular and respiratory diseases [1,2]. Recent studies have determined that air pollu-

tants are closely related to mortality associated with diabetes and increased obesity risk 

[3,4]. Therefore, monitoring PM2.5 mass concentrations and studying the causes of air pol-

lution are important for safeguarding human health [5]. A time series of PM2.5 mass con-

centrations can be obtained using data derived from ground measurements. However, 

recent studies have reported that the spatial distribution of PM2.5 ground measurement 
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points in China is limited [6,7]. With the growing development of satellite remote sensing 

technology, aerosol optical depth (AOD) obtained by remote sensing with a high spatial 

resolution and wide coverage has become an effective method to estimate PM2.5 mass con-

centration [8,9]. AOD is a powerful parameter for describing aerosol extinction and can 

be used as a proxy for atmospheric turbidity in air pollution research [10]. AOD data can 

be obtained from different sensors such as the Advanced Very High-Resolution Radiom-

eter (AVHRR), Visible Infrared Imaging Radiometer Suite (VIIRS), Advanced Along-

Track Scanning Radiometer (AATSR), and Moderate Resolution Imaging Spectroradiom-

eter (MODIS). Wei et al. (2019) compared 11 global monthly AOD products with Aerosol 

Robotic Network (AERONET) sites, including four products from the European Space 

Agency’s Climate Change Initiative (AATSR-ADV, AATSR-EN, AATSR-ORAC, and 

AATSR-SU) and AVHRR, Multi-angle Imaging Spectro Radiometer (MISR), Terra and 

Aqua MODIS, POLarization and Directionality of the Earth’s Reflectance (POLDER), Sea-

viewing Wide Field-of-view Sensor (SeaWiFS), and VIIRS products. The MODIS products 

show the best performance with the best evaluation metrics in describing the temporal 

aerosol variations [11]. Currently, most studies have employed AOD data based on the 

Dark Target (DT) algorithm [12], the Deep Blue (DB) algorithm [13], or a combination of 

Dark Target and Deep Blue (DTB) algorithm [14]. The 10 km AOD products have been 

widely used in PM2.5 estimation studies [15,16]; however, a 10 km resolution is not fine 

enough to resolve local variability [17–19]. Multi-angle implementation of atmospheric 

correction (MAIAC) is a new aerosol retrieval algorithm [20] that decouples aerosol and 

surface contributions using time series data. Jethva et al. (2019) verified and analyzed aer-

osols using the MAIAC algorithm on dark surfaces and showed that its accuracy was 

equal to or higher than that of the DT algorithm, and for bright surfaces, its accuracy was 

generally higher than that of the DB algorithm [21]. Li et al. (2020) found that compared 

with DT, DB, and DTB AOD products, the 1 km MAIAC AOD product obtained the best 

correspondence with AERONET measurements, with an overall coefficient of determina-

tion (R2) of 0.891 [22].  

Numerous recent studies have inferred PM2.5 mass concentrations using AOD data 

obtained from satellite-based remote sensing [23–26]. The spatiotemporal distributions of 

PM2.5 are influenced by multiple factors such as meteorology [27], land use [28], and hu-

man activities [29]; changes in these factors can be estimated using satellite observations. 

Luo et al. (2021) analyzed the relationships between PM2.5 concentration and meteorolog-

ical factors in Harbin. The results showed that relative humidity was positively correlated 

to PM2.5 concentration, while temperature, wind direction, and wind speed were nega-

tively correlated to PM2.5 mass concentration [30]. Li et al. (2015) studied the spatiotem-

poral variations in AOD and PM2.5 mass concentrations in the USA and found that inter-

annual changes in AOD and PM2.5 were highly consistent [31]. Initial studies used the 

atmospheric chemical transport model to simulate the scale factor between AOD and 

PM2.5, thereby enabling an estimation of PM2.5 mass concentrations from AOD [32]. Wang 

(2003) discussed the simple linear relationship between MODIS AOD on the Terra/Aqua 

satellites and hourly PM2.5 in Alabama, USA. The correlation coefficient (R) between AOD 

and PM2.5 was 0.70, while that for monthly comparisons was 0.91 and 0.95 for Terra and 

Aqua, respectively [33]. To improve model performance, meteorological parameters and 

land-use information were gradually incorporated into the model (R2 = 0.59–0.84), includ-

ing a multiple regression model [34], linear mixed effect model [35], and geographically 

weighted regression model [36,37]. Although these models were of key importance in air 

pollution estimates, most statistical methods were difficult to find and displayed complex 

nonlinear laws. In recent years, significant progress has been made in the remote sensing 

inversion of PM2.5 based on machine learning, including support vector regression (SVR) 

[38], artificial neural network (ANN) model [39], and random forest model [40]. ANN is 

a nonlinear mapping model that can cope with systems that are difficult to describe using 

mathematical models and has the characteristics of parallel processing, self-adaptation, 

self-organization, associative memory, and approaching arbitrary nonlinearity. Gupta 
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and Christopher (2009) used MODIS AOD data at 0.55 µm to estimate PM2.5 over the 

southeastern USA, based on an ANN that reduced the uncertainty of PM2.5 estimations 

from satellite data [41]. Their study demonstrated the potential for using ANNs for oper-

ational air quality monitoring. Guo et al. (2013) (R = 0.4–0.83) and Ni et al. (2018) (R2 = 

0.54–0.68) established the backpropagation neural network (BPNN) to estimate PM2.5 us-

ing MODIS AOD, and the corresponding results showed that a PM2.5 estimation model 

based on MODIS AOD products could be effectively applied to PM2.5 monitoring under 

the framework of a BP network [42,43]. The structure of a BP neural network is divided 

into input layer, hidden layer, and output layer, and there are connection weights between 

neurons in adjacent layers. The hidden layer can be a single layer or a multi-layer, and the 

number of hidden layer nodes selected has an effect on the accuracy of BPNN. Although 

a BP neural network can realize any nonlinear fitting learning, BPNN also shows some 

drawbacks, such as the randomness of initial weights and thresholds. There is no system-

atic method for determining the number of hidden layer nodes at present [44]. Most stud-

ies, including those mentioned above, have ignored the randomness of the initial weight 

threshold. Without considering the extreme value of error, a single result is not sufficient 

to represent the final performance of the model. In addition, most studies determined the 

model parameters, including the number of neurons in the hidden layer, through a single 

and randomly divided verification set. Thus, there was no guarantee that the network 

parameters were optimal. Therefore, based on the analysis of the spatiotemporal correla-

tion between AOD and PM2.5, this study aimed to solve the problems existing in BPNN 

by fine-tuning the dataset according to the annual cross-division; the model parameters 

were determined through joint cross-validation and evaluating the stability of the model. 

The BPNN was compared using a regression model and SVR to verify the performance 

advantages. 

2. Materials and Methods 

2.1. Study Area 

Covering a wide area of 12,600 km2, Dalian spreads from a latitude of 38° 43’ N to 40° 

10’ N and a longitude of 120° 58′ E to 123° 31′ E. As shown in Figure 1a, Dalian is a city 

with three sides surrounded by sea, located at the southernmost point of Northeast China 

and the juncture where the Yellow Sea and the Bohai Sea meet. It is characterized by a 

semihumid temperate continental monsoon climate with characteristics of a marine cli-

mate. As shown in Figure 1b, Dalian has a high altitude in its center where it gradually 

extends lower to the east and west. Dalian is one of the most important central cities 

among the coastal areas of Northern China, with a population of almost 7.45 million resi-

dents. With the rapid development of industries, human activities are the main contrib-

uting factors to air pollution. Cai and Shao studied the relationship between PM2.5 and the 

outpatient volume of the respiratory, cardiology, and neurology departments. The results 

show that with the increase in PM2.5 in the air, the outpatient volume of these departments 

also tended to increase [45]. Meanwhile, the Dalian Center for Disease Control and Pre-

vention center registration showed that the incidence rate of cancer in Dalian was mainly 

in the respiratory system and digestive system, and the incidence rate of lung cancer was 

the highest. Therefore, the estimation of PM2.5 with Dalian as the study area is of great 

significance to health and air pollution control. Figure 1b, region (Ⅰ) shows the main urban 

areas of Dalian; Figure 1b, region (Ⅱ) shows the urban–rural integration or rural areas 

which have relatively sparse populations and high degrees of vegetation coverage. 
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Figure 1. Map of (a) China. Elevation map of (b) Dalian and (c) main urban areas of Dalian. (b) 

Dalian main urban region and urban–rural region. (c) Spatial distributions of PM2.5 point in Da-

lian. 

2.2. Data Sources 

2.2.1. PM2.5 

This study used 24 h continuous monitoring PM2.5 data provided by the National 

PM2.5 Real-time Monitoring Network (http://www.pm25china.net, accessed on 10 Janu-

ary 2022). The distributions of the 10 monitoring ground measurement points in Dalian 

are shown in Figure 1c. The types of major air pollutants at each ground measurement 

points vary; for example, the polluted Dalian Industrial Zone is represented by points 1 

and 6, and the polluted main traffic line is represented by point 10 [46]. In this study, the 

hourly data were averaged to obtain daily data using measurement points from 2015 to 

2020, and the daily data of each monitoring station were averaged to obtain the overall 

daily data of Dalian. 

2.2.2. AOD 

The AOD data used in this study were obtained from Level-1 and the Atmosphere 

Archive and Distribution System Distributed Active Archive Center (https://lad-

sweb.modaps.eosdis.nasa.gov/, accessed on 10 January 2022). The MCD19A2 at a 1 km 

resolution is a MODIS Terra and Aqua combined MAIAC Land AOD gridded Level 2 

product produced daily [47]. The MCD19A2 AOD data product includes a blue band 

AOD at 0.47 µm, a green band AOD at 0.55 µm, AOD quality assessment (QA), the cosine 

of solar zenith angle, a cosine of view zenith angle, a relative azimuth angle, a scattering 

angle, the glint angle at 5 km, etc. This study used the AOD data at 0.55 µm of Dalian from 

2015 to 2020. The daily AOD data at the measurement points were pretreated using ENVI 
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software (the remote sensing image processing platform of Exelis Visual Information So-

lutions, USA) employing techniques such as projection transformation, module mosaick-

ing, filtered QA values, and vector clipping. MCD19A2 provided sinusoidal projection, 

the World Geodetic System 1984 (WGS 84) was used as the target projection in this study, 

and projection transformation to the target system was conducted. QA data provided in the 

MAIAC dataset were used to filter out invalid pixels, which contains AOD within ±2 km from 

the coastline (may be unreliable). After quality control and statistics, point 3 was close to sea 

level (<100 m), and its invalid AOD value exceeded 98%. The average daily AOD data of the 

measurement points was taken as the daily AOD data of Dalian. 

2.2.3. Meteorological Factors 

Meteorological factors affect the state and properties of particulate matter in the at-

mosphere, and the data are from China Meteorological network (http://data.cma.cn, ac-

cessed on 10 January 2022); this study selected the daily data of meteorological points in 

Figure 1c, including date, station, latitude, longitude, mean temperature (TEMP (°C)), rel-

ative humidity (RH (%)), precipitation (PRE (mm)), and average wind speed (WS (m/s)). 

Abundant rainfall and strong cross-ventilation are more suitable for the sedimentation 

and diffusion of PM2.5 particles [48]. According to the pattern exhibited by the monsoon, 

the aerosol solubility will be effectively diluted. The bottom-left half of Table 1 show cor-

relation coefficient, the top-right half show p-values. There is a strong correlation between 

PM2.5 and AOD from Table 1. PM2.5 is positively correlated with temperature and humid-

ity, and negatively correlated with wind speed and precipitation. In addition, the positive 

correlation between AOD and temperature and humidity is more significant. 

Table 1. Correlation coefficient and p-values between PM2.5 and influencing factors at Dalian. 

R/p-Values PM2.5 AOD TEMP RH WS PRE 

PM2.5 - <0.001 <0.001 <0.001 <0.001 0.300 

AOD 0.800 - <0.001 <0.001 <0.001 0.420 

TEMP 0.244 0.351 - <0.001 <0.001 0.009 

RH 0.385 0.463 0.384 - <0.001 <0.001 

WS −0.186 −0.176 −0.310 −0.233 - 0.973 

PRE −0.040 0.031 0.101 0.214 −0.001 - 

2.3. Methods 

2.3.1. Data Preprocessing 

PM2.5 hourly mass concentration data were considered invalid if they met one of two 

conditions: (1) the hourly mass concentration was maintained for more than 12 h; (2) the 

hourly mass concentration was more than three times the standard deviation of the 24 h 

mass concentration [49]. The larger the aerosol AOD value, the stronger the extinction 

effect of aerosol on the light propagation path. The range of AOD was 0–2 (>99.4%) in this 

study area. According to the daily PM2.5 mass concentration and AOD data of Dalian, out-

liers of 8% and 9% were excluded from the box plots, respectively. The spatiotemporal 

distributions of annual PM2.5 concentrations were obtained through interpolation using 

the inverse distance weight algorithm in ArcGIS (ESRI, Redlands, CA, USA). The spatio-

temporal distributions of the annual AOD data were obtained by taking the average val-

ues of daily AOD data based on ENVI. 

AOD, meteorological factors, and PM2.5 were fused on the temporal–spatial scale. 

AOD pixels were consistent with PM2.5 measurement locations, and the AOD daily data 

corresponded to the PM2.5 daily data. When the AOD or PM2.5 mass concentration data 

were invalid for a given day, it was considered that no effective data points existed for 

that day. Different data fusion methods can have a great impact on correlation [50,51]. 

Some studies have selected typical regions to replace the whole or have used the method 
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of taking the mean value of each region for data fusion. This study used the time series 

method to observe the change in the trend of AOD, meteorological factors, and PM2.5 and 

performed data fusion through the time series curve. AOD–meteorological factors–PM2.5 

fusion data are shown in Table 2. 

Table 2. Fusion data descriptive statistics. 

Variable Min Max Avg SD 

PM2.5 (µg/m³) 10.750 76.493 26.808 10.862 

AOD 0.025 1.776 0.289 0.249 

TEMP (°C) −11.500 32.300 10.235 10.533 

RH (%) 93.000 16.000 50.739 15.248 

WS (m/s) 3.038 8.600 3.038 1.269 

PRE (mm) 0.000 22.600 0.291 1.766 

The dataset was divided prior to BPNN modeling. As shown in Table 3, the dataset 

division method of cross-dividing test sets by year was adopted, whereby each year was 

used as a test set to build a model, and six sub-datasets were obtained. For example, subset 

6 took 2015–2019 as the training set (f) and 2020 as the test set. This type of dataset partition 

method compensates for the potential limitation where some data either repeatedly or do 

not serve as test sets and training sets due to random partition. It also eliminates the ex-

treme error caused by random allocation of data, greatly improving the utilization rate of 

limited data, and can better reflect the generalization ability of the model. 

Table 3. Dataset division. 

Data Set Training Set (Year) Test Set (Year) 

1 a (2016, 2017, 2018, 2019, 2020) 2015 

2 b (2015, 2017, 2018, 2019, 2020) 2016 

3 c (2015, 2016, 2018, 2019, 2020) 2017 

4 d (2015, 2016, 2017, 2019, 2020) 2018 

5 e (2015, 2016, 2017, 2018, 2020) 2019 

6 f (2015, 2016, 2017, 2018, 2019) 2020 

2.3.2. Establishment of BPNN 

The BP algorithm is a supervised learning algorithm that utilizes the methods of 

mean square error and gradient descent to modify the connection weight of a network 

[52]. The signal enters the input layer and then enters the output layer after weighted 

processing and nonlinear transformation of the activation function in the hidden layer. 

When the error signal appears, it propagates back along the neural network, making the 

output value of the network close to the expected value alternately. Finally, it reaches the 

training result [53]. As shown in Figure 2, the structure of BPNN demonstrates that it 

expresses the functional mapping relationship from n independent variables to m depend-

ent variables. x1, x2, …, xn are the input of BPNN; y1, y2, …, ym are the output of BPNN. In 

the training process of BPNN, firstly, the network should initialize the weights ωij and ωjk, 

initialize the thresholds aj of the hidden layer and bk of the output layer, and then calculate 

the hidden layer output H. 

ljaxfH
n

i

jiijj ,...,2,1),(
1

=−= 
=


 

(1) 

where l is the number of hidden layer neurons and f is the activation function. 

Then, according to H, ωjk, and bk, BPNN prediction output O is calculated. 
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where m is the number of output layer neurons. 

According to the network prediction output O and the expected output Y, the net-

work prediction error e is calculated. 

mkOYe kkk ...,2,1, =−=  (3) 

According to the network prediction error e, the network weight and threshold can 

be updated. 


=

==−+=
m

k

kjkjjijij ljnjeixHH
1

' ...,2,1;...,2,1,)()1( 
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(6) 

mkebb kkk ,...,2,1,' =+=   (7) 

where ω′ij, ω′jk are the new weights; a′j, b′k are the new threshold, and η is the learning 

rate. 

Iteration occurs based on the error of expected value and output value according to 

Formulas (1)–(7). Until the preset value reaches one of the set parameters (number of iter-

ations, learning rate, target error), the iteration stops. 

 

Figure 2. BPNN topology. 

The establishment steps of BPNN in this study were divided primarily into three 

parts: constructing BPNN, training BPNN, and using the trained model to forecast. The 

steps are as follows: 

Step 1: Using the newff function of MATLAB to build BPNN. According to Kolmogorov’s 

theorem, when the network parameters and structure design are reasonable, the neural 

network with a single hidden layer can complete any mapping from the n dimension to 

m dimension [54]. To achieve network accuracy and avoid a lengthy training time, we 

selected the single hidden layer neural network. As shown in Figure 3, AOD and meteor-

ological factors were taken as the input value and PM2.5 was used as the output value to 

establish a BPNN. 
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Figure 3. Establishment of BPNN. 

Step 2: Determine the training parameters of BPNN. The activation function provides 

the BPNN with a nonlinear mapping ability. The output of the tangent S-type transfer 

function (tansig) is (−1, 1). If the linear transfer function (purelin) is used, the output of the 

whole network can be any value [55]. The tansig and purlin functions were used for the 

hidden layer and output layer activation function, respectively. The network training 

function Levenberg–Marquardt BP algorithm training function (trainlm) was selected as 

the network training function because it is the fastest backpropagation algorithm. In this 

study, combined with ten-fold cross validation, the parameters were adjusted, and the net-

work number of iterations and learning rate were determined by the minimum error between 

the estimated value and the actual value. Table 4 shows the BPNN training parameters. 

Table 4. BPNN parameters. 

Hidden Layer Acti-

vation Function  

Output Layer Activa-

tion Function  

Training 

Function  

Target 

Error 

Number of 

Iterations 

Learning 

Rate 

tansig purelin trainlm 10−5 3000 0.1 

Step 3: Determine the number of hidden layer neurons of BPNN. The number of hidden 

layer neurons of BPNN has a great influence on the estimation accuracy. In this study, the 

number of hidden layer neurons was determined by the following empirical formula: 

amnl ++=  (8) 

where l is the number of hidden layer neurons, n is the number of input layer neurons, m 

is the number of output layer neurons, and a is an arbitrary constant from 1 to 10 [56]. 

In this study, ten-fold cross validation was used to determine the network number of 

iterations, learning rate, and the optimal number of neurons in the hidden layer. As shown 

in Figure 4, the BPNN parameters corresponding to the minimum error were selected as the 

optimal parameters. The purpose of this process is to ensure that the BPNN is better applied 

to independent and unknown test sets and will eliminate the randomness of data partition of 

a verification set, while greatly improving the generalization ability of the model. 

 

Figure 4. Ten−fold cross validation to determine the number of hidden layer nodes. 
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Step 4: Using the train function of MATLAB to train BPNN. To eliminate the error 

caused by variables having different magnitudes and to improve the running speed, the 

sample data were normalized to a data range of (−1, 1). During the training, it was ensured 

that the test set did not participate in the whole process. 

Step 5: Using the sim function of MATLAB to simulate. The test set was input into the 

trained BPNN model. Due to the randomness of the initial weights and thresholds, the 

running results of each training were slightly different. Some of the training results were 

good, while others were poor. In order to evaluate the performance of the model and an-

alyze the stability of the model, the average value of 20 running results was used as the 

evaluation standard of the final model. 

2.3.3. Model Comparison 

A regression fitting model and SVR were established and compared with the BPNN. 

A regression analysis refers to a statistical analysis method used to determine the quanti-

tative relationship between two or more variables, which can be divided into linear re-

gression (LR) analysis and nonlinear regression (NLR) analysis. LR uses the best fitting 

straight line to establish a relationship between the dependent variable and one or more 

independent variables. The dependent variable of NLR is a function based on independ-

ent variables with more than one power, and the regression law is shown as a curve on 

the graph. Multiple regression analysis (MLR) characterizes the linear relationship be-

tween the explained variable and multiple explanatory variables. Support vector machine 

(SVM) and BPNN are both machine learning algorithms. SVMs are discriminative classi-

fier techniques that convert the input space into a multi-dimensional characteristic space 

[57]. This method is widely used in classification and regression fields [58]. When SVM is 

employed for regression tasks, it is designated as an SVR [59]. The implementation of SVR 

in this study was based on LIBSVM (developed by Dr. Lin Chih-Jen of Taiwan University) 

[60]. The radial basis function (RBF) was selected as the kernel function for training. 

Among all the parameter pairs that enable the training set to achieve the highest verifica-

tion accuracy, the best regularization parameter C and kernel function parameter gamma 

(g) were selected. 

To compare the experimental results, 661 groups of data were divided into a training set 

and a test set according to the proportion of 80% and 20%. Before each model training, the 

datasets were reordered, and finally, the average estimate error of 20 times was obtained. 

2.3.4. Correlation Evaluation Indexes 

The errors of monitored values and estimated values were analyzed, as well as coef-

ficient of determination (R2), the root mean square error (RMSE), and the prediction ac-

curacy (Acc). The Acc formula was (9) [61]: 


=

−
−=−=

n

i i

ii

A

AP

n
MAPEAcc

1

1
11  (9) 

where Ai was the real value data sequence, Pi was the estimated value data sequence, and 

n was the number of samples. MAPE was mean absolute percentage error. 

The RMSE standard deviation (SD) was used to judge the stability of the model. The 

SD formula was (10): 

),...,2,1(,

)(

2

1 ni
n

RMSERMSE

SD

n

i

i

RMSE =

−

=

=  

(10) 

where n was the number of RMSE. The smaller the SDRMSE, the more stable the model. 

  

https://baike.baidu.com/item/%E9%9D%9E%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E5%88%86%E6%9E%90/12737441
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3. Results and Discussion 

3.1. Temporal Distributions of AOD and PM2.5 

The time series of AOD and PM2.5 from 2015 to 2020 are shown in Figure 5 (after 

eliminating outliers). The trends in AOD and PM2.5 are generally consistent, exhibiting a 

strong time correlation. However, there are seasonal differences: AOD was higher in sum-

mer and lower in winter, whereas the PM2.5 mass concentrations were lower in summer 

and autumn and higher in spring and winter. 

 

Figure 5. Time series of AOD and PM2.5 from 2015 to 2020. 

The mean value in summer of AOD from 2015 to 2020 was 0.34, while those in the 

autumn and spring were 0.29 and 0.25, respectively, and it was the lowest in winter, at 

0.20. In summer, Dalian has a high temperature and humidity as it is surrounded by the 

sea on three sides. According to the statistics in this study, the relative humidity of Dalian 

in summer from 2015 to 2020 was approximately 74.2%, which was 18.2% higher than that 

in other seasons. The high temperature and humidity environment in summer is suitable 

for the generation of aerosols during the transfer process of “gas–particles”, and the hy-

groscopic aerosols expand in humid conditions, leading to higher AOD in summer than 

in other seasons [62]. The AOD would be lower in winter because of lower relative hu-

midity. The mean values of PM2.5 in summer and autumn from 2015 to 2020 were 23.9 

µg/m3 and 23.5 µg/m3, respectively, while those in the spring and winter were 30.7 µg/m3 

and 31.3 µg/m3, respectively. The height of the shallow boundary layer makes PM2.5 accu-

mulate continuously in winter, resulting in higher PM2.5 concentration. 

On the annual scale, AOD has obvious interannual variation characteristics. In 2015, 

the annual average AOD of Dalian was 0.46, which was the highest in six years. Due to 

the influence of pollution transportation in North China and Northeast China and local 
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adverse meteorological factors, 2015 was the year with the heaviest particulate pollution 

in the six-year period. The annual mean value of AOD decreased year by year from 2016 

to 2018, with a range of 0.32–0.27. In 2017, air pollution prevention and control measures, 

as well as dust pollution and fuel quality measures, were carried out in Dalian, resulting 

in a downward trend in AOD year by year. With the promotion of air pollution prevention 

and a control action plan, the annual mean value of AOD in 2019 and 2020 tended to be 

stable, and the value remained at 0.27. 

3.2. Spatial Distributions of AOD and PM2.5 

As shown in Figure 6, there was a high value region of PM2.5 and AOD concentrations 

in the southwest of Dalian, wherein smoke and dust are produced by industrial processes 

and exhaust fumes are emitted by vehicles. The average concentrations of PM2.5 in moni-

toring points 1 and 6 were 37.06 and 33.69 µg/m3, respectively. The PM2.5 concentrations 

of the coastal areas were relatively low, with monitoring points 2, 4, 9, and 10 showing 

average PM2.5 concentrations of 26.42, 27.33, 25.76, and 28.62 µg/m3, respectively. The av-

erage AOD values in monitoring points 1 and 6 were 0.32 and 0.29, respectively. Monitor-

ing points 2, 4, 9, and 10 had a relatively low AOD, with mean AOD values of 0.21, 0.24, 

0.22, and 0.22, respectively. From the perspective of the whole region of Dalian, northeast-

ern Dalian had a low average AOD of 0.24, and the average AOD in the main urban area 

was 0.33. The spatiotemporal distribution of AOD and PM2.5 demonstrated good correla-

tion as their extreme points were consistent (R2 = 0.922) with the high values in the main 

urban area and low values in the northern urban–rural area. 
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Figure 6. Temporal spatial distribution of PM2.5 and AOD from 2015 to 2020. 

The AOD overall spatial distribution of the remote sensing can be obtained from Fig-

ure 6. The AOD value in the northeastern part of Dalian is relatively low, while the AOD 

value in the northwestern part and the eastern coastal area is relatively high. The distri-

bution curve of Dalian’s population density (https://www.worldpop.org/, accessed on 10 

January 2022) in 2020 and the spatial structure of Dalian are shown in Figure 7. PM2.5 and 

AOD had high values in areas with a high population density, and low values in 

Zhuanghe City, North Dalian, where the population density was relatively low. Jinzhou 

District and Pulandian District in central Dalian had a moderate population density, and 



Remote Sens. 2022, 14, 1617 13 of 23 
 

 

PM2.5 and AOD were also widely distributed in this area. There is a core and two wings 

in the spatial structure of Dalian, which takes the city center as the core and takes the 

developments along the Bohai Sea and the Yellow Sea. Seven sub-center cities of Dalian 

are connected with industrial groups. Wafangdian City is in the northwest geograph-

ically, where there are three industrial nodes. AOD values are high, the same as the east-

ern seaboard. Therefore, population density, industrial layout, and urban planning have 

a certain impact on the distribution of PM2.5 and AOD. 

 

Figure 7. Population density distribution of Dalian in 2020. 

3.3. BPNN 

BPNN was trained through adjusting the parameters according to the step length. In 

the iterative process of data calculation, the parameters take values at a certain interval, 

and this interval is called the step length, which should be determined according to the 

amount of data and the complexity of the algorithm. This study took 500 as the step length 

and set the number of iterations from 500 to 5000 by experiments. The value of the learning 

rate is between (0,1). We choose the learning rate as 0.1, 0.2, 0.3.... for training, respectively. 

The target error is determined based on the magnitude of the data and the actual accuracy 

of the model when it is training. After ten-fold cross-training, the average RMSE of train-

ing sets (a) to (f) in terms of the number of iterations and learning rate were 6.48 µg/m3–

6.82 µg/m3 and 6.38 µg/m3–7.23 µg/m3, respectively. When the number of iterations and 

learning rate were 3000 and 0.1, respectively, the RMSE was the smallest. 

According to Formula (8), the number of neurons in the hidden layer of BPNN was 

determined to be between 2 and 12. After ten-fold cross-training, the average value of the 

RMSE of the verification set corresponding to the number of hidden layer neurons was 

obtained. The results of ten-fold cross-verification of training sets (a) to (f) are shown in 

Table 5. Compared with the number of iterations and learning rate, the selection of the 

number of hidden layer neurons has a great influence on the estimation accuracy, and the 

optimal hidden layer neurons of the six BPNN models (RMSEa–f) were determined to be 

3, 2, 2, 2, 3, and 2, respectively. 
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Table 5. Cross-validation training results of BPNN. 

 
Hidden Layer Neurons 

2 3 4 5 6 7 8 9 10 11 12 

RMSEa 10.64 6.41 6.42 11.66 11.18 58.40 13.59 33.73 12.03 10.34 13.71 

RMSEb 6.44 6.45 6.48 7.50 6.76 6.83 6.80 6.96 7.18 7.23 7.97 

RMSEc 6.48 6.77 6.82 7.32 10.07 8.25 7.43 10.87 14.66 13.42 12.48 

RMSEd 6.47 15.74 10.48 44.45 44.40 11.42 10.77 26.51 10.57 21.53 18.61 

RMSEe 6.39 6.37 6.50 10.06 6.80 6.46 6.47 6.83 8.08 8.58 6.82 

RMSEf 6.49 6.95 6.67 61.71 52.15 36.39 38.52 53.71 32.86 32.26 18.18 

According to the above settings, the BPNN was trained with the error gradually ap-

proximated from the target error. The prediction results of the BPNN training set (a)–(f) 

with AOD as a single input variable are shown in Figure 8, and the scale is PM2.5 normal-

ized value. The R2 value between the estimated values and the monitored value of the 

training set (a)–(f) were about 0.660. However, there is a positive offset and a small slope, 

which means that there is underestimation for high value or overestimation for low value 

in the forecast time series. Therefore, any of the cases selected in Figure 8 were introduced 

with the meteorological factors for the training set, respectively, with set (a) as an example, 

and the prediction results are shown in Figure 9. The specific R2 values increasing were, 

respectively, 0.024, 0.023, 0.01, and 0.008, corresponding to TEMP, RH, PRE, and WS, and 

the positive offsets were also improved. 

Four meteorological factors and AOD were considered as input, and the prediction 

results of the BPNN training set are shown in Figure 10. From the comparison between 

Figure 8 and Figure 10, it can be seen that the R2 value in each case was increased about 

0.055, and the maximum value was increased by 0.111. In addition, the positive offset was 

improved significantly. Meteorological factors can improve the estimation accuracy of the 

model and have an important impact on the estimation of PM2.5. 

   

   

Figure 8. Estimated results of AOD–PM2.5 BPNN training set (a–f). 
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Figure 9. Estimated results of AOD + meteorological factors–PM2.5 BPNN of training set (a), (a) 

AOD + TEMP–PM2.5 BPNN, (b) AOD + RH–PM2.5 BPNN, (c) AOD + PRE–PM2.5 BPNN, (d) AOD 

+ WS–PM2.5 BPNN. 

   

   

Figure 10. Estimated results of AOD + meteorological factors–PM2.5 BPNN of training set (a–f). 
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The test sets were input into the trained BPNN. After 20 runs, the R2 and RMSE of 

the estimated PM2.5 values and the monitored value were calculated and are shown in 

Table 6. The range of R2 values were 0.663–0.752 and the range of RMSE values were 6.23–

6.45 µg/m3. The R2 value in each case was increased by about 0.032, and the maximum 

value was increased by 0.046. Temperature had the greatest impact on model accuracy 

among meteorological factors. In addition, the RMSE SD values were 0.01–0.05 µg/m3. 

These findings indicate that the model has a strong generalization ability and stability, 

which is close to the simulation effect of the training set; hence, there was no overfitting. 

Table 6. Estimate results of BPNN model. 

Input Variable 

Test Set (Year) 

2015 2016 2017 

R2 RMSE Acc R2 RMSE Acc R2 RMSE Acc 

AOD 0.640 6.66 80.7% 0.656 6.56 81.4% 0.723 6.27 82.9% 

AOD + TEMP 0.661 6.47 82.0% 0.672 6.48 82.0% 0.731 6.23 83.2% 

AOD + RH 0.656 6.58 81.9% 0.661 6.50 81.2% 0.729 6.23 83.1% 

AOD + PRE 0.648 6.60 81.8% 0.658 6.55 81.9% 0.719 6.25 83.0% 

AOD + WS 0.645 6.65 81.7% 0.658 6.62 81.8% 0.711 6.26 82.9% 

AOD + All 

Features 
0.676 6.45 82.2% 0.691 6.34 82.7% 0.752 6.23 83.4% 

Input Variable 

Test Set (Year) 

2018 2019 2020 

R2 RMSE Acc R2 RMSE Acc R2 RMSE Acc 

AOD 0.656 6.33 82.0% 0.640 6.81 79.9% 0.640 6.34 81.9% 

AOD + TEMP 0.679 6.29 82.7% 0.671 6.74 80.4% 0.661 6.20 82.6% 

AOD + RH 0.672 6.31 82.5% 0.654 6.77 80.1% 0.651 6.22 82.6% 

AOD + PRE 0.671 6.33 82.2% 0.643 6.78 80.0% 0.653 6.31 82.3% 

AOD + WS 0.667 6.33 82.2% 0.642 6.80 79.9% 0.650 6.34 82.0% 

AOD + All 

Features 
0.677 6.30 82.8% 0.686 6.54 82.0% 0.663 6.32 82.4% 

Figure 11 is the simulation diagram of the last running results of six models with 

2015–2020 as the test set. The estimation result of the BPNN with the introduction of me-

teorological factors is better than that of the AOD–PM2.5 BPNN. However, it can be seen 

from Figure 11d that the model has not yet reached the estimation of PM2.5 for lower con-

centrations. That is to say, the BPNN model can be used to estimate the trend of interan-

nual PM2.5 and needs to be improved for estimating the daily extreme value of PM2.5 in the 

future. 
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Figure 11. (a–f) Simulation diagram of PM2.5 estimated and monitored values of test set. (a) 2015 as 

the test set. (b) 2016 as the test set. (c) 2017 as the test set. (d) 2018 as the test set. (e) 2019 as the test 

set. (f) 2020 as the test set. 

3.4. Comparison of BPNN with Regression Analysis and SVR 

The parameters and average error results of the last operation of BPNN, LR, NLR, 

MLR, and SVR are shown in Table 7. The R2 values of all models were all above 0.650, and 

the precision of meteorological factors–BPNN was the highest, with an R2 of 0.757 and an 

RMSE of 6.11 µg/m3. Compared with the LR, NLR, MLR, and SVR methods, the R2 and 

RMSE of BPNN were improved; however, the improvement degree was not significant. 

According to the comparison results, the regression equation obtained by the regression 

analysis model is relatively intuitive. Under the influence of structure, BPNN cannot di-

rectly showcase the direct correlation between output and input, but the neural network 

stores information in the connection weight. When the error between the expected and 

output reaches the requirement, the corresponding relationship of input and output can 

be obtained. LR, MLR, and NLR curves can only describe the approximate relationship 

between variables; the complicated regression cannot reflect the relationship among all 

regression data. The optimal nonlinear model obtained in this study was a univariate cu-

bic model, but it was not determined whether it described the essential relationship be-

tween variables. BPNN approaches the objective function by learning, and a single hidden 

layer can be used to fit complex and continuous functions; hence, the computational so-

phistication of BPNN is reduced. The results showed that the accuracy of BPNN was sim-

ilar to that of SVR, but SVR ran for a long time. Therefore, BPNN is superior to other 

models used in this study in terms of the PM2.5 concentration estimate. 

Table 7. Comparison of model parameters and results. 

Model 

Model Parameter  Model Expression 

Hidden 

Neurons 
C g R2 RMSE/μg/m3 

RMSE 

SD 

/μg/m3 

Acc Time  

BPNN 2 - - 0.723 6.35 0.26 82.4% 2″00 - 

SVR - 4 0.06 0.672 6.37 0.27 82.2% 13″12 - 

LR - - - 0.656 6.42 0.22 82.0% - PM2.5 = 34.28AOD + 17.00 

NLR - - - 0.672 6.37 0.23 82.2% - 
PM2.5 = 14.87+47.09AOD-

14.16AOD2+3.15AOD3 

MLR - - - 0.689 6.20 0.26 83.4% - 

PM2.5 = 

0.80AOD+0.07TEMP+0.04RH-

0.05WS-0.06PRE 

Meteorological 

factors–SVR 
- 2 1 0.689 6.25 0.28 83.3% 11″29 - 

Meteorological 

factors–BPNN 
2 - - 0.757 6.11 0.26 84.4% 2″00 - 
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3.5. Discussion 

3.5.1. Research Findings 

To date, relevant studies have primarily focused on PM2.5 inversions based on satel-

lite remote sensing data. Statistical models (e.g., linear mixed models, geographically 

weighted regressions, and geographically and temporally weighted regressions) are com-

monly used for this purpose, all delivering high R2 values (0.64–0.86) [63–65]. We analyzed 

the spatiotemporal correlation between AOD and PM2.5 and performed simple regression 

fitting. We determined that a simple linear relationship between AOD and PM2.5 did not 

exist, which made it difficult to accurately model using traditional regression methods. In 

this case, we established a BPNN with a strong nonlinear description ability. Mathemati-

cally, it was proven that the three-layer neural network could approach any nonlinear 

continuous function with arbitrary precision, which was further confirmed by the re-

search results of the current study. Regarding the overfitting, underfitting, and sample 

dependence problems of BPNN, we made improvements in three aspects, namely, dataset 

division, model parameter determination, and model evaluation, which compensated for 

the deficiencies of the BPNN. The space–time extra trees (STET) were about 0.8, which 

were higher than those of BPNN (R2 = 0.66–0.75) in recent studies [66,67], and the R2 of 

MLR was reduced to 0.54 in some time or regions. Both of them had poor stability. The 

BPNN prediction model had great temporal and spatial consistency and was more suita-

ble for universal prediction. Significantly, the RMSE (6.36 µg/m3) mean of the BPNN was 

much lower than MLR (7.18 µg/m3, 13.4 µg/m3) and STET (14.60 µg/m3), which proved 

that BPNN was advantageous in estimating the AOD of PM2.5. Prior studies focused on 

the correlation between PM2.5 and AOD spatiotemporal distribution or established a 

model to estimate PM2.5 [68–70]. This study analyzed the correlation between MAIAC 

AOD and PM2.5 in terms of seasonal scale, spatial scale, and annual scale, as well as estab-

lished an estimation model to provide a theoretical reference for variations in the charac-

teristics of AOD and PM2.5. 

3.5.2. Limitations 

Although applying the BPNN to estimate PM2.5 based on AOD has research merit, 

this approach also has certain limitations. 

(1) Here, the limited number of ground measurement points impeded the analysis of the 

spatiotemporal correlations between AOD and PM2.5. 

(2) Seasonal differences in AOD and PM2.5 were not incorporated into the establishment 

of BPNN. 

(3) The BPNN model can be used to estimate the trend of interannual PM2.5 and needs 

to be improved for estimating the daily extreme value of PM2.5 in the future. 

Subsequent research should focus on more PM2.5 and AOD historical data, data on 

daily to hourly timescales, and investigation of spatiotemporal characteristics. At the same 

time, future research should expand the scope of model comparison and explore the ad-

vantages of machine learning. 

4. Conclusions 

PM2.5 is the most important pollutant in the atmosphere, and it not only affects the 

ecological environment, but also endangers human health. AOD is an important index to 

evaluate the change in atmospheric environment. In this study, AOD was used to estimate 

the mass concentration of PM2.5 in order to realize the full space coverage of PM2.5, which 

is crucial for air quality monitoring and human health research. Therefore, based on the 

analysis of spatiotemporal correlation, a BPNN model with joint cross-validation was es-

tablished to accurately estimate the daily concentration of PM2.5 in Dalian, China. MAIAC 

AOD and PM2.5 exhibited strong spatiotemporal correlations. Temporally, AOD was 

higher in summer and lower in winter, whereas PM2.5 mass concentrations were lower in 

summer and autumn and higher in spring and winter. On the annual scale, the AOD of 
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Dalian showed a decreasing trend, year by year. Spatially, the spatiotemporal distribution 

of AOD and PM2.5 demonstrated a good correlation (R2 = 0.922), and this result was con-

sistent with the distribution of population density. In this study, each year from 2015 to 

2020 was used as the test set, and other years were used as the training set. Using AOD 

and meteorological factors (TEMP, WS, RH, PRE) as the input of the model, six BPNN 

models were established. The results showed that the estimation result of the BPNN with 

the introduction of meteorological factors is better than that of the AOD–PM2.5 BPNN. The 

range of R2 values were 0.663–0.752 and the range of RMSE values were 6.23–6.45 µg/m3. 

The R2 value in each case was increased by about 0.032. Temperature had the greatest 

impact on model accuracy among meteorological factors. The difference caused by the 

randomness of the initial weight and threshold of BPNN to the operation results of the 

model was considered. We further compared the performance of BPNN with regression 

models and SVR. The results demonstrated that BPNN was advantageous over the LR, 

NLR, MLR, and SVR methods in terms of the model sophistication and training time. 

Therefore, BPNN with a generalization ability and stability can be considered as the best 

candidate technology for PM2.5 concentration estimation, providing scientific basis for 

macroscopic and long-term monitoring of air pollution. 
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