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Abstract: Convolutional neural networks (CNNs) can extract advanced features of joint spectral–
spatial information, which are useful for hyperspectral image (HSI) classification. However, the
patch-based neighborhoods of samples with fixed sizes are usually used as the input of the CNNs,
which cannot dig out the homogeneousness between the pixels within and outside of the patch.
In addition, the spatial features are quite different in different spectral bands, which are not fully
utilized by the existing methods. In this paper, a two-branch convolutional neural network based on
multi-spectral entropy rate superpixel segmentation (TBN-MERS) is designed for HSI classification.
Firstly, entropy rate superpixel (ERS) segmentation is performed on the image of each spectral band
in an HSI, respectively. The segmented images obtained are stacked band by band, called multi-
spectral entropy rate superpixel segmentation image (MERSI), and then preprocessed to serve as the
input of one branch in TBN-MERS. The preprocessed HSI is used as the input of the other branch
in TBN-MERS. TBN-MERS extracts features from both the HSI and the MERSI and then utilizes
the fused spectral–spatial features for the classification of HSIs. TBN-MERS makes full use of the
joint spectral–spatial information of HSIs at the scale of superpixels and the scale of neighborhood.
Therefore, it achieves excellent performance in the classification of HSIs. Experimental results on four
datasets demonstrate that the proposed TBN-MERS can effectively extract features from HSIs and
significantly outperforms some state-of-the-art methods with a few training samples.

Keywords: hyperspectral image classification; two-branch neural network; multi-spectral entropy
rate superpixel segmentation

1. Introduction

Hyperspectral images (HSIs) are obtained by simultaneously imaging ground objects
in a certain area on continuous multiple spectral bands. The classification of HSIs is an
important technology in remote sensing, as HSIs contain rich spatial and spectral informa-
tion [1–3], which is widely applied in the fields of military target recognition, geological
resource detection, agricultural crop monitoring, and archaeological relic restoration [4–7].
HSIs have a very high spectral dimension and rich spectral information, but the spectral
information is mixed with noise information brought by atmospheric environment and
imaging instruments. The classification accuracy of HSIs is often not good enough if the
original information is directly used. Effective feature extraction of HSIs is one of the
important means to improve classification accuracy [8–10]. In addition, due to the high
cost of manual labeling, the labels of HSIs are usually limited. How to achieve higher
classification accuracy with fewer labeled samples is an important direction in the research
of HSI classification [11].
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In recent decades, the classification of HSIs has received more and more attention.
Researchers have made considerable progress [12–14]. Only the spectral information of
HSI was used for classification in early research, such as K-nearest neighbors (KNN) [15],
support vector machine (SVM) [16,17], sparse representation [18], and so on. These meth-
ods classified samples according to the spectral feature and were easy to implement, but
the classification accuracy was relatively limited. Subsequently, some methods [19,20] com-
bining spatial and spectral information were proposed, which led to a better classification
performance. However, due to the high dimension of HSIs and the intra-class differences
of ground objects, how to obtain better classification accuracy is still a difficult problem
that needs to be investigated further.

With the vigorous development of deep learning, researchers began to apply deep
learning to HSI classification. A lot of methods were proposed such as the stacked auto-
encoder (SAE) [19], deep belief networks (DBNs) [20], and convolutional neural networks
(CNNs) [21–23]. Among all these methods, CNN-based methods are the most widely used.
CNN-based methods take the patch-based neighborhoods of samples as input and perform
feature extraction through convolution. The spatial features and the spectral features, or
the joint features of spatial and spectral information can be extracted by convolution from
the patch-based neighborhoods, and the classification accuracy of HSIs is greatly improved.
Hamida et al. [24] studied the effect of different three-dimensional (3D) convolutional
networks on HSI classification and designed a 3DCNN network consisting of 4 layers of 3D
convolution and a fully connected layer to extract the spectral–spatial features from HSIs.
Hamida’s 3DCNN model made good use of joint features and achieved a higher classifica-
tion accuracy. Zhong et al. [25] proposed a spectral–spatial residual network (SSRN), in
which they designed a spatial feature extraction module and a spectral feature extraction
module using multiple 3D convolutional layers according to the residual structure and in-
vestigated the effects of number and order of modules in feature extraction. This end-to-end
feature extraction and classification network of HSIs achieved high classification accuracy.
Roy et al. [26] proposed a hybrid spectral convolutional neural network (HybridSN), which
firstly used multiple 3D convolutional layers for spectral–spatial feature extraction, and
then used a two-dimensional (2D) convolutional layer to extract advanced spatial feature
from the obtained feature maps. The 2D convolutional layer reduced the complexity of the
model and improved the classification accuracy.

The CNN-based methods mostly take the patch-based neighborhoods of samples
as input, which means that the spatial information only comes from the neighborhood,
and the spatial information outside the neighborhood is ignored. Some researchers tried
to propose some methods that utilized a wider area of spatial information. Superpixel
segmentation is a commonly used means to obtain spatial distribution information of
ground objects in a wide area. Leng et al. [27] used entropy rate superpixel (ERS) segmen-
tation to perform multi-scale superpixel segmentation on the first principal component
of HSIs and further extracted the spectral–spatial information within each superpixel for
classification. Jiang et al. [28] proposed a superpixel-wise principal component analysis
(PCA) approach for unsupervised feature extraction of HSIs (SuperPCA). SuperPCA firstly
performed multi-scale ERS on the first principal component of HSIs, and then applied the
proposed superpixel-wise principal component analysis approach to reduce the dimension
of HSIs within the obtained superpixels. Finally, it trained classifiers over the data after
dimension reduction on each scale, respectively, and obtained the results through deci-
sion fusion. This method achieved higher classification accuracy even when the training
samples were limited.

A two-branch network is a commonly used structure to process multi-source data
or extract a variety of different features [29–32]. The two branches may have different
structures or same structures with different parameters. According to the different inputs
of the two branches, each branch processes a certain type of information. Feature fusion
will usually be performed at the end of network. The spectral–spatial attention network
proposed by Mei et al. [29] is a two-branch network. One branch uses the structure of recur-
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rent neural network to extract spectral information, the other branch uses CNN structures
to extract spatial information, and an attention mechanism is applied to make the network
able to extract key fusion features. Mu et al. [30] proposed a low-rank based method for
HSI classification called a two-branch network combined with robust PCA, where both the
low rank and the sparse components were preserved and used for feature extraction in
two independent convolutional branches. This method constructed a convenient model
for HSI classification by discarding the low-rank subspace estimation and combining de-
noising, feature extraction, feature fusion, and classification into an end-to-end network,
which maintained better classification performance even for the cases of small samples and
class imbalance.

The above methods have made great progress in improving the classification results
of HSIs, but some issues still need to be addressed. These methods mainly use the rich
spectral features of HSIs and extract joint spectral–spatial features from the patch-based
neighborhoods of the samples. In fact, the information of each band of HSIs is quite
different, and each band has rich spatial information that has not been fully utilized. If the
various bands of the HSI are processed separately, more representative spatial information
can be extracted. On the other hand, the pixels corresponding to the same ground object,
which may distribute in a wide area, should belong to the same category. Mining and
making use of such priori knowledge can improve the classification results of HSIs further.
In high-resolution images, the same kind of ground objects are distributed in a continuous
area with an irregular shape, and the size is much larger than that of the patch-based
neighborhoods. When the classifier just takes the patch-based neighborhoods as input,
it can only extract features in the scale of patch-based neighborhoods, and the spatial
distribution information of the ground objects outside the patches is ignored.

To solve the above problems, this paper designs a two-branch convolutional neural
network based on multi-spectral entropy rate superpixel segmentation (TBN-MERS) for
HSI classification. By performing ERS segmentation on each band of HSIs, TBN-MERS
can divide a certain area of the same kind of ground objects into a same superpixel, so
as to obtain the superpixel-scale spatial information of each band. The preprocessed HSI
and the preprocessed multi-spectral ERS image (MERSI) are then used as the two inputs
of the two-branch convolutional neural network, which can extract the joint information
of the spectral–spatial features at the scale of both the patch-based neighborhoods and
the superpixels.

The main contributions of this paper are as follows. (1) ERS segmentation is performed
on all bands of HSIs, and the obtained MERSI contains rich superpixel-scale spatial in-
formation, which greatly improves the classification accuracy of HSIs. (2) A two-branch
convolutional neural network is designed, which can effectively extract and fuse the pre-
processed HSI and preprocessed MERSI, and the fusion feature further improves the
classification accuracy. (3) TBN-MERS can obtain much better classification results, even
with very limited samples.

The rest of this paper is as follows. Section 2 introduces the related backgrounds
and the details of TBN-MERS. Section 3 first analyzes the effect of the structure and the
parameters in TBN-MERS, then describes the comparison experiments between TBN-MERS
and its variants, and finally, compares TBN-MERS with other state-of-the-art methods
on four datasets. The last section summarizes the work of this paper and provides the
direction of the further work in the future.

2. Materials and Methods
2.1. Multi-Spectral ERS

Superpixel segmentation is a kind of commonly used preprocessing method in com-
puter vision fields such as target detection and image segmentation [33–35]. Superpixel
segmentation is to divide the pixels in the image into different groups with certain proper-
ties. The pixels belonging to the same superpixel are similar in texture, brightness, color,
or other characteristics [36]. The purpose of superpixel segmentation is to achieve the
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following effects. (a) Each superpixel contains only one class of ground object. (b) The set
of superpixel boundaries is a super set of the boundaries of ground objects [37].

The methods of generating superpixels can be categorized into clustering-based meth-
ods and graph-based methods. Clustering-based methods start from a rough initial clus-
tering of pixels, and iteratively refine the clustering to form superpixels until certain
convergence criteria are met, such as Mean Shift [38], Watershed [39], and Simple Linear
Iterative Clustering (SLIC) [36]. The graph-based methods regard each pixel in the image
as a node of the graph. The weight of edges between two nodes is calculated based on the
similarity of them. Graph-based methods include Normalized Cuts [40], Felzenszwalb [41],
Entropy Rate Superpixel Segmentation (ERS) [37], and so on.

Mean Shift [38] is an iterative method to find the pattern among pixels in the feature
space by maximizing the local density function. The pixels that converge to the same
pattern form a superpixel. Watershed [39] regards the image as a geographical topological
structure, and the value of a pixel in the image represents the altitude. The connection of
the pixels with large values is regarded as a ridge, the area formed by the pixels with small
values is regarded as a valley, and the closed valley is regarded as a superpixel. SLIC [36]
maps the image to a new feature space, clusters it according to the distance metric, and
regards different clusters as superpixels. Normalized Cuts [40] uses contour and texture
to recursively segment the image and minimizes the global cost function defined on the
segmentation boundary. Felzenszwalb [41] regards the image as graph and clusters pixels
on the graph, so that each superpixel is the smallest spanning tree of pixels. ERS [37] finds
multiple disconnected sub-graphs from the graph of the image by iteratively optimizing
the entropy rate loss function, and each sub-graph represents a superpixel.

Mean Shift is robust to local differences but tends to straddle multiple objects. Water-
shed runs very quickly, but the research of Levinshtein et al. [42] and Veksler et al. [43] show
that the superpixels produced by Watershed often contain multiple object categories. SLIC
has excellent performance in efficiency and segmentation effect, and is one of the commonly
used segmentation algorithms. Normalized Cuts generates superpixels with the uniform
size and compact shape, but it requires a lot of calculations and runs slowly. Felzenszwalb
is very efficient and generates a good embedding representation. However, Ren et al. [34]
proved that it tended to sacrifice details so that it generated smooth boundaries, and the
boundary recall rate was not high enough. ERS has high efficiency and high boundary
recall rate, and the obtained superpixels are compact and homogeneous. In this paper, ERS
is applied for superpixel segmentation.

ERS regards superpixel segmentation as an undirected graph clustering problem [37].
The image is represented by a graph G′ = (V, E), in which V is a set of all pixels, and E
is the set of edges that are between every pixel and its adjacent pixels. The purpose of
ERS is to find a sub-graph G′ = (V, A), A ⊆ E. G′ = (V, A) represents the image after
superpixel segmentation. The objective function of ERS includes two parts: (1) the entropy
rate H(A) calculated by random walk on the graph; and (2) the balance term B(A) of
the clustering distribution. In the process of superpixel segmentation, a larger entropy
rate H(A) will make the obtained superpixels more compact and homogeneous, which is
conducive to containing only a single ground object in each superpixel, and the balance
item B(A) controls the size of the cluster, avoiding it becoming too smooth while retaining
the boundary of ground object. The objective function of ERS is as follows:

A∗ = argmax(H(A) + αB(A)), s.t.A ⊆ E (1)

where α is a trade-off parameter of H(A) and B(A).
ERS has been applied to a variety of HSI classification methods to extract spatial fea-

tures, but the existing methods generally only perform ERS on the first principal component
of HSIs and do not consider the spatial differences between different bands. To fully utilize
the spatial information of HSIs in different bands, and to correlate the spatial information
with spectral information better, we perform ERS on images of all bands in HSIs.
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Taking the Pavia University (PU) dataset as the input, the process of multi-spectral ERS
of HSIs proposed in this paper is shown in Figure 1. First, the HSI is separated according
to bands, and then the values in the image of each band are scaled to the interval [0, 255].
Suppose X represents the set of all pixels of the image in a certain band, xi represents the
value of certain pixel in X, Z(xi) is the corresponding value after scaling, min(X) is the
minimum value of X, and max(X) is the maximum value of X, then the scaling formula is:

Z(xi) =
xi −min(X)

max(X)−min(X)
× 255 (2)

We perform ERS on the scaled image of each band to obtain the superpixel segmenta-
tion image of each band. ERS will divide the pixels into nc superpixels. The superpixels are
numbered 1, 2, . . . , nc respectively. In the obtained segmentation image, the values of all
pixels in the same superpixel are all equal to the serial number of the superpixel. Finally,
the segmentation images are stacked one by one according to order of the bands to form
the MERSI.
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2.2. Two-Branch Convolutional Neural Network (TBN-MERS)

CNNs are mainly composed of convolutional layers. The convolutional layer uses mul-
tiple convolution kernels to perform convolution on the multi-spectral feature map input to
obtain a more advanced feature map. The convolutional layer has the characteristics of local
connection and weight sharing; that is, each node of the output is only connected to some
nodes of the input, and the weights of connections between the nodes in different positions
in output and corresponding nodes in input are the same. The convolution operation can
keep roughly the same spatial structure of the output data with that of the input data, so it
is widely used in the feature extraction of two-dimensional (2D) and three-dimensional
(3D) images. Commonly used convolutional layers include 2D convolutional layers and 3D
convolutional layers. The 2D convolutional layer mainly performs feature extraction from
the spatial dimension, and the 3D convolutional layer can perform feature extraction from
the spatial dimension and the spectral dimension at the same time. We use 2D convolu-
tional layers, 3D convolutional layers, and fully connected layers to build neural networks.
The HybridSN [26] proposed by Roy et al. is an end-to-end single-branch network, which is
very effective in the feature extraction of HSIs. It has achieved high classification accuracy
on multiple datasets. We design a two-branch convolutional neural network (TBN-MERS)
based on the structure of HybridSN.

Taking the PU dataset as the input, Figure 2 shows the network structure of TBN-
MERS. TBN-MERS has two feature extraction branches, with the same structure, where
3 layers of 3D convolutional layer and 1 layer of 2D convolutional layer are cascaded, and
after each 3D convolutional layer and 2D convolutional layer, there is a BatchNorm layer
and a ReLU activation layer. The outputs of the two network branches are then flattened
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as vectors and are added by the element addition operation to implement feature fusion.
Subsequently, 3 cascaded fully connected layers are used for classification, where one
dropout layer follows each of the first two fully connected layers. Finally, the Softmax
function is applied to convert the network output into a probability vector. In Figure 2,
we use Conv3D to represent the cascade of a 3D convolutional layer, a BatchNorm layer,
and a ReLU layer, use Conv2D to represent the cascade of a 2D convolutional layer, a
BatchNorm layer, and a ReLU layer, use FC to represent the cascade of a fully connected
layer and a Dropout layer, and use fc represents the cascade of a fully connected layer and
a Softmax layer. The hyper-parameters in the two-branch neural network are shown in
Table 1. In Table 1, Conv3D_1, Conv3D_2, and Conv3D_3 represent different Conv3Ds that
are cascaded in two branches of the same structure, and FC_1, FC_2 represent different FCs
that are cascaded in the network.
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Table 1. The hyper-parameters of the TBN-MERS.

Layers Kernel Size Number of Kernels Padding

Cov3D_1 (3,3,7) 8 1
Cov3D_2 (3,3,5) 16 1
Cov3D_3 (3,3,3) 32 1

Cov2D (3,3) 64 1
FC_1 – 256 –
FC_2 – 128 –

fc – Number of classes –

The BatchNorm layer standardizes the input batch data and utilizes scaling variables
γ and translation variables β to adjust the mean and variance of the standardized batch
data in order to get a better distribution of values. Let B = {x1, x2, . . . , xm} represent a
batch of data and BN(xi) represent the corresponding output of sample xi after BatchNorm
layer; then, the BatchNorm operation is as follows:

BN(xi) = γx̂i + β (3)

In Formula (3), x̂i =
xi−µB√

σ2
B+ε

, where σ2
B = 1

m

m
∑

i=1
(xi − µB)

2, µB = 1
m

m
∑

i=1
xi, and ε is a very

small number to stabilize the value.
The ReLU activation function can introduce nonlinearity to the neural network and

make the gradient propagate more efficiently. For the input data, the ReLU activation
function can be expressed as:

ReLU(xi) =

{
xi, xi > 0
0, xi ≤ 0

(4)
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2.3. The Process of TBN-MERS

The overall process of proposed TBN-MERS is shown in Figure 3, and the details are
described as follows.
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The data cube of one HSI is represented as X ∈ Rw×h×b, where w is the width and h
is the height of the image, and b is the number of spectral bands. Let Y ∈ Rw×h represent
the corresponding label image, and the value yij at the location (i, j) of the label map Y is
chosen from the set {0, 1, 2, . . . , c}, where c represents the total number of classes.

Xk ∈ Rw×h, k ∈ [1, b] represents the image in the kth band. The value of all pixels on Xk
is scaled to the interval [0, 255], and ERS algorithm is applied to obtain the corresponding
segmentation image Sk. After obtaining the segmentation images of all spectral bands,
we stack them according to the order of the bands to obtain the data cube of superpixel
segmentation image S ∈ Rw×h×b corresponding to X.

Firstly, the HSI data X are preprocessed, and the obtained data cube is denoted by X
′
.

The preprocessing operation is to standardize the image of each band. Let xi represent the
value of a certain pixel in Xk, and let Standardize(xi) represent the value of this pixel after
standardization; then, the standardization formula is:

Standardize(xi) =
xi − µk

σk
(5)

where µk is the mean, and σk is the standard deviation of all pixel values in Xk.
Secondly, the MERSI data S is preprocessed, and the obtained data cube is denoted by

S
′
. The preprocessing operation is to normalize the image of each band. Let si represent

the value of a certain pixel in Sk, Normalize(si) represent the value of this pixel after
normalization, min(Sk) represent the minimum value of Sk, and max(Sk) represent the
maximum value of Sk; then, the normalization formula is:

Normalize(si) =
si −min(Sk)

max(Sk)−min(Sk)
(6)

Thirdly, we generate the overall sample set. Each sample is corresponding to a pixel
in the HSI and consists of two parts: the patch-based neighborhood px

i ∈ Rp×p×b taken
from the preprocessed data cube X

′
, where p is the height or width of the patch and b is the

number of the bands in the HSI; the patch-based neighborhood ps
i ∈ Rp×p×b taken from

the preprocessed data cube S
′
. We randomly select a certain number of samples from each

class to form the training set and draw an equal number of samples from the remaining
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samples of each class to form the validation set, and the remaining samples are used as the
test set.

Finally, we feed the two parts px
i and ps

i of each sample xi into the two branches of
TBN-MERS and train the network. We test the model on the verification set every epoch.
When the classification accuracy of the model on the validation set no longer rises, the
training is completed. We use the best model on the validation set to predict the samples in
testing set.

The cross-entropy loss function is used to train the network. The cross-entropy loss
function is as follows:

L = − 1
N

N

∑
i

c

∑
j

yij log(pij) (7)

where N is the number of samples in a batch, xi is the ith sample in the batch, c is the
number of classes, and pij is the probability value that the sample xi belongs to the class
j predicted by the model. When the sample xi belongs to the class j, the value of yij is 1;
otherwise, it is 0.

The overall process of TBN-MERS is shown in Figure 3.

3. Results
3.1. Datasets

We conducted experiments on the Indian Pines (IP), Pavia University (PU), Salinas
(SA), and Houston (HU) datasets.

IP was captured by the American AVIRIS sensor in the Indian remote sensing exper-
imental area with a spatial resolution of 20 m. The AVIRIS sensor divided the spectrum
from 375 µm to 2200 µm into 220 bands. After removing the 20 bands contaminated by
noise, the remaining 200 spectral bands were retained. IP included 16 classes of ground
objects, including grass pasture, woods, and wheat, etc. The image size of IP was 145 × 145.
After removing the background pixels in the image, a total of 10,249 labeled samples could
be used for classification. Figure 4a is the true label image of IP. Table 2 lists the specific
classes of IP and the number of labeled samples of each class.
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Table 2. The information of each class in IP.

Number Class Samples Color
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730

7 Grass-pasture-
mowed 28

8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265

15 Buildings-Grass-
Trees-Drives 386

16 Stone-Steel-Towers 93
Total 10,249

PU was captured by the ROSIS sensor at the University of Pavia in northeastern
Italy with a spatial resolution of 1.3 m. The ROSIS sensor detected 115 bands in the
wavelength range of 0.43 µm to 0.86 µm. After 12 noisy bands are removed, data from
the remaining 103 bands are used for experiments. PU includes nine classes of ground
objects, such as asphalt, meadows, gravel, etc. The image size of PU is 610 × 340. After
removing background pixels in the image, a total of 42,776 labeled samples could be used
for classification. Figure 4b is the true label image of PU. Table 3 lists the specific classes of
PU and the number of labeled samples of each class.

Table 3. The information of each class in PU.

Number Class Samples Color
1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

SA was captured by the American AVIRIS sensor in the Salinas Valley in California.
It had a spatial resolution of 3.7 m. This image had 224 bands originally. Removing the
bands that could not be reflected by water, the remaining 204 bands were generally used
for classification. SA included 16 classes of ground objects, such as fallow, celery, etc.
It contained 111,104 pixels in total, of which 56,975 pixels were background pixels, and
54,129 pixels could be used for classification. The image size of SA was 512× 217. Figure 4c
is the true label image of SA. Table 4 lists the specific classes of SA and the number of
labeled samples of each class.



Remote Sens. 2022, 14, 1569 10 of 27

Table 4. The information of each class in SA.

Number Class Samples Color
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total 54,129

HU was captured by the ITRES CASI-1500 sensor with a spatial resolution of 2.5 m,
provided by the 2013 IEEE GRSS Data Fusion Contest. HU contained 144 bands ranging
from 364 nm to 1046 nm. HU included 15 classes of ground objects such as trees, soil,
residential, etc. After removing the background pixels in the image, a total of 15,268 labeled
samples could be used for classification. Figure 4d is the true label image of HU. Table 5
lists the specific classes of HU and the number of labeled samples of each class.

Table 5. The information of each class in HU.

Number Class Samples Color
1 Healthy grass 1251
2 Stressed grass 1254
3 Synthetic grass 732
4 Trees 1244
5 Soil 1242
6 Water 339
7 Residential 1268
8 Commercial 1244
9 Road 1252
10 Highway 1227
11 Railway 1288
12 Parking Lot 1 1233
13 Parking Lot 2 531
14 Tennis Court 463
15 Running Track 700

Total 15,268

3.2. Experimental Settings

In order to analyze the effect of different factors on the classification performance,
we conducted a series of experiments, including: (1) the difference between two-branch
network and single-branch network; (2) the influence of the number of superpixels in ERS
and the patch size of input samples; (3) the difference of multi-spectral methods based on
two kinds of superpixel segmentation methods, ERS and SLIC; (4) the different effect of
segmentation images obtained by applying ERS to images on multiple bands and the first
principal component; and (5) a comparison between TBN-MERS and other methods.

In multi-spectral ERS, the number of superpixels in each band nc is set to 50 for IP and
SA and 200 for PU and HU. In ERS, the trade-off parameter α is set to 0.5. For IP, PU, and
HU datasets, 50 samples are randomly selected from each class (10 samples are selected
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from the class with less than 50 samples) to form the training set. For SA, five samples are
randomly selected from each class to form the training set. For each dataset, the number of
randomly selected samples in the validation set is the same as that of the training set. The
remaining samples are used to form the test set. In TBN-MERS, the training batch size is
set to 32, and SGD optimizer is adopted. The learning rate is set to 0.0005. In SVM, only the
spectral vector corresponding to the local center pixel is taken as the input. In TBN-MERS,
Net-X, and Net-S (in Section 3.3.1), the patch size p of samples from IP, PU, and SA is set
to 5, and the patch size p of samples from HU is set to 7. To achieve the best effect, the
patch size of samples in HybridSN and 3DCNN is set to 25. The hyper-parameters of SSRN
and SuperPCA are set as described in the original papers. We carry out all the methods for
comparison, and all the experimental results in this paper are the averages of five result
values obtained by independent runs for five times on RTX TITAN.

Three commonly used metrics are adopted in this paper to evaluate the classification
results of HSIs obtained by different methods: Overall Accuracy (OA), Average Accuracy
(AA), and Kappa coefficient (Kappa). OA represents the proportion of correctly classified
samples to all samples. AA represents the average value of classification accuracy of each
class. Kappa represents the degree of consistency between the classification result and the
true labels. The larger the three metrics are, the better the classification performance is.

Suppose n is the total number of samples, m is the total number of classes, Ni is the
total number of samples of the actual class i, N′i is the total number of samples predicted as
class i, and Cii represents the number of samples whose true class is i and is predicted to be
class i; then, OA can be expressed by Formula (8):

OA =
1
n

m

∑
i=1

Cii (8)

AA can be expressed by Formula (9):

AA =
1
m

m

∑
i=1

Cii
Ni

(9)

Kappa can be expressed by Formula (10):

Kappa =
Po − Pe

1− Pe
(10)

where Po =
1
n

m
∑

i=1
Cii, Pe =

1
n2

m
∑

i=1
Ni × N′i .

3.3. The Results and Analyses of Experiments
3.3.1. The Difference between Two-Branch Network and Single-Branch Network

In order to prove that the two-branch neural network plays an important role in feature
extraction and feature fusion, we designed two single-branch networks (Net-X and Net-S)
for comparison. Net-X means that only preprocessed HSI is used for feature extraction and
classification, and Net-S means that only preprocessed MERSI is used for feature extraction
and classification, whereas TBN-MERS performs feature extraction, feature fusion, and
classification using both the preprocessed HSI and MERSI. The hyper-parameter settings of
Net-X and Net-S are the same as those of TBN-MERS. The experimental results are shown
in Table 6.



Remote Sens. 2022, 14, 1569 12 of 27

Table 6. Classification results of Net-X, Net-S, and TBN-MERS.

Networks Metrics IP PU SA HU

Net-X
OA (%) 81.02 94.63 85.31 94.68
AA (%) 87.70 94.33 91.74 95.39

Kappa (×100) 78.44 92.88 83.59 94.25

Net-S
OA (%) 97.59 95.90 97.89 90.58
AA (%) 98.97 96.37 98.65 91.90

Kappa (×100) 97.23 94.58 97.66 89.83

TBN-MERS
OA (%) 98.13 99.74 99.35 97.51
AA (%) 99.01 99.70 99.31 97.88

Kappa (×100) 97.85 99.66 99.28 97.31

From Table 6, we can see that the contribution of HSI and MERSI to the final classifica-
tion results is quite different on different datasets. On IP and SA datasets, Net-S performs
much better than Net-X, indicating that MERSI contains more useful information of these
two datasets for classification. As for PU and HU datasets, Net-X is a little inferior to Net-S
on PU dataset but is much superior to Net-S on HU dataset, indicating that the features
extracted from HSIs are also important for the final classification accuracy. Compared
to Net-X and Net-S, TBN-MERS obtains the best classification accuracy on all the four
datasets, showing the necessity of the feature fusion. TBN-MERS obtains more advanced
features and complementary information by feature fusion, which thus improves the final
classification results greatly. In a word, the proposed two-branch network TBN-MERS is
effective in fusing the features of both the preprocessed HSI and MERSI, which is thus
more efficient and robust in classification.

3.3.2. The Influence of the Number of Superpixels and the Patch Size

There are two important parameters in the proposed TBN-MERS: the number of
superpixels nc and patch size p. nc is a hyper-parameter in ERS, which determines how
many superpixels ERS divides the image into. If nc is large, it means that TBN-MERS
performs a fine segmentation on the image and the size of each superpixel is small, obtaining
detailed information of the image. On the contrary, if nc is small, it means that the size of
each superpixel is big, and TBN-MERS pays more attention to the large-scale features, such
as the consistency in a wide area. The patch size p is the size of patch-based neighborhoods
of the input samples. In brief, nc determines the richness of superpixel-scale spatial
information, and p determines the richness of neighborhood-scale spatial information. We
conduct experiments on different combinations of nc and p and plot the results in Figure 5,
where different colors indicate the results corresponding to different p.

From Figure 5, it can be seen that TBN-MERS with a small nc and a small p achieves
better OA results on IP. Such results are reasonable. It can be observed from Figure 4a that
IP has good consistency in large areas. A smaller nc means that the features are extracted
from the superpixels with a larger size, and the pixels in the same superpixel have better
consistency, whereas a larger nc makes TBN-MERS extract the features from the smaller
superpixels, which will destroy the internal homogeneousness of the area. On the other
hand, superpixel-scale information has a more important effect on the classification of IP,
as shown in Section 3.3.1, where Net-S performs much better than Net-X on IP. Therefore,
if a larger p is used, it may introduce redundant information on the neighborhood scale
and will interfere in the feature extraction and keep the model from extracting the useful
features well. In short, a small nc and a small p are good choices for IP. For PU, the reverse
is true. TBN-MERS with a larger nc can achieve better classification results. When nc is
large, a larger p can further achieve better classification results. It can be observed from
Figure 4b that the scene of PU is relatively complex, and the distribution of the ground
objects is irregular, so a larger nc (corresponding to a smaller size of superpixel) enables
the model to extract fine-grained superpixel-scale information, and a larger p enables the
model to extract richer neighborhood-scale information. For SA, which is homogeneous in
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large areas, a smaller nc and a suitable p achieve better classification results, which shows
that the superpixel-scale information is more important for the classification of SA. For HU,
the classification effect is not sensitive to the parameter changes, and many suitable nc and
p can lead to good classification results.
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3.3.3. The Difference of Multi-Spectral Methods Based on Two Kinds of Superpixel
Segmentation Methods, ERS and SLIC

TBN-MERS introduces the superpixel-scale spatial information in each band using the
results of ERS segmentation as the priori information, which significantly improves the final
classification results. How much does the final classification results depend on the effect of
the superpixel segmentation? How will the proposed model of TBN-MERS perform if ERS
is replaced by another superpixel segmentation method? We will investigate these issues in
this section. As introduced in Section 2.1, there are many superpixel segmentation methods,
among which both SLIC and ERS have excellent segmentation effect. We design a variant
of TBN-MERS by replacing ERS with SLIC in the model of TBN-MERS, which is named as
TBN-MSLIC. The comparison results between TBN-MSLIC and TBN-MERS are shown in
Table 7. From Table 7, it can be seen that both TBN-MSLIC and TBN-MERS can achieve
good performance with higher classification accuracy than that of Net-X in Section 3.3.1,
indicating that the model of TBN-MERS is effective and can obtain higher classification
accuracy than the single-branch network, which only uses the spectral information and the
spatial information at the scale of patch-based neighborhood, even if ERS in TBN-MERS
is replaced by other superpixel segmentation method. In addition, TBN-MERS performs
better than TBN-MSLIC, especially on IP and SA datasets with large homogeneous regions.
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According to the analyses shown in Section 3.3.1, the superpixel segmentation image
contains more useful information of IP and SA datasets for classification. Therefore, the
model using the better superpixel segmentation method will achieve better classification
performance on IP and SA datasets. Figure 6 shows the results of superpixel segmentation
obtained by SLIC and ERS on the 103rd band of PU set, respectively. The number of
superpixels in Figure 6a,b is both 200. From Figure 6, it can be seen that both SLIC and
ERS can extract the superpixel-scale spatial information. For example, both SLIC and
ERS can segment the contour of the parking area at bottom left. However, there are also
some differences. The boundary obtained by SLIC is smoother, without too many local
details, whereas the boundary obtained by ERS is finer, and both the overall outlines and
local details are well-described. In summary, the model of TBN-MERS is effective, where
ERS can obtain better superpixel segmentation results than SLIC, enabling TBN-MERS to
achieve good classification results on different datasets.

Table 7. The comparison results of TBN-MSLIC and TBN-MERS.

Methods Metrics IP PU SA HU

TBN-MSLIC
OA (%) 95.01 99.20 95.16 96.59
AA (%) 97.48 99.55 96.55 97.13

Kappa (×100) 94.28 98.94 94.62 96.31

TBN-MERS
OA (%) 98.13 99.74 99.35 97.51
AA (%) 99.01 99.70 99.31 97.88

Kappa (×100) 97.85 99.66 99.28 97.31
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3.3.4. The Different Effects of Segmentation Images Obtained by Applying ERS to Images
on Multiple Bands and the First Principal Component

Some existing methods [27,28] used to extract the spectral–spatial information within
each superpixel for classification by performing ERS on the first principal component of
HSIs. However, different bands contain not only different spectral information but also
different spatial information; the spectral–spatial information can hardly be sufficiently uti-
lized by only choosing the first principal component. Figure 7 shows the results segmented
by ERS on the first principal component and some bands of PU. Since each region in the
image has different radar reflectivity on different bands, it can be seen from Figure 7 that
the superpixel segmentation results obtained by ERS on different bands have significant
differences. Comparing with the true label image of PU, the result of the first principal
component seems to have good effect at first glance, but a different conclusion could be
drawn after a careful comparison. For instance, for the parking area at the bottom left of
the image (marked by a big rectangle in Figure 7a,c), the segmentation result of the 51st
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band is better. For the circular building areas (marked by a small rectangle in Figure 7a,d,e),
the 77th and 103rd bands have a better segmentation effect. It can also be noticed that
the contours of each area on most bands are roughly similar, but there are differences in
local details. This exactly reflects the difference between different bands. The segmentation
result of the first principal component can obtain the segmentation result of the overall
contour, which contains the mainly superpixel-scale spatial information. The obtained su-
perpixels of different bands are overlapped and interlaced, which not only contain a wealth
of superpixel-scale spatial information, but also include very fine local spatial information
of different regions in different bands.
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In order to prove that the segmentation image obtained by multi-spectral ERS con-
tributes to better classification results, we designed another variant of TBN-MERS, which is
denoted by PC-TBN-MERS. The details of PC-TBN-MERS are as follows. The dimension of
preprocessed HSI is reduced by principal component analysis, and the first principal com-
ponent is retained. ERS is applied on the first principal component to obtain a superpixel
segmentation result. The superpixel segmentation result is copied and stacked to form
a data cube until it has the same size as that of the HSI. We take the obtained data cube
and the preprocessed HSI as the input of two-branch neural network. Therefore, the only
difference between PC-TBN-MERS and TBN-MERS lies in that the former only performs
ERS on the first principal component (noted as FPC-ERS), and the latter performs ERS on
all the bands (i.e., multi-spectral ERS). The comparison results are shown in Table 8.

Table 8. Classification results of PC-TBN-MERS and TBN-MERS.

Methods Metrics IP PU SA HU

PC-TBN-MERS
OA (%) 86.58 97.80 93.79 96.28
AA (%) 91.91 97.78 95.40 96.68

Kappa (×100) 84.72 97.08 93.10 95.98

TBN-MERS
OA (%) 98.13 99.74 99.35 97.51
AA (%) 99.01 99.70 99.31 97.88

Kappa (×100) 97.85 99.66 99.28 97.31

From the metrics in Table 8, it can be seen that TBN-MERS has achieved much better
performance than PC-TBN-MERS on IP and SA datasets, demonstrating that multi-spectral
ERS is necessary. In addition, as shown in Figure 4, IP and SA datasets have several large
homogeneous regions. This result also indicates that FPC-ERS is able to extract details of
the image, but it is not good at finding the homogeneousness in a large area. However,



Remote Sens. 2022, 14, 1569 16 of 27

multi-spectral ERS is good at both aspects, making TBN-MERS obtain better classification
results on all kinds of tested datasets.

3.3.5. The Effect of Using Different Fusion Methods in TBN-MERS

From the experimental results in Section 3.3.1, it can be seen that the proposed two-
branch network TBN-MERS is effective in fusing the features of both the preprocessed HSI
and MERSI, where the data fusion is performed after the flatten layer. If the data fusion is
performed at earlier stages, could the final classification accuracy be higher or not? We will
investigate this issue in this section.

We designed two variants of TBN-MERS. In the feature extraction process, the features
of the same depth layer from different branches are fused through skip connections, includ-
ing the introduction of MERSI features into the HIS feature extraction process, marked as
TBN(M2H)-MERS, whose network structure is shown in Figure 8a, and the introduction of
HIS features into MERSI feature extraction process, marked as TBN(H2M)-MERS, whose
network structure is shown in Figure 8b. Table 9 lists the corresponding experimental
results. From Table 9, it can be found that neither TBN(M2H)-MERS nor TBN(H2M)-MERS
achieves better classification results than TBN-MERS.
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Table 9. Classification results of TBN(M2H)-MERS, TBN(H2M)-MERS, and TBN-MERS.

Methods Metrics IP PU SA HU

TBN(M2H)-MERS
OA (%) 97.74 97.74 99.12 94.81
AA (%) 98.99 98.29 98.94 95.72

Kappa (×100) 97.41 97.01 99.02 94.39

TBN(H2M)-MERS
OA (%) 93.62 98.94 97.34 96.34
AA (%) 96.41 99.30 97.14 96.87

Kappa (×100) 92.70 98.60 97.04 96.05

TBN-MERS
OA (%) 98.13 99.74 99.35 97.51
AA (%) 99.01 99.70 99.31 97.88

Kappa (×100) 97.85 99.66 99.28 97.31

Why does information fusion at earlier stages not lead to better classification results?
In our opinion, the reason is as follows. The data of HSIs contain the values of the
electromagnetic reflection intensity of ground objects, and the data of MERSI contain
the label values obtained by superpixel segmentation. The data distribution of HSI and
MERSI is quite different. Therefore, if the feature fusion is carried out at earlier stages of
the network, it will cause interference, which is not conducive to learning key features. In
contrast, after the flatten layer, the network has extracted the advanced features of HSI
and MERSI, and the features at this time represent the essential information, where the
feature fusion will achieve better classification results. Therefore, we choose the structure of
TBN-MERS to implement the information fusion, which is more concise and more effective.

3.3.6. Comparison between TBN-MERS and Other Methods

We compare TBN-MERS with five existing methods, including SVM [16], 3DCNN [24],
SSRN [25], HybridSN [26], and SuperPCA [28]. SVM only takes the spectral features
as input and can achieve satisfactory classification results even with limited samples. It
has the advantages of good robustness and good generalization, so it is often used as
a benchmark for classification of HSIs. Archibald discussed the application of SVM in
hyperspectral image classification in 2007 [16]. We refer to the settings in that paper [16]
and train the SVM classifier based on radial basis function to classify HSIs according to
the spectral features of HSIs. SSRN was proposed by Zhong et al. in 2017 [25]. SSRN
combined multiple 3D convolutional layers into spatial feature extraction modules and
spectral feature extraction modules according to the residual structure to extract spectral–
spatial features. SSRN connected these modules in series to perform end-to-end feature
extraction and classification. In 2018, Hamida et al. [24] studied the classification effect
of 3D convolutional networks with different numbers and different structures on HSIs.
We choose the 3DCNN network structure consisting of four layers of 3D convolution and
a fully connected layer proposed by Hamida for comparison. HybridSN was proposed
by Roy et al. in 2019 [26]. It firstly used multiple 3D convolutional layers to extract the
joint spectral–spatial features of HSIs, then used 2D convolution to extract the spatial
information of the feature map, and finally, adopted a multi-layer fully connected layer
to perform classification. It not only ensured the feature extraction ability of the model,
but also reduced the model parameters. Jiang et al. proposed SuperPCA in 2018 [28]. In
SuperPCA, the first principal component of HSI was segmented by multi-scale ERS, and
then the principal component analysis (PCA) was applied to reduce the dimension of HSIs
within the obtained superpixels. Subsequently, SuperPCA trained classifiers on the reduced
data at each scale and obtained the final classification results through decision fusion.

The results and analyses of six different methods on four datasets are as follows. In
the following tables, the best values are marked in bold, and the second best values are
marked with underlines for the convenience of the readers. The numbers in parentheses
are the standard deviation.

(1) Results and analyses of IP: Table 10 shows the OA, AA, and Kappa of the six
different methods on IP. From Table 10, it can be seen that TBN-MERS achieves an overall
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classification accuracy of 98.13%, which is increased by 26.27%, 15.97%, 9.75%, 4.36%, and
3.07% over SVM, 3DCNN, SSRN, HybridSN, and SuperPCA, respectively. Except that the
classification accuracy of TBN-MERS in class 3 is slightly lower than that of HybridSN,
TBN-MERS has achieved the highest classification accuracy in other classes. Both TBN-
MERS and SuperPCA use ERS for feature extraction, and TBN-MERS and HybridSN use
a similar network structure for feature extraction. Yet, TBN-MERS has achieved higher
classification accuracy, showing that the use of multi-spectral ERS and the structure of the
two-branch neural network both contribute to the final results.

Table 10. Classification results of different methods on IP with 50 samples per class.

Class Number SVM [16] 3DCNN [24] SSRN [25] HybridSN [26] SuperPCA [28] TBN-MERS

1 66.11 99.37 0.00 100.00 100.00 100.00
2 63.91 78.03 76.71 87.80 93.76 98.21
3 64.17 70.64 86.27 96.76 89.10 94.64
4 84.38 61.16 100.00 99.35 95.19 100.00
5 90.71 88.95 94.67 97.50 97.00 98.33
6 92.79 93.52 97.41 96.91 95.29 99.94
7 85.55 98.88 0.00 100.00 85.71 100.00
8 95.23 97.60 100.00 100.00 99.53 100.00
9 88.00 94.84 0.00 100.00 90.00 100.00

10 72.14 64.13 88.21 93.55 81.13 97.22
11 57.04 90.11 87.31 89.47 85.07 96.92
12 70.01 73.23 74.11 94.91 93.74 98.96
13 98.58 91.95 99.31 100.00 99.35 100.00
14 83.09 94.71 98.01 97.99 97.20 100.00
15 70.47 77.04 99.94 97.91 98.81 100.00
16 97.67 77.40 99.05 100.00 97.83 100.00

OA (%) 71.86
(0.34)

82.16
(1.47)

88.38
(1.58)

93.77
(1.22)

95.06
(1.24)

98.13
(0.21)

AA (%) 79.99
(0.93)

84.47
(1.58)

75.06
(1.07)

97.01
(0.55)

96.70
(1.00)

99.01
(0.09)

Kappa
(×100)

68.22
(0.41)

79.72
(1.65)

86.73
(1.79)

92.88
(1.38)

94.32
(1.42)

97.85
(0.24)

The samples in different classes in IP are seriously unbalanced. For instance, the
samples of class 1, class 7, and class 9 are very few, the number of which is 46, 28, and
20, respectively. When the number of training set samples is limited, the imbalance of the
samples in different categories may make it difficult for the model to learn the features of
the classes with limited samples. As we can see in Table 10 for SSRN, the classification
accuracy values of these three classes are zero. In class 1, 3DCNN, HybridSN, SuperPCA
and TBN-MERS achieve good classification results. In class 7 and class 9, only HybridSN
and TBN-MERS achieve good classification results with the value of 100%. These results
demonstrate that TBN-MERS is able to learn the features of classes with limited samples
effectively, indicating it has the characteristic of good generalization and robustness.

Figure 9 shows the predicted label images of the six different methods on IP. From
Figure 9, we can see that there is a certain amount of salt and pepper noise in the results of
SVM and 3DCNN, whereas the results of HybridSN, SSRN, SuperPCA, and TBN-MERS are
relatively close to the true label image. On the whole, the visual effect of the classification
obtained by TBN-MERS is the best among all the compared methods.

(2) Results and analyses of PU: Table 11 shows the OA, AA, and Kappa of six dif-
ferent methods on PU. From Table 11, it can be seen that TBN-MERS achieves an overall
classification accuracy of 99.86%, which is increased by 17.13%, 11.48%, 4.78%, 4.32%, and
6.62% over SVM, 3DCNN, SSRN, HybridSN, and SuperPCA, respectively. In each class,
TBN-MERS has achieved the highest classification accuracy. Both HybirdSN and SSRN
directly use hyperspectral data as input. SuperPCA uses the superpixel segmentation
results of the first principal component for feature extraction. Compared with these meth-
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ods, TBN-MERS has achieved a significant improvement in classification accuracy. For
PU, the features extracted by the multi-spectral ERS and the combined spectral–spatial
information extracted by TBN-MERS play an important role in improving the classification
accuracy. Figure 10 shows the predicted label images of the six different methods. From
Figure 10, we can see that SVM, 3DCNN, and SuperPCA have more misclassifications,
whereas HybridSN, SSRN, and TBN-MERS results are very close to the true label image.
On the whole, the visual effect of the classification obtained by TBN-MERS is the most
satisfactory among all the compared methods.
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Table 11. Classification results of different methods on PU with 50 samples per class.

Class Number SVM [16] 3DCNN [24] SSRN [25] HybridSN [26] SuperPCA [28] TBN-MERS

1 77.34 95.27 92.55 87.33 70.66 99.74
2 80.62 94.78 98.40 98.38 80.93 99.89
3 79.59 66.67 97.62 94.74 93.70 99.50
4 95.08 93.30 70.38 94.10 80.23 98.95
5 99.32 99.42 99.67 99.84 96.60 100.00
6 79.97 75.00 99.75 99.86 87.73 100.00
7 93.06 63.18 97.51 99.93 92.97 100.00
8 84.86 84.21 99.38 89.00 91.88 99.53
9 99.86 96.08 68.34 93.73 100.00 100.00

OA (%) 82.73
(1.78)

88.38
(0.99)

95.08
(1.27)

95.54
(0.71)

93.24
(0.67)

99.86
(0.07)

AA (%) 87.75
(0.42)

85.32
(0.94)

91.51
(1.00)

95.21
(0.70)

94.42
(0.37)

99.77
(0.08)

Kappa
(×100)

77.78
(2.08)

84.69
(1.25)

93.47
(1.66)

94.09
(0.94)

91.10
(0.85)

99.64
(0.09)
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(3) Results and analyses of SA: Table 12 shows the OA, AA, and Kappa of six dif-
ferent methods on SA. In particular, due to the relatively simple scenarios of SA and the
continuous distribution of ground objects, the classification of SA is easier to a degree
compared with other datasets. To fully explore the classification performance of different
methods, in the phase of training, only five training samples are randomly selected for
each class. From Table 12, it can be seen that TBN-MERS achieves an overall classification
accuracy of 99.31%, which is increased by 28.79%, 16.84%, 18.46%, 8.49%, and 25.67% over
SVM, 3DCNN, SSRN, HybridSN, and SuperPCA, respectively. As considering a certain
class, TBN-MERS has not achieved the highest classification accuracy in many classes. The
accuracy of TBN-MERS is lower than 3DCNN in class 5, class 6, and class 16. It is lower
than SSRN in class 9. It is lower than HybridSN in class 14 and class 16. It is lower than
SuperPCA in class 15. However, the classification accuracy gap is very small in these classes,
whereas the accuracy of TBN-MERS far exceeds other methods in other classes, such as
class 8 and class 10. This shows that TBN-MERS has stronger generalization ability and
better robustness for different types of ground objects on SA. Compared with other datasets,
SA has the characteristics of concentrated ground object distribution, relatively regular
shape of ground objects, high ground object consistency, and high consistency within the
sample class, so it is especially suitable for multi-spectral ERS. The obtained superpixels
well mark the characteristics of the distribution of ground objects. Even if the samples are
limited and the neighborhood-scale spatial information is limited, TBN-MERS can also
classify the test samples well by fully extracting the superpixel-scale spatial information
of SA and filtering out the most representative features for classification. Figure 11 shows
the predicted label images of the six different methods. From Figure 11, we can see that
the predicted label images of SVM, 3DCNN, SSRN, HybridSN, and SuperPCA all have
many pixels that are wrongly classified, whereas the result of TBN-MERS is almost the
same as the true label image. On the whole, the visual effect of the classification obtained
by TBN-MERS is the best among all the compared methods.

Table 12. Classification results of different methods on SA with 5 samples per class.

Class Number SVM [16] 3DCNN [24] SSRN [25] HybridSN [26] SuperPCA [28] TBN-MERS

1 98.35 73.44 99.67 98.65 100.00 100.00
2 81.50 97.13 95.17 97.32 73.53 100.00
3 37.44 99.48 96.14 97.54 87.27 100.00
4 97.99 98.52 93.80 83.94 70.27 99.98
5 93.92 99.48 80.07 91.73 51.63 97.23
6 97.20 99.96 99.09 97.92 85.31 99.39
7 99.02 91.03 92.90 99.25 72.97 100.00
8 37.31 66.54 71.32 85.45 33.37 98.95
9 97.97 86.99 100.00 94.20 53.34 99.93

10 24.32 86.16 82.38 91.03 66.27 98.75
11 83.55 95.99 73.93 94.93 96.33 99.34
12 96.13 93.55 62.59 97.00 78.15 99.76
13 98.77 89.27 49.98 96.11 95.28 99.62
14 88.45 85.89 94.70 99.26 71.74 98.74
15 57.51 59.00 52.28 75.95 100.00 99.59
16 71.67 98.78 77.88 97.67 74.97 97.03

OA (%) 70.52
(1.19)

82.47
(0.83)

80.85
(4.37)

90.82
(1.89)

73.64
(3.53)

99.31
(0.13)

AA (%) 78.82
(0.81)

88.83
(1.01)

82.62
(5.78)

93.62
(0.89)

81.35
(2.46)

99.27
(0.13)

Kappa
(×100)

67.37
(1.29)

80.39
(0.92)

78.71
(4.88)

89.78
(2.12)

70.92
(3.65)

99.23
(0.15)
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(4) Results and analyses of HU: Table 13 shows the OA, AA, and Kappa of the six
different methods on HU. HU scene is relatively complex, the ground objects are small,
and the distribution is not continuous, which certainly introduce some difficulty for the
classification. From Table 13, it can be seen that TBN-MERS achieves an overall classification
accuracy of 97.52%, which is increased by 39.65%, 14.16%, 4.75%, 3.06%, and 5.68% over SVM,
3DCNN, SSRN, HybridSN, and SuperPCA, respectively. As considering a certain class, the
accuracy of TBN-MERS is lower than HybridSN in class 5 and class 6 and lower than SSRN in
class 8. TBN-MERS has achieved the highest classification accuracy in other classes. For HU,
SSRN and HybridSN have achieved relatively high classification accuracy, indicating that the
neighborhood-scale spatial information has an important effect on the classification results.
SuperPCA also has achieved good classification accuracy, indicating that the superpixel-scale
spatial information has an important effect on the classification accuracy. TBN-MERS has
achieved the highest classification accuracy, indicating that the two-branch network fully
combines the superpixel-scale and neighborhood-scale spatial information through feature
fusion. Figure 12 shows the predicted label images of the six different methods. From
Figure 12, we can see that some misclassified samples can be seen in the predicted label
images of SVM and 3DCNN, whereas SSRN, HybridSN, SuperPCA, and TBN-MERS are
relatively similar with the true label image. On the whole, the visual effect of the classification
obtained by TBN-MERS is the most satisfactory among all the compared methods.

Table 13. Classification results of different methods on HU with 50 samples per class.

Class Number SVM [16] 3DCNN [24] SSRN [25] HybridSN [26] SuperPCA [28] TBN-MERS

1 84.82 86.91 86.71 89.34 91.51 95.25
2 84.30 79.08 87.39 93.32 83.31 99.13
3 98.91 90.60 97.74 99.97 99.71 100.00
4 90.46 82.42 84.58 94.67 92.29 98.29
5 86.66 88.86 99.75 99.89 97.15 99.83
6 84.29 66.38 94.26 100.00 87.89 97.92
7 21.67 87.21 88.68 88.11 82.92 96.33
8 19.88 77.21 91.22 85.37 77.55 90.78
9 82.07 85.39 88.58 87.65 81.95 92.74

10 3.21 82.99 99.17 99.08 91.59 100.00
11 56.07 83.76 98.50 97.49 90.95 99.75
12 2.16 75.74 93.88 98.03 78.36 98.41
13 10.27 91.38 94.90 99.12 72.97 99.95
14 96.61 76.71 100.00 100.00 96.85 100.00
15 99.04 94.37 98.05 100.00 98.92 100.00
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Table 13. Cont.

Class Number SVM [16] 3DCNN [24] SSRN [25] HybridSN [26] SuperPCA [28] TBN-MERS

OA (%) 57.87
(0.56)

83.36
(2.27)

92.77
(0.77)

94.46
(0.52)

91.84
(1.69)

97.52
(0.25)

AA (%) 61.36
(0.63)

83.27
(1.97)

93.56
(0.73)

95.47
(0.43)

92.24
(1.39)

97.89
(0.20)

Kappa
(×100)

54.74
(0.61)

82.04
(2.45)

92.18
(0.83)

94.00
(0.56)

91.18
(1.83)

97.32
(0.27)
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(5) Comparison about the training loss of deep learning methods on different datasets:
For the deep learning methods including 3DCNN, SSRN, HybridSN, and our TBN-MERS,
we compare their convergence curves of training loss on different datasets, as shown in
Figure 13. Figure 13a–d show the training loss curves of four deep learning methods
on IP, PU, SA, and HU. In Figure 13, we can see that 3DCNN, HybridSN, and TBN-
MERS converge faster, and their final loss is smaller than SSRN. The convergence of
TBN-MERS in the training process is not the fastest, and there are certain fluctuations in
the training process, but in the end, the highest classification accuracy can be achieved on
the testing set, which illustrates that the two-branch structure and the feature fusion of
superpixel-scale and neighborhood-scale make TBN-MERS more robust and have better
generalization performance.
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(6) Comparison about the training time of several deep learning methods: To compare
the training time of several deep learning methods, further experiments are conducted,
and the results are shown in Table 14. TBN-MERS needs to implement the superpixel
segmentation first and then carry out the training stage, so we record the segmentation
time, training time, and total time. From Table 14, in terms of training time, the training
time of TBN-MERS is the smallest, because it uses a smaller patch size, making it require
less computation. However, its segmentation time is relatively long, so the total time is
not the minimal. At the same time, comparing the segmentation time of different datasets,
we can find that the segmentation time is longer for datasets with larger size and more
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channels. This cost is acceptable, as the final classification results are improved greatly, and
the increasing of the total time is limited.

Table 14. Time for deep learning methods on different datasets.

Methods Operation IP PU SA HU

3DCNN Training 530 s 121 s 421 s 299 s
SSRN Training 794 s 257 s 114 s 566 s

HybridSN Training 335 s 184 s 50 s 536 s

TBN-MERS
Segmentation 121 s 152 s 230 s 646 s

Training 70 s 60 s 38 s 114 s
Total time 191 s 212 s 268 s 760 s

4. Discussion

It can be seen from the above results that the performance of different methods on
different datasets is different, but TBN-MERS always achieves best classification accuracy
with limited samples. The main reason why TBN-MERS can achieve highest classification
accuracy is as follows. On the one hand, we apply ERS to each band of the preprocessed HSI.
Each superpixel segmentation image obtained contains the spatial distribution of ground
objects in the superpixel scale. The segmentation results of different bands are different,
and the obtained superpixels on different bands are crossing and overlapping, which
reflects the difference of the spectral information contained in different bands indirectly.
That is to say, the superpixel segmentation images not only directly contain rich spatial
information but also indirectly contain spectral information. In addition, in the superpixel
segmentation images, the values of all pixels within the same superpixel are all equal
to the serial number of the superpixel (i.e., the number in the range of 1 to nc), which is
essentially a filtering and denoising process for HSIs. Therefore, a single-branch network
that uses only preprocessed segmentation images (i.e., Net-S in Section 3.3.1) can also
achieve good classification accuracy. On the other hand, the proposed two-branch network
not only utilizes superpixel-scale information in the HSI, but also extracts lots of detailed
spectral–spatial information at the neighborhood-scale from the preprocessed HSI. The
feature fusion designed in TBN-MERS further improves the classification accuracy and
improves the robustness and generalization of TBN-MERS.

From the results of above experiments, we also find some limitations of TBN-MERS.
Compared with several other deep learning methods, TBN-MERS mainly relies on the extra
features provided by multi-spectral ERS to improve the classification accuracy. The time
cost of multi-spectral ERS increases as the size of dataset becomes larger, which will affect
the efficiency of TBN-MERS to a certain extent. Fortunately, such extra time cost is limited,
as shown in Table 14, which is worthwhile, considering the significant improvement in
classification results.

5. Conclusions

This paper proposed a two-branch convolutional neural network based on multi-
spectral entropy rate superpixel segmentation (TBN-MERS) for hyperspectral image (HSI)
classification. The multi-spectral entropy rate superpixel (ERS) segmentation, i.e., per-
forming ERS segmentation on each band of the HSI, enables TBN-MERS to extract rich
spectral–spatial information at the superpixel scale with the effect of filtering and denoising,
which significantly improves the final classification accuracy. The feature fusion imple-
mented by a two-branch network in TBN-MERS, which utilize both the superpixel-scale
information and the spectral–spatial information at the neighborhood-scale in the HSI, im-
proves the classification accuracy further, and improves the robustness and generalization
of TBN-MERS.

On the whole, TBN-MERS can achieve good classification results on different kinds of
datasets with limited training samples. For datasets with large homogeneous areas, TBN-
MERS is able to extract such homogeneousness within the same regions effectively by using
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the multi-spectral ERS segmentation to extract superpixel-scale information and obtains
high classification accuracy finally. For datasets with fragmentary and dispersed ground
objects, where the superpixel-scale information plays a less important role, TBN-MERS
can fully mine the neighborhood-scale information and fuse it with the superpixel-scale
information to ensure the high classification accuracy. In summary, both the multi-spectral
ERS segmentation and the feature fusion contribute to the excellent classification results of
TBN-MERS. TBN-MERS is designed with a concise and flexible frame, and its classification
performance could be improved further if a better spectral–spatial feature extraction scheme
is adopted in the first branch or a segmentation algorithm with performance better than
ERS is applied in the second branch. In the future, we will try to design deep neural
networks to implement unsupervised or semi-supervised image segmentation, which may
help to improve the classification results further.
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