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Abstract: Gross floor area is defined as the product of number of building stories and its base area.
Gross floor area acquisition is the core problem to estimate floor area ratio, which is an important
indicator for many geographical analyses. High data acquisition cost or inherent defect of methods
for existing gross floor area acquisition methods limit their applications in a wide range. In this paper
we proposed three instance-wise gross floor area estimation methods in various degrees of end-to-end
learning from monocular optical images based on the NoS R-CNN, which is a deep convolutional
neural network to estimate the number of building stories. To the best of our knowledge, this is the
first attempt to estimate instance-wise gross floor area from monocular optical satellite images. For
comparing the performance of the proposed three methods, experiments on our dataset from nine
cities in China were carried out, and the results were analyzed in detail in order to explore the reasons
for the performance gap between the different methods. The results show that there is an inverse
relationship between the model performance and the degree of end-to-end learning for base area
estimation task and gross floor area estimation task. The quantitative and qualitative evaluations
of the proposed methods indicate that the performances of proposed methods for accurate GFA
estimation are promising for potential applications using large-scale remote sensing images. The
proposed methods provide a new perspective for gross floor area/floor area ratio estimation and
downstream tasks such as population estimation, living conditions assessment, etc.

Keywords: gross floor area; monocular optical image; end-to-end model; deep learning; floor
area ratio

1. Introduction

Gross floor area (GFA), which can be calculated by the product of number of stories
(NoS) and its base area (BA), is an important indicator to estimate useable area of buildings.
The acquisition of GFA in a wide range is of high relevance for many applications, such as
urban planning, population estimation, damage assessment in the aftermath of earthquakes.
For example, the floor area ratio is one of the most important indicators for building density,
which is defined as the ratio of the sum of all buildings’ GFA in interested region to the area
of interested region. The acquisition of floor area ratio relies on the acquisition of every
building’s GFA in the interested region. In other words, instance-wise GFA acquisition is
the core problem for the floor area ratio acquisition.

By virtue of the capability of ground observation in a wide range with less time
consumption, the remote sensing techniques have become an important way for GFA
acquisition. In general, there are two processes for GFA acquisition with the help of remote
sensing: the acquisition of BA and the acquisition of NoS. The former can be realized
by segmenting the footprints of buildings in the remote sensing images, which has been
widely researched and applied [1,2]. The latter is more complex, so that one might believe
that the NoS information cannot be directly extracted from the remote sensing images [3].
Under crude assumptions, building height and NoS can be roughly transformed into
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each other, so the extraction of building height is often the premise of NoS extraction by
remote sensing [4,5]. Research of GFA estimation always focus on the building height
acquisition because of its higher difficulty compared with BA acquisition, and the main
difference between those research lies in the different ways to extract the building height.
By virtue of the advantages of the active remote sensing, light detection and ranging
(LiDAR) and synthetic aperture radar (SAR) data were used to extract building height
in [6–8]. The normalized digital surface model from optical stereo images was used to
extract building height information in [9–12]. All the methods mentioned above for building
height extraction have higher accuracy but are difficult to be used in a wide range because
of the long processing time and high data acquisition cost. In order to overcome these
shortcomings, much research try to extract GFA from monocular optical images because
of its convenience for acquisition and processing. Among them, Refs. [13,14] extracted
building shadows then measured its length from high spatial resolution optical monocular
images. The height of buildings can be estimated from the length of building shadows
based on the geometric models which consider the relative position of the sun, sensor, and
buildings. These methods rely on the key assumption that the complete building shadows
can be extracted from the images, which is not always tenable because the shadows can be
shaded by other buildings. Besides, all of the GFA acquisition methods mentioned above
rely on the artificial rules for the conversion between building height and NoS, which
are not applicable for a wide range of applications. Besides all the methods mentioned
above which separately extract the NoS and BA before extracting GFA, few methods
estimated GFA by end-to-end regression from monocular optical images. Among them,
Ref. [15] extracted the area of building shadows then regressed GFA using the learned liner
regression model, and this method also cannot overcome the shortage of shadow-based
methods mentioned above. Ref. [16] regressed the pixel-wise GFA, which is obtained
by averaging the GFA of all buildings in given grids using deep convolutional neural
network (CNN), whose spatial resolution is too low to get the building instance-wise
GFA information.

To improve the shortcomings of the above NoS estimation methods, Ref. [3] proposed
the NoS R-CNN, which is a kind of deep neural network for jointly detecting building
objects and estimating the NoS of detected building objects from monocular optical images
without estimating the height of buildings in advance. The NoS R-CNN is modified from
the Mask R-CNN [17], which is a kind of instance segmentation network. Because the NoS
R-CNN is designed for both building object detection task and NoS estimation task, the
building footprint instance segmentation outputs of the network are only used in training
stage to get the auxiliary loss and not used in inference stage. But if we reuse the building
footprint instance segmentation outputs in inference stage to get the BA information and
jointly use the NoS and outputs of detected buildings, the NoS R-CNN can be directly used
for the building instance-wise GFA estimation. Avoiding extracting building height then
designing the rules for converting building height to NoS, the NoS R-CNN treats the NoS
as a kind of attribute of buildings to facilitate the end-to-end prediction from images. This
kind of design inspired us to pose the question whether it is possible to separately estimate
the NoS and BA in an end-to-end manner to estimate the GFA. Or is it even possible to get
the end-to-end GFA estimation without separately extracting the NoS and BA in advance?
To answer the above questions, we propose three methods for instance-wise building
GFA estimation based on the NoS R-CNN from monocular optical images. Furthermore,
we carried out experiments on our dataset to compare and analyze the results of the
proposed methods.

The main contributions of this paper are as follows:

1. To the best of our knowledge, the proposed approach is the first one to directly
estimate instance-wise gross floor area from monocular optical satellite images. Com-
pared with existing related methods, there are three key innovations of our approach:

(a) Compared with methods which are based on LiDAR and SAR data [6–8] or
optical stereo images [9–12], our approach only uses monocular optical satellite



Remote Sens. 2022, 14, 1567 3 of 18

images in inference stage, which is more convenient in terms of data acquisition
and processing.

(b) Compared with the building shadow-based methods [13–15] which only can
be applied in limited simple scenarios, our approach is not limited to specific
application scenarios and can be applied in a wide range.

(c) Compared with the CNN-based method [16] which can only generate pixel-
wise GFA with low spatial resolution, our method can jointly detect building
objects and estimate instance-wised GFA of detected building objects, which
provide finer-grained spatial information and can be used in more extensive
downstream tasks.

2. We design three GFA estimation methods generated from different training and
inference strategies in a unified network architecture (i.e., NoS R-CNN) in various
degrees of end-to-end learning. The performances of the three methods are reported
and compared based on the experiments results on our dataset.

The rest of this paper is organized as follows: in the second section, we describe
the network architecture, loss function of the three proposed methods, the dataset and
experiment configuration. Then, results on our dataset are reported and analyzed. The
discussion is described in the fourth section. Finally, the conclusion is drawn in the
last section.

2. Methods and Data

Considering that the three proposed methods are based on the NoS R-CNN, we
introduce the NoS R-CNN in Section 2.1. Then, we describe the network architectures of the
proposed three GFA estimation methods in Section 2.2, focusing on the changes compared
with the NoS R-CNN. In Section 2.3, we describe the loss function of the proposed networks
and the implementation details of the experiments. The dataset used in our experiments
are described in Section 2.4.

2.1. NoS R-CNN

The NoS R-CNN is the first end-to-end method for building NoS estimation from
monocular optical images. The architecture of the network in the NoS R-CNN is modified
from the classical instance segmentation network, i.e., Mask R-CNN, by adding a new
branch for prediction of the NoS, facilitating the ability for both detecting building objects
and estimating NoS simultaneously. For details about NoS R-CNN, we recommend the
reader reference [3]. We use the “NoS branch integration” of the architecture described
in [3] as the base network architecture of our methods, whose main architecture is shown in
Figure 1. The backbone is responsible for generating feature map from the input image, and
the category agnostic regions of interest (RoI) are generated by region proposal network
(RPN) based on the extracted feature map. The RoI align extracts the features corresponding
to the RoI to get the regional feature map which will be sent to three downstream branches.
The detection branch is responsible for building object detection task, for determining the
semantic and exact position of RoI. The NoS branch is responsible for NoS prediction task,
for predicting the NoS of detected building objects. The mask branch is responsible for
instance segmentation task, for generating the segmentation masks of building footprint in
the RoI.

2.2. Three Methods for GFA Estimation Based on the NoS R-CNN

We designed three GFA estimation methods based on NoS R-CNN, which are gener-
ated from different training and inference strategies in a unified network architecture in
various degrees of end-to-end learning. The network architecture of the three proposed
methods is shown in Figure 2. The proposed network adds both the BA branch and GFA
branch (surrounded by the red dotted line in the Figure 2) based on NoS R-CNN for end-to-
end BA and GFA prediction, respectively. The network architecture of both BA branch and
GFA branch is consistent with the NoS branch, which is shown in Figure 3. Specifically, the
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NoS/BA/GFA branch takes the region feature of detected building objects as input. The
region feature of detected building object will be further processed by two fully connected
layers and the prediction of NoS/BA/GFA are outputted as a scalar. The three proposed
methods are described in detail below.
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2.2.1. Mask Branch-Based (MBB) GFA Estimation

This method only uses the detection, NoS, and mask branches in training and inference
stage. The prediction of NoS branch is used as the NoS estimation, and the BA of building
is obtained by calculating the number of building pixels which are predicted by the mask
branch. The GFA prediction is obtained as follows:

GFAMBB = Prenos × Numpos_pix × Areapix (1)

where GFAMBB is the GFA prediction of this method, Prenos is the NoS prediction which
is the output of NoS branch, Numpos_pix is the number of positive pixels in segmentation
mask which is the output of mask branch, Areapix is the ground area of a pixel.

2.2.2. BA Branch-Based (BABB) GFA Estimation

This method is similar to MBB and their difference is the way for BA acquisition.
Specifically, detection, NoS, mask, and BA branch are used in training stage. The mask
branch among them is only used for getting the auxiliary loss [17] and the other three
branch also used in inference stage. The output of NoS branch is used as NoS prediction,
and the output of BA branch is also used as the end-to-end BA estimation. The GFA
prediction is obtained as follows:

GFABABB = Prenos × PreBA (2)

where GFABABB is the GFA prediction of this method, Prenos and PreBA are the output of
NoS branch and BA branch, respectively.

2.2.3. GFA Branch-Based (GBB) GFA Estimation

Different from the above two methods, this method does not generate both the NoS
and BA prediction in inference stage explicitly, but to make the end-to-end GFA prediction.
Specifically, this method uses all the five branches in training stage, and the NoS, BA, and
mask branches are used for getting the auxiliary loss. In inference stage, only detection and
GFA branches are used, and the output of GFA branch is used as the final GFA prediction
of the building detected by detection branch.

2.2.4. Training/Inference Strategies Comparison among Three Methods

In order to facilitate understanding the difference between the above three proposed
methods, we show the training and inference strategies of those methods in Table 1. The
symbol before/after “/” indicate the training/inference strategy of corresponding branch.
For training strategy, “

√
” indicates the corresponding branch was trained in training stage

and “×” indicates not. For inference strategy, “
√

” indicates the outputs of corresponding
branch are used for instance-wise GFA prediction and “×” indicates not.

Table 1. Training/Inference Strategies of three methods.

Method
Branch

Detection NoS Mask BA GFA

MBB
√

/
√ √

/
√ √

/
√

×/× ×/×
BABB

√
/
√ √

/
√ √

/×
√

/
√

×/×
GBB

√
/
√ √

/×
√

/×
√

/×
√

/
√

2.3. Loss Function and Implementation Details of Experiments

In this paper, NoS, BA, and GFA prediction are designed as regression tasks, so we
use the smooth L1 function [18] which is often used in regression tasks as loss function for
the added BA and GFA branch. The loss function for the above three regression tasks is:
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Lossreg =
∑i∈X smoothL1(ti − pi)

|X| (3)

where X is the building objects in training set which have the NoS/BA/GFA ground truth
(GT), |X| is the number of building objects in X, and ti, and pi are the GT and the prediction
of building object i in X. The total loss of the proposed three methods is:

Losstotal = Lossmask_rcnn + λNoSLossNoS + λBALossBA + λGFALossGFA (4)

where Losstotal is the total loss of network, Lossmask rcnn is the loss of Mask R-CNN.
LossNoS, LossBA, and LossGFA are losses of NoS, BA, and GFA branch, and λNoS, λBA, and
λGFA are their weights.

Most of the experiment configurations and hyper-parameters are same as that in [3],
such as batch size, learning rate, pretrain weight, etc. As a small number of buildings in our
dataset have no NoS/GFA GT, they were not used for loss calculation or model evaluation
for NoS/GFA task. The loss weight of NoS, BA, GFA branch in Equation (4) are shown
in Table 2. It can be seen that the loss weight of BA and GFA branch is relatively small,
especially for the GFA branch. This is because that the loss of corresponding branch is
relatively large and we find that the loss on corresponding branch cannot be decreased
unless using the small loss weight.

Table 2. Loss weights configuration for three methods.

Method λNoS λBA λGFA

MBB 1.0 0 0
BABB 1.0 0.01 0
GBB 1.0 0.01 0.002

2.4. Dataset

We collected nine GF-2 images which are located at nine large cities in China, such as
Beijing, Guangzhou, Xiamen, and so on. The PanSharp algorithm [19] was used to fuse the
multispectral data with panchromatic band data, and its resolution was improved from
4 m to 1 m. Because all the images are almost orthomorphic, the building footprints are not
shaded by other buildings and the side of buildings are invisible in images even for the
high buildings, as shown in Figure 4. It also can be seen from Figure 4 that every building
shadow cannot be extracted completely from image, so the traditional shadow-based NoS
estimation method cannot be used in this scene. The building footprint contour vector data
of the corresponding area was also collected and transformed into raster data which has
the same spatial resolution as image data as instance segmentation GT. The bounding box
and BA GT are obtained from the instance segmentation GT. Most of the building objects
in our dataset have NoS GT, whose GFA GT are obtained by producing NoS and BA GT.
We divided the images and the corresponding GT raster data into patches with the size of
256 × 256 without overlap as experimental samples, and randomly divided the samples
into training set and test set, whose configuration are shown in Table 3. Figure 5 shows the
geographical distribution of samples in the dataset. Figure 6a,b shows the distribution of
number of buildings with different GFA on the training set and test set. Figure 6c,d shows
distribution of number of buildings with different BA and NoS on the training set and
test set.
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3. Results

The goal of this paper is to design a method for instance-wise GFA estimation from
monocular optical images, which consists of two tasks: detecting building objects and
estimating the GFA of detected buildings. The building detection results are the carrier of
the GFA estimation results. So, in practical scenarios, building objects detection accuracy
and instance-wise GFA estimation accuracy are two determinants of the model performance.
We will evaluate those two determinants in our experiment. For better understanding the
performance of proposed methods, the results of MBB will be analyzed in detail.

3.1. Building Detection Task

We followed the evaluation method of building detection task in [3]. Specifically,
the probability threshold was set to 0.5 for predicting the detected objects as building or
not. The intersection over union (IoU) threshold was set to 0.5 for distinguishing the True
Positive (TP), False Positive (FP), and False Negative (FN) samples. F1, precision and recall
were used as evaluation metrics. Since the research focus of this paper is GFA estimation,
not building object detection, the object detection method is directly based on the Mask
R-CNN without any improvement. For evaluating the building detection performance of
proposed methods accurately, we introduced the performance of vanilla Mask R-CNN on
our dataset as the baseline of other methods. The building detection performances of those
methods are shown in Table 4:
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Table 4. Building detection evaluation metrics (%).

Method Precision Recall F1

Mask R-CNN 48.2 43.7 45.8
MBB 48.8 43.1 45.8
BABB 53.0 42.2 47.0
GBB 54.1 38.9 45.3

From the Table 4, we can see that the detection performances of the proposed three
methods are almost equal to that of the vanilla Mask R-CNN, even there is a little improve-
ment on BABB.

3.2. GFA Estimation Task

We use the mean absolute error (MAE) and mean intersection over union (mIoU)
in prediction mode A/B as the metrics for GFA estimation, which are referred from the
evaluation methods for NoS estimation in [3]. The formula of MAE and mIoU are shown
in Equations (5) and (6), where pi and ti are prediction and GT of the sample i, respectively.
As the unit of the calculated value is maintained, MAE retains physical meaning and can
be easily understood. The smaller the metric, the better the performance of the model
performs. But MAE only takes account of the absolute error between prediction and GT,
ignoring the relationship between the absolute error and corresponding GT. For example,
the same absolute error is of different meaning for buildings with large GFA and small
GFA. In this context, we introduced the mIoU which uses the form of ratio and considers
the relationship between the predicted value and the true value. The larger the metric, the
better the performance of the model performs. The metrics in mode A is for evaluating
the performance of model in practical scenarios, and metrics in mode B is for accurately
evaluating the difference of three proposed methods. Details of two prediction modes are
described as follows.

In prediction mode A, images are inputted to the model, and the model outputs the
building detection results and GFA estimation of detected buildings. Only TP samples of
detected buildings were evaluated for GFA estimation. Because different objects might
be detected by different models, the TP sample sets of different models are generally
different. Consequently, models are evaluated on different building objects sets when using
prediction mode A, showing that comparison of the different models is not strictly accurate.
To address the problem, prediction mode B is introduced, where images and bounding box
GT of all the building objects in test set are inputted into the model, and the model outputs
the GFA estimation of the given building objects. Different methods are evaluated on the
same building objects set and share the same bounding box GT, excluding the influence of
detection results on GFA estimation. The performance of three proposed methods on GFA
estimation task are shown in Table 5, where “@ TP” and “@ all” end with the evaluation of
the prediction results of mode A and mode B, respectively.

MAEX =
∑i∈X |pi − ti|
|X| (5)

mIoUX =
∑i∈X

∣∣∣ min(pi , ti)
max(pi , ti)

∣∣∣
|X| (6)

From Table 5, we can see that for prediction mode A, MBB is obviously better than
BABB and GBB on MAE. The performance of all the three methods are very close in terms
of mIoU. For prediction mode B, MBB is obviously better than the other two methods in
terms of both MAE and mIoU. The BABB is a little better than GBB.
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Table 5. GFA estimation evaluation metrics.

Method MAE@TP MAE@all mIoU@TP mIoU@all

MBB 2468 1659 0.702 0.683
BABB 2563 1787 0.706 0.657
GBB 2565 1821 0.706 0.651

3.3. Further Analysis for the Results of MBB

As MBB is the best methods among the proposed three methods, we show the predic-
tion of MBB in mode A on six patches in test set in Figure 7 and their metrics in Table 6
for better understanding the performance of the proposed methods for GFA estimation.
Considering that GFA is difficult to be visualized and MBB predicts GFA by separately
estimating NoS and segmenting the building footprints, the results of NoS estimation and
footprints segmentation are shown for intuitively linking the reported metrics and the
performance of the model.

Table 6. Metrics of six test patches of MBB in mode A. The first/second column shows the MAE
of BA/NoS estimation performance. The third/fourth column shows the MAE/mIoU of GFA
estimation performance.

Subfigure MAE for BA MAE for NoS MAE for GFA mIoU for GFA

(a) 146.6 2.58 1914 0.821
(b) 98.7 0.69 896 0.803
(c) 112.2 1.80 1077 0.700
(d) 129.5 1.26 4018 0.755
(e) 173.8 1.04 1572 0.804
(f) 75.4 0.85 752 0.852

For the performance of detection task, it can be seen from Figure 7 that there are several
FP/FN samples, which indicate that the performance of detection task should be improved,
especially for the small buildings. There are a few buildings in which complex structure
are detected as several separated buildings in Figure 7c,e which indicate the approach that
detecting buildings from 1 m spatial resolution satellite images deserves to be improved
furthermore. For NoS estimation, the performance is generally acceptable for low buildings
and unstable for high buildings. This problem was discussed in detail in [3] and has not
been addressed very well up to now. For the building footprints segmentation, the main
structures of most buildings have been segmented, but the boundaries of prediction are
not precisely aligned with the ground truth, especially for the buildings with complex
boundaries. For GFA estimation task, it can be seen from Table 6 that there is a large range
for MAE from 752 to 4018, which indicate that the absolute error of the model varied largely
depending on the scenes. With respect to mIoU whose values fluctuate around 0.8, it can
be roughly inferred that there is an uncertainty of about 20 percent for the GFA estimation
of every building, which can also be inferred from the performance of NoS estimation and
footprints segmentation results shown in Figure 7.
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Figure 7. Prediction result of MBB in mode A. There are six subfigures (a–f), which correspond to six
selected patches, respectively. Each subfigure shows the “TP”, “FP”, and “FN” prediction of MBB
in mode A. The color of the bounding boxes has no specific meaning, just in order to distinguish
different building instance. Most bounding boxes have a pair of numbers separated by “|”. For
TP samples, the first number is the NoS prediction of the model and the second is the NoS GT. The
bounding boxes with pairs start with “FP”/“FN” are “FP”/”FN” objects and the numbers of those
are predicted/true NoS. All predicted values shown in the figure have been rounded up or rounded
down to the nearest decimal. For example, a bounding box with the label “4|6” indicates that the
bounding box is the prediction of a “true positive” sample whose NoS prediction and ground truth
is 4 and 6, respectively. A bounding box with the label “FP|3” indicates that the bounding box is
the prediction of a “false positive” sample whose NoS prediction is 3. A bounding box with the
label “FN|1” indicates that the bounding box is the ground truth of a “false negative” sample whose
NoS ground truth is 1. For every TP sample, the TP/FP/FN pixels of segmentation are shown in
transparent yellow/red/green.
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Based on the above analysis, two conclusions can be drawn:

1. As GFA estimation using MBB can be divided into three subtasks, i.e., building
detection, NoS estimation and building footprints segmentation, the performance of
GFA estimation can be improved by improving the three subtasks. The performance
of building detection task and footprints segmentation task can be improved by any
methods which are helpful for instance segmentation, such as using updated and
more powerful base networks or backbones. The performance of NoS estimation is of
vital importance to the performance of GFA estimation, especially for the buildings
with large BA whose errors of GFA are more easily amplified by the errors of NoS
prediction. But accurate NoS estimation from monocular optical satellite images is not
widely studied and is still an open question. We believe that the shadows of buildings
in the images are helpful for improving the performance of NoS estimation, but the
efficient methods to use this information need to be studied furthermore.

2. It can be seen from Table 5 and Figure 7 that the accuracy of the proposed method
is still promising for GFA estimation. Although the capability of model deserves
being improved furthermore, the task itself, i.e., estimating instance-wise GFA from
monocular optical satellite images, is still a challenging problem. Compared with
LiDAR or optical stereo images, the available information of monocular optical images
is limited, especially for the NoS estimation task, which can be verified in Figure 7.
Besides, the proposed methods should not rely only on the specific feature, e.g., the
shadow of buildings, so that it can be applied in a wide range, including the complex
scenarios. In view of the above, the proposed methods are valuable for applications
for which the very high accuracy is not necessary because the users of the model
should take into consideration the tradeoff between the accuracy and the generality
of model as well as the cost.

3. Due to land resources limitations, rapid urbanization causes urban expansion not
only in 2-dimension (2-D), but also in 3-dimension (3-D), especially in China [20,21].
Due to the difficulty of the large-scale 3-D data acquisition, most of the geographical
analyses such as population density estimation [22–24], heat island intensity [25,26],
and geology–environmental capacity [27] for large scale are based on 2-D information.
Although the results of the above applications can be partially inferred from the
2-D building coverage distribution, some errors are inevitable due to the ignored
information in the vertical direction, and the error will be increased along with the
rapid urban expansion in 3-D. Although the capability of model deserves being
improved furthermore, the results of the proposed methods can reduce the error to
some extent for the applications based on 2-D information. For example, the GT of
BA and the mean value of NoS can be used for all the building instances to estimate
GFA, which simulate the methods only using the 2-D information, whose mIoU is
0.566 on our test set. Compared with the above method, the proposed MBB whose
mIoU is 0.683 reduced about 20 percent error for every building instance on average
even though the GT of BA were not used for MBB.

4. Discussion
4.1. Comparison of Three Proposed GFA Estimation Methods

According to the definition of GFA, the performances of NoS and BA estimation are
directly related to the performance of GFA estimation. In order to explore the difference
of performances between three proposed methods, we analyzed the difference of perfor-
mances for both NoS and BA estimation tasks. The GFA prediction of MBB and BABB
depends on the prediction of both NoS and BA in inference stage, which can be obtained
explicitly and are used for evaluating the performance of BA and NoS estimation for MBB
and BABB. NoS and BA prediction are not necessary for GFA estimation of GBB in inference
stage but are used in training stage to get the auxiliary loss for improving GFA estimation.
Here the outputs of BA and NoS branch of GBB in inference stage are used for evaluating
the performance of BA and NoS estimation of GBB. We use MAE in prediction mode A/B
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as metric in this section, and the performances of the three methods are shown in Table 7,
where “NoS”/“BA” indicate the NoS/BA estimation task.

Table 7. NoS and BA estimation evaluation metrics.

Method NoS@TP NoS@all BA@TP BA@all

MBB 1.865 1.667 209.5 136.9
BABB 1.903 1.647 208.8 194.2
GBB 1.908 1.679 210.7 194.4

We discuss MBB and BABB first. For mode A, the performances on BA estimation
between MBB and BABB are close, but MBB is better in NoS estimation. So, the stronger
ability of MBB for NoS estimation may be the reason for better performance in GFA
estimation in mode A. For mode B, although MBB is worse than BABB on NoS estimation,
but obviously better on BA estimation. The great advantage of MBB on BA estimation may
be the reason for better performance on GFA estimation in mode B.

Then we discuss BABB and GBB. For mode A, the performances of GBB on NoS and
BA estimation tasks are worse than BABB, but the gap is not so large. So, the performances
of the two methods on GFA estimation task are close. For mode B, the performances of the
two methods on BA estimation are basically consistent, but BABB is better than GBB on
NoS estimation. Therefore, the better performance of BABB on NoS estimation may be the
reason for better performance in GFA estimation in mode B.

It can be seen that NoS branches were trained identically for three methods, i.e., using
the same loss weight, network architecture, and other hyper-parameters. However, their
performances are different as for NoS estimation task. The possible reason might be that
the total loss of multitasks are different for three methods, and the loss of different tasks
can be influenced by each other. The same reason can also be applied for explaining the
performance differences for BA estimation tasks between BABB and GBB.

4.2. Comparison between the Two BA Estimation Methods

The way for BA estimation is the main difference of BABB and MBB. For the BA
estimation task, BABB follow the end-to-end fashion and MBB not. For further comparing
the performances of BA estimation methods of both BABB and MBB, we plot the joint dis-
tribution of prediction and GT of BA in Figure 8, which is consisted of four subfigures. The
left/right column shows the results of MBB/BABB, and the top/bottom row of subfigures
shows the results in prediction mode A/B. We plot the line y = x in subfigures, in which the
closer the points are, the less prediction errors the points have. It can be seen that prediction
and GT show positive correlation in all four subfigures, and the shapes of distributions
are roughly symmetrical along the y = x. For buildings with small BA, the error is also
small. With the increase of BA, the number of predictions with large error is increasing.
From the Figure 8a,b, it can be seen that the distributions of MBB and BABB in mode A
are generally the same, which is consistent with the results in Table 7. From the Figure 8c,
it can be seen that there are many underestimated predictions with small BA for MBB. It
may be because buildings with small BA are relatively difficult to be completely detected
for segmentation, which leads to the underestimation for BA. The same situation can also
be found but not obvious for mode A, this may be because that there are less buildings
with small BA in TP samples because of the difficulty for small BA building detection. The
underestimation mentioned above mainly appears on small BA buildings, whose error are
generally small, so it does not lead to large MAE. From the Figure 8d, it can be seen that the
underestimation mentioned above is not obvious for BABB, but the predictions of BABB
are more scattered, especially for the buildings with large BA, which leads to relatively
larger errors. So, the performance of BABB is worse than MBB for MAE.
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4.3. End-to-End Fashion Is Not a Panacea

Compared with the traditional machine learning methods which depended on the
hand-designed features or individual component modules, one of the most prominent
advantages of deep learning is its inherent feature engineering capability based on the end-
to-end learning. Many research [28–30] showed the performance advantages of end-to-end
design compared with non-end-to-end design and successes on novel tasks which are very
difficult to be realized without end-to-end models, such as height estimation task from
monocular images [31–33]. In order to take full advantage of end-to-end design, three GFA
estimation methods proposed in this paper use the end-to-end design in various degrees.
For BA estimation task, BABB directly predicts BA from region feature, whereas MBB
segment footprint then transforms it to BA. So, the degrees of end-to-end learning between
the two methods is BABB > BA. For GFA estimation task, GBB directly predicts GFA from
region feature whereas both BABB and MBB need to extract BA and NoS separately before
obtaining GFA. Considering the above analysis, the degrees of end-to-end learning for
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the three proposed methods can be given as: GBB > BABB > MBB. BABB and BA which
separately extract BA and NoS depend on the accuracy of both the subtasks. These two less
end-to-end designed methods have larger risk of bad performance than GBB intuitively
because large error of either of two subtasks will lead to bad performance of final results.
According to experiment results in this paper, for both GFA and BA estimation task, there
is an inverse relationship between model performance and degree of end-to-end learning.
This result indicates that the more end-to-end design may be not the best choice for GFA and
BA estimation tasks and not always better than less end-to-end design in any circumstance.
We analyze the possible reason of the poor performance for the more end-to-end designed
methods compared to the less ones in our experiments as follows:

1. Insufficient training data. Compared with the less end-to-end designed model, the
more end-to-end designed methods generally rely on more training data for the
satisfactory performance because of their data-driven mechanism. Although the
training data used in our experiment is much more than that used in the previous
research, yet it may be insufficient for the more end-to-end designed models to give
full play to their advantages.

2. Inappropriate model design. Because this paper is the first attempt to directly estimate
instance-wise GFA end-to-end using deep convolutional neural network to the best of
our knowledge, there are not any model designs for reference. We basically follow the
detection task pipeline inspired by the Mask R-CNN for GFA/BA prediction. This
design may not be appropriate for GFA/BA estimation task. Or may be the more
end-to-end model design is inappropriate for GFA/BA estimation task in nature.

4.4. Is the CNN Irreplaceable for This Task?

With the help of deep learning, CNN has achieved great success in many image
processing tasks, such as semantic segmentation and object detection. In this paper, we
attempted to use the three CNN-based methods to achieve the task of GFA estimation.
There is a valuable question, is it possible to achieve the comparable performance for
the GFA estimation task using the more lightweight model without CNN. To answer
this question, two popular traditional regression models using the hand-craft feature, i.e.,
the multi-layer perception (MLP) and the random forest (RF), were introduced in the
experiments in this section to answer this question.

The implementation of the above two methods are based on [34]. For MLP, 5 hidden
layers with 100 neurons of each layer were used. For RF, 100 trees whose depth were less
than 10 were used. Other hyper parameters of the above two methods were kept with the
default setting in [34]. The dataset used in this section was kept with that in Section 2.4.
The hand-craft feature for every building insurance are described as follows: for every
building instance, the segmentation GT of building footprint was used as the inner mask
and the inner masks were dilated by 10 pixels to get the outer mask. The inner mask was
used to extract the mean value and the standard deviation of every channel of the inputted
image, then a feature vector with 6 elements was obtained as the inner feature of building
instance. The outer feature can be obtained by using the outer mask to extract the feature
of instance like the inner feature. The diagram of inner mask and outer mask is shown
in Figure 9. The inner and outer feature were concatenated and finally a feature vector
with 12 elements was obtained as a feature of every building instance for the MLP and
the RF. The performances of the CNN-based models proposed in this paper and the two
traditional methods mentioned above using the hand-craft feature are shown in Table 8. In
Table 8, CNN, MLP, and RF estimated GFA by separately extracting BA and NoS. CNN-
ETE, MLP-ETE, and RF-ETE estimated GFA based on the instance feature in an end-to-end
(ETE) manner.
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Table 8. Metrics of CNN, MLP, and RF on test set.

Method MAE for BA MAE for NoS MAE for GFA mIoU for GFA

CNN(BABB) 194.2 1.65 1787 0.657
CNN-ETE(GBB) \ \ 1821 0.651

MLP 495.4 2.35 2490 0.417
MLP-ETE \ \ 2123 0.427

RF 858.9 2.06 2802 0.350
RF-ETE \ \ 2936 0.367

From Table 8, it can be seen that:

1. The CNN-based methods show much better performance than MLP and RF on the
BA, NoS and GFA estimation tasks. These results indicate that the tradition methods
using the hand-craft features, i.e., MLP and RF, might be not suitable for these difficult
tasks which are even extremely hard for ordinary people to achieve because of the
limited information on NoS in monocular optical satellite images. Although the CNN-
based methods seem to be more cumbersome, they indeed showed the irreplaceable
capability because of its data-driven mechanism.

2. The performance of MLP in an end-to-end manner (MLP-ETE) is better than the
MLP, which showed inconsistent conclusions for CNN-ETE and CNN. These results
further showed the necessity and the value of experiments described in Section 3.2 for
comparing the performance of the proposed three methods.

5. Conclusions

In this paper, three instance-wise GFA estimation methods from monocular optical
images are proposed for the first time, i.e., MBB, BABB, GBB. These three methods are
based on NoS R-CNN and use the end-to-end design in various degrees. Compared with
the existing GFA estimation methods, the proposed methods are low-cost, universal, and
flexible. Experiments on our dataset from nine large cities in China were carried out in
order to compare the performances of the three proposed methods. The results show that
the building detection performances of the proposed three methods are almost equal to
vanilla Mask R-CNN and the GFA estimation performance ranking is MBB > BABB > GBB,
which is the reverse order of degrees of end-to-end learning of three methods. Results are
analyzed in detail for exploring the reasons for the performance gap between the three
methods, and we think that the more end-to-end designed methods are more difficult for
BA/GFA estimation tasks. The quantitative and qualitative evaluations of the proposed
methods indicate that the performances of proposed methods for accurate GFA estimation
are promising for potential applications using large-scale remote sensing images. It will
consume large cost in time, labor, and economy for the large-scale instance-wise GFA acqui-
sition. With the development of remote sensing technique, the high resolution monocular
optical satellite images have become more and more convenient to be obtained. Although
the stereo images-based methods or shadow-based method can be used for GFA acquisi-
tions, those methods cannot be applied in a wide range due to the high data acquisition cost
or inherent defect of methods. Based on the methods proposed in this paper, the models
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can be trained on the existing data, then to be applied to the large-scale area without
GFA information from the monocular optical satellite images to get the instance-wise GFA
information in a rapid, cost-effective manner. We hope that this paper can provide new
perspectives on related approaches and downstream tasks.
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