
����������
�������

Citation: Cui, L.; Pang, B.; Zhao, G.;

Ban, C.; Ren, M.; Peng, D.; Zuo, D.;

Zhu, Z. Assessing the Sensitivity of

Vegetation Cover to Climate Change

in the Yarlung Zangbo River Basin

Using Machine Learning Algorithms.

Remote Sens. 2022, 14, 1556.

https://doi.org/10.3390/rs14071556

Academic Editors: Pingping Luo,

Xindong Wei, Kanhua Yu, Bin Guo

and Joshua Viers

Received: 4 February 2022

Accepted: 14 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Sensitivity of Vegetation Cover to Climate
Change in the Yarlung Zangbo River Basin Using Machine
Learning Algorithms
Lizhuang Cui 1,2 , Bo Pang 1,2,*, Gang Zhao 1,2,3 , Chunguang Ban 1,2, Meifang Ren 4,5, Dingzhi Peng 1,2 ,
Depeng Zuo 1,2 and Zhongfan Zhu 1,2

1 College of Water Sciences, Beijing Normal University, Beijing 100875, China;
cuilizhuang@mail.bnu.edu.cn (L.C.); gang.zhao@bristol.ac.uk (G.Z.); banchunguang@mail.bnu.edu.cn (C.B.);
dzpeng@bnu.edu.cn (D.P.); dpzuo@bnu.edu.cn (D.Z.); zhuzhongfan1985@bnu.edu.cn (Z.Z.)

2 Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences,
Beijing Normal University, Beijing 100875, China

3 School of Geographical Science, University of Bristol, Bristol BS8 1SS, UK
4 China Academy of Urban Planning & Design, Beijing 100044, China; renmeifang@mail.bnu.edu.cn
5 Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
* Correspondence: pb@bnu.edu.cn

Abstract: Vegetation is a key indicator of the health of most terrestrial ecosystems and different types
of vegetation exhibit different sensitivity to climate change. The Yarlung Zangbo River Basin (YZRB)
is one of the highest basins in the world and has a wide variety of vegetation types because of its
complex topographic and climatic conditions. In this paper, the sensitivity to climate change for
different vegetation types, as reflected by the Normalized Difference Vegetation Index (NDVI), was
assessed in the YZRB. Three machine learning models, including multiple linear regression, support
vector machine, and random forest, were adopted to simulate the response of each vegetation type
to climatic variables. We selected random forest, which showed the highest performance in both
the calibration and validation periods, to assess the sensitivity of the NDVI to temperature and
precipitation changes on an annual and monthly scale using hypothetical climatic scenarios. The
results indicated there were positive responses of the NDVI to temperature and precipitation changes,
and the NDVI was more sensitive to temperature than to precipitation on an annual scale. The NDVI
was predicted to increase by 1.60–4.68% when the temperature increased by 1.5 ◦C, while it only
changed by 0.06–0.24% when the precipitation increased by 10% in the YZRB. Monthly, the vegetation
was more sensitive to temperature changes in spring and summer. Spatially, the vegetation was more
sensitive to temperature increases in the upper and middle reaches, where the existing temperatures
were cooler. The time-lag effects of climate were also analyzed in detail. For both temperature
and precipitation, Needleleaf Forest and Broadleaf Forest had longer time lags than those of other
vegetation types. These findings are useful for understanding the eco-hydrological processes of the
Tibetan Plateau.

Keywords: vegetation response; attribution analysis; machine learning; NDVI; the Yarlung Zangbo
River Basin

1. Introduction

The sensitivity to climate change for different vegetation types in terrestrial ecosystems
can have important feedback on hydrology, climate, and ecology [1–4]. Owing to the spatial
heterogeneity, vegetation’s response to climate change varies greatly, with different tem-
poral responses and spatial patterns [5]. Given the importance of identifying ecologically
sensitive areas for land planning and water resource management, it is essential to identify
and then prioritize vegetation that is sensitive to climate change, especially in ecologically
fragile regions such as the Tibetan Plateau [6–8].
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The sensitivity of vegetation to climate change is the focus of global climate change
and terrestrial ecosystem research [9–11]. A variety of dynamic and statistical models have
been developed to explore the response of vegetation to climate change [12]. Dynamic
models, including the Lund-Potsdam-Jena Model [13,14] and the Sheffield Dynamic Global
Vegetation Model [15], can simulate dynamic ecosystem processes and provide information
on spatiotemporal changes in vegetation under climate change [16–18]. However, data
availability often restricts the application of dynamic models, especially for data-scarce
regions [19]. Statistical models, which simulate the relationship between vegetation indices,
such as the Normalized Difference Vegetation Index (NDVI) [20], Net Primary Produc-
tivity (NPP) [21], Enhanced Vegetation Index (EVI) [9], Leaf Area Index (LAI) [22], and
climatic variables, have been valuable supplements for dynamic models in many applica-
tion scenarios [23,24]. The most popular regression equation models—the machine learning
models—have attracted widespread interest from researchers owing to their advantages in
simulating complex nonlinear systems and their ability to handle multi-dimensional and
multi-variety data [10,25,26].

The Yarlung Zangbo River is the largest river on the Tibetan Plateau. The vegetation
in the Yarlung Zangbo River Basin (YZRB) has a significant influence on the biological pro-
cesses of the Tibetan Plateau [27,28]. The fragile ecological environment, especially the state
of vegetation in the YZRB, is sensitive to temperature and precipitation changes [29]. Ow-
ing to the high elevation and complex topography, there is a lack of hydro-meteorological
gauges and hence a lack of data in the YZRB, which restricts the application of dynamic
models and presents challenges for assessing the sensitivity of each vegetation type in
the YZRB to climate change. The relationship between vegetation indices and climatic
variables has been investigated by previous studies [20,23]. However, statistical modeling
of vegetation and quantitative assessment of the sensitivity to climate change for differ-
ent vegetation types in the YZRB are relatively rare. It is difficult to apply regression
equation models in the YZRB owing to the multiple climate zones, complex topography,
and diversity of vegetation. However, machine learning may be able to overcome these
problems. Ensemble learning methods, such as random forest (RF), can not only simulate
the relationship between vegetation indices and climatic variables but also identify climatic
variables’ contribution to vegetation growth, which helps in the understanding of the
climatic variables’ time-lag effects.

The objectives of this paper are to: (i) construct statistical vegetation models using
machine learning methods, (ii) quantitatively assess the sensitivity of each vegetation type
in the YZRB to climate change, and (iii) explore the time-lag effects for each vegetation type
through correlation with the proposed models.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The Yarlung Zangbo River is one of the highest rivers in the world, with a length of
2229 km and a drainage area of 2.42 × 105 km2. The YZRB is long and narrow, running
from west to east, with the Himalayas to the south and the Gangdise Mountains to the
north [27,30]. The topography of the YZRB changes from mountains to plains and there are
both perennial snow-covered areas with an altitude of more than 7000 masl and hot and
humid valleys with an altitude of less than 200 masl (Figure 1a).

The climate varies across the basin. The upper reaches have a plateau cold temperate
climate, while the middle reaches have a plateau temperate climate, and the lower reaches
have a tropical and subtropical climate. The temperature increases from northwest to
southeast, and precipitation increases from the upper to lower reaches [29]. Because of
these climatic differences, the vegetation in the YZRB shows clear spatial heterogeneity [31].
There is mainly Alpine Vegetation (17.6%), Meadow (35.5%), and Scrub (13.3%) in the upper
and middle reaches, while Meadow and Steppe (17.1%) are distributed across the basin.
The main vegetation in the lower reaches is Cultivated Vegetation (1.8%), Broadleaf Forest



Remote Sens. 2022, 14, 1556 3 of 17

(5.3%), and Needleleaf Forest (5.9%) (Figure 1b). In this paper, the YZRB was divided into
32 sub-catchments based on the hydro-climatic characteristics and watershed boundaries
(Figure 1c).

Remote Sens. 2022, 14, x FOR PEER REVIEW  3  of  19 
 

 

[31]. There is mainly Alpine Vegetation (17.6%), Meadow (35.5%), and Scrub (13.3%) in 

the upper and middle reaches, while Meadow and Steppe (17.1%) are distributed across 

the  basin.  The main  vegetation  in  the  lower  reaches  is Cultivated Vegetation  (1.8%), 

Broadleaf Forest (5.3%), and Needleleaf Forest (5.9%) (Figure 1b). In this paper, the YZRB 

was  divided  into  32  sub‐catchments  based  on  the  hydro‐climatic  characteristics  and 

watershed boundaries (Figure 1c).   

 

Figure 1. The topography, vegetation types, and sub-catchments of the Yarlung Zangbo River Basin
(YZRB) ((a) Topography, (b) Vegetation types, (c) Sub-catchments).



Remote Sens. 2022, 14, 1556 4 of 17

2.1.2. Data Collection

The China Meteorological Forcing Dataset (CMFD) used in this paper was generated
from the Institute of Tibetan Plateau Research of the Chinese Academy of Sciences (http:
//westdc.westgis.ac.cn/, accessed on 10 May 2021). The CMFD’s spatial and temporal
resolutions are 0.1◦ and 3 h. We calculated monthly temperature and precipitation for each
pixel by averaging the 3-hourly temperature values and summing the 3-hourly precipitation
values over each month. Furthermore, the monthly temperature and precipitation of each
vegetation type were calculated by averaging the values of pixels of the corresponding
vegetation.

The Global Inventory Monitoring and Modeling System NDVI dataset used in this
study was generated from NOAA’s advanced high-resolution radiometer (https://ecocast.
arc.nasa.gov/data/pub/gimms/, accessed on 10 May 2021), with a spatial resolution of
8 km. The monthly NDVI data of each vegetation was also calculated by averaging NDVI
values of pixels of the corresponding vegetation.

2.2. Methodology
2.2.1. NDVI Models

Three machine learning models, including multiple linear regression (MLR), support
vector machine (SVM), and RF, were used to simulate NDVI changes. All the models were
implemented in Python 3.7 using the scikit-learn package version 0.21.3.

MLR relies on a matrix of regression coefficients and is often used to simulate the
dependent variable values using multiple predictors [32]. It relies on a matrix of regression
coefficients which represent the correlations between the dependent and independent vari-
ables. SVM represents a supervised machine learning method based on statistical learning.
Support vector regression is an extension of the support vector machine method and can
express the non-linear relationship between the dependent variable and independent vari-
ables. Therefore, generalized regression efficiency is achieved based on the minimization
of training errors [33].

RF was first proposed by Breiman in 2001 as a new machine learning model based
on classification and regression tree (CART) algorithms [34]. RF estimates the error of
the model through the out-of-bag error (EOOB) with built-in cross-validation running in
parallel to the training process. This model can evaluate variable importance by randomly
permuting these variables and observing the difference in model performance using OOB
samples. At the end of the process, RF obtains variable importance by averaging the differ-
ences, which are then normalized by the standard deviation. This method is widely used
by hydrologists in classification and regression analysis [25], statistical downscaling [35],
and hydrological modeling [26].

The monthly NDVI for different vegetation types were modeled using 12 different
climatic variables including temperature and precipitation at time lags of 0–5 months
(Table 1). Then, we used data from the first 70% of years for model calibration and
the remaining 30% for validation. Finally, Nash–Sutcliffe coefficient (NASH), root mean
square errors (RMSE), mean absolute percentage error (MAE), correlation coefficient (r),
and normalized mean bias (NMB) were used to assess the predictive performance of the
models [26,36,37], which were defined as:

NASH = 1 − ∑n
i=1 (Yi,obs − Yi,sim)

2

∑n
i=1 (Yi,obs − Yobs)

2 (1)

RMSE =

√
∑n

i=1 (Yi,obs − Yi,sim)
2

n
(2)

MAE =
∑n

i=1
∣∣Yi,obs − Yi,sim

∣∣
n

(3)

http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/
https://ecocast.arc.nasa.gov/data/pub/gimms/
https://ecocast.arc.nasa.gov/data/pub/gimms/
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r =
∑n

i=1
[(

Yi,obs − Yobs
)(

Yi,sim − Ysim
)]√

∑n
i=1 (Yi,obs − Yobs)

2
√

∑n
i=1 (Yi,sim − Ysim)

2
(4)

NMB (%) =
∑n

i=1(Yi,sim − Yi,obs)

∑n
i=1(Yi,obs)

∗ 100 (5)

where Yi,obs represents the vector of the observed predictands of number i, Yi,sim is the vector
of the simulated predictands of number i, Yobs is the mean of the observed predictands, and
Ysim is the mean of the simulated predictands.

Table 1. The climatic variables for model input.

Climatic Variables Temperature Precipitation

Time lags (month) 0 1 2 3 4 5 0 1 2 3 4 5
Input factors t0 t1 t2 t3 t4 t5 p0 p1 p2 p3 p4 p5

2.2.2. The Sensitivity of NDVI to Climate Change

The sensitivity to temperature and precipitation changes for different vegetation
types were assessed by simulated NDVI changes using hypothetic climatic scenarios and
observed climate data. According to previous studies on climate prediction of the Tibetan
Plateau, the temperature was expected to change by 0.9–2.3 ◦C, while the precipitation was
expected to change by −3–16% in the middle of this century [38–40]. We used eight climatic
scenarios to assess the sensitivity, which was defined as: (i) −2.0 ◦C to 2.0 ◦C temperature
change in 0.5 ◦C intervals; and (ii) −20% to 20% precipitation change in 5% intervals. In
this paper, the sensitivity is defined as:

ε =
NDVIh − NDVIo

NDVIo
(6)

where ε is the sensitivity to climate change; NDVIo is the simulated NDVI using observed
data; NDVIh is the simulated NDVI using hypothetic climatic scenarios.

3. Results
3.1. The Spatiotemporal Variations of the NDVI and Climatic Variables

The inter-annual variations in the NDVI and climatic variables from 1982 to 2015 were
shown in Figure 2. According to Figure 2a,b, the precipitation increased insignificantly
at the rate of 19 mm/10a (R2 = 0.11, p = 0.031), while temperature increased significantly
at the rate of 0.42 ◦C/10a (R2 = 0.56, p = 0.000). The NDVI did not show a significant
trend (R2 = 0.18, p = 0.007). This finding is in accordance with previous studies that non-
significant increasing trends in precipitation and NDVI were observed in the YZRB (with
low R2 value for precipitation and NDVI) [23,27]. According to Figure 2c,d, although
the NDVI of the YZRB showed a slightly increasing trend, the NDVI trend of different
vegetation types showed clear variations. The trends of different vegetation types were
detected by summarizing the slopes of all pixels for each vegetation type with a violin
plot (Figure 2d). It was shown that Needleleaf Forest, Scrub, and Alpine Vegetation had a
greening trend in most areas (slope > 0), although there was also a declining trend in some
areas (slope < 0). Steppe and Meadow did not show a clear trend. Broadleaf Forest, which
was distributed in the lower reaches, mainly showed a declining trend.

The spatial distribution of the multi-annual mean values of temperature, precipitation,
and the NDVI across the YZRB as well as their trends was detected by the Mann–Kendall
trend test and Sen’s slope [7,41] (Figure 3). From Figure 3a–c, we can observe that tempera-
ture, precipitation, and the NDVI of the YZRB increased gradually from the upper to the
lower reaches. As Figure 3d–f shows, most of the temperature pixels exhibited significant
increasing trends, and temperature in the upper reaches increased faster than that in other
regions. However, the precipitation and the NDVI trends showed high spatial variability.
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For precipitation, the eastern part of the upper reaches and the northern part of the lower
reaches exhibited significant decreasing trends while the other regions showed significant
increasing trends. This finding is in accordance with previous studies that some areas in the
upper and lower reaches showed a decreasing trend [20]. For the NDVI, most pixels in the
upper and middle reaches exhibited significant increasing trends, while parts of the lower
reaches and a minority of parts of the upper reaches showed significant decreasing trends.
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Figure 2. Basin-averaged inter-annual variations in the Normalized Difference Vegetation Index
(NDVI) and climatic variables as well as the slope of the NDVI for each vegetation type in the YZRB
((a) Annual total precipitatin, (b) Annual average temperature, (c) NDVI, (d) Slope of NDVI) (NF:
Needleleaf Forest, BF: Broadleaf Forest, Sc: Scrub, St: Steppe, M: Meadow, AV: Alpine Vegetation, CV:
Cultivated Vegetation).

3.2. NDVI Modeling

The results for the three machine learning models—MLR, SVM, and RF—that were
selected to simulate the relationships between vegetation and climatic variables are sum-
marized in Table 2.

According to the five metrics shown in Table 2, RF models were better than the
comparative models and performed well in the calibration and validation period. The
average NASH of the MLR, SVM, and RF was 0.83, 0.75, and 0.98 in the calibration period
and 0.81, 0.78, and 0.84 in the validation period. The observed and predicted monthly
NDVI series in the validation period from the random forest for different vegetation types
were shown in Figure 4. They illustrated the good performance of NDVI modeling using
RF for all vegetation types.
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Table 2. Performance evaluation of all models in the calibration and validation period.

Vegetation
Types Models

Calibration Validation

NASH RMSE MAE r NMB NASH RMSE MAE r NMB

Needleleaf
Forest

MLR 0.67 0.04 0.03 0.82 0.00 0.64 0.05 0.04 0.80 −0.28
SVM 0.65 0.04 0.04 0.81 0.23 0.59 0.04 0.03 0.72 −1.53
RF 0.95 0.02 0.01 0.98 0.04 0.61 0.05 0.04 0.78 −0.85

Broadleaf
Forest

MLR 0.68 0.03 0.03 0.82 0.00 0.68 0.03 0.03 0.83 0.46
SVM 0.81 0.04 0.03 0.91 1.69 0.62 0.05 0.04 0.78 −3.52
RF 0.95 0.01 0.01 0.98 −0.01 0.65 0.04 0.04 0.81 −0.01

Scrub
MLR 0.86 0.04 0.03 0.93 0.00 0.82 0.04 0.03 0.91 −2.11
SVM 0.81 0.04 0.03 0.91 0.16 0.80 0.04 0.03 0.89 −1.00
RF 0.99 0.01 0.01 0.99 0.01 0.87 0.03 0.03 0.94 −3.75

Steppe
MLR 0.94 0.02 0.01 0.97 0.00 0.92 0.02 0.02 0.96 1.03
SVM 0.71 0.03 0.03 0.85 3.07 0.89 0.02 0.02 0.95 2.11
RF 1.00 0.00 0.00 1.00 −0.06 0.96 0.01 0.01 0.98 −0.71

Meadow
MLR 0.94 0.02 0.02 0.97 0.00 0.94 0.02 0.02 0.97 0.48
SVM 0.67 0.03 0.03 0.81 6.73 0.93 0.02 0.02 0.98 0.55
RF 1.00 0.01 0.00 1.00 0.02 0.97 0.01 0.01 0.99 −0.93

Alpine
Vegetation

MLR 0.91 0.02 0.02 0.96 0.00 0.89 0.02 0.02 0.95 −3.58
SVM 0.68 0.03 0.03 0.83 6.77 0.87 0.03 0.03 0.94 7.11
RF 0.99 0.01 0.00 1.00 0.02 0.94 0.02 0.01 0.97 −4.52

Cultivated
Vegetation

MLR 0.83 0.03 0.02 0.91 0.00 0.79 0.03 0.02 0.89 −1.08
SVM 0.92 0.02 0.02 0.96 0.19 0.76 0.04 0.03 0.87 3.11
RF 0.99 0.01 0.01 0.99 0.04 0.87 0.03 0.02 0.93 −2.38

Average
MLR 0.83 0.03 0.02 0.91 0.00 0.81 0.03 0.02 0.90 −0.73
SVM 0.75 0.03 0.03 0.87 1.73 0.78 0.04 0.03 0.88 0.76
RF 0.98 0.01 0.01 0.99 0.00 0.84 0.03 0.02 0.91 −2.26
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for different vegetation types.

3.3. The Sensitivity to Climate Change for Different Vegetation Types

The sensitivity to temperature and precipitation changes for different vegetation types
was assessed based on RF models that showed the best performance, which was shown in
Figures 5 and 6. The results indicated that the NDVI of each vegetation type would rise
with an increase in temperature. In general, the NDVI of the YZRB increased by 1.60–4.68%,
when the temperature increased by 1.5 ◦C. The sensitivity of different vegetation types
to temperature differed (Figure 5a). We found that the vegetation located in the upper
and middle reaches, including Alpine Vegetation, Meadow, Steppe, Scrub, and Cultivated
Vegetation, was sensitive to temperature. However, the vegetation in the lower reaches,
such as Needleleaf Forest and Broadleaf Forest, was not sensitive to temperature changes.
Spatially, the vegetation was more sensitive to temperature in the upper and middle reaches;
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in other words, in higher altitude areas with lower temperatures, the vegetation was more
sensitive to temperature changes (Figure 6a). These findings are consistent with the results
of similar studies. Park et al. [42] found vegetation was more sensitive to temperature
changes in a cold environment. Sun et al. [23] pointed out that higher temperatures would
produce more snow-melt water for vegetation to use, which was important in the cold and
dry regions of the YZRB.
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Figure 5. The response to temperature and precipitation for different vegetation types on an annual
scale ((a) The response of NDVI to temperature, (b) The response of NDVI to Precipitation).
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Figure 6. The distribution of the response to temperature and precipitation changes on an annual
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decrease in precipitation).

We found that the vegetation was more sensitive to temperature than to precipitation
in the YZRB, which concurs with previous studies [43,44]. Although the results indicated
slightly positive responses of the vegetation to precipitation generally, i.e., the NDVI in-
creased with an increase in precipitation, the response of different vegetation types to
precipitation exhibited a wide variation (Figure 5b). Meadow, Steppe, and Scrub, which
were mainly located in the arid and semi-arid regions, were slightly sensitive to precip-
itation. However, the other vegetation types, including Alpine Vegetation, Cultivated
Vegetation, Needleleaf Forest, and Broadleaf Forest, were not sensitive to precipitation.
According to Figure 6b,c, the NDVI of the YZRB would increase by 0.06–0.24% when the
precipitation increased by 10%. The NDVI showed a slightly positive response (<1%) to pre-
cipitation in the scenarios with a precipitation increase of 10% or a decrease of 10% in most
sub-catchments. However, the NDVI showed only a slight increase in both scenarios in
the lower reaches because of the non-sensitive response of the vegetation in the catchment,
which was dominated by Needleleaf Forest and Broadleaf Forest.

The sensitivity to temperature and precipitation changes on a monthly scale was also
investigated according to the outputs of the NDVI models in three hypothetical climate
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scenarios, i.e., 1.5 ◦C increase in temperature, 10% increase in precipitation, and 10%
decrease in precipitation. As shown in Figure 7, the monthly NDVI was more sensitive to
temperature than to precipitation. In Figure 7a, the monthly distributions of the sensitivity
to climate change were similar for the seven vegetation types, with a peak in April to June
and a trough in August to October. All vegetation types were more sensitive to temperature
increases at the start of spring and summer. The reason may be that the vegetation is
supplied with sufficient snow-melt water as the temperature rises in the period [45,46].
However, we also found that Needleleaf Forest and Broadleaf Forest had a slightly negative
response to temperature in autumn, which may result from the increasing evaporation
when temperatures are higher [47,48]. For precipitation (Figure 7b,c), the difference in the
monthly distribution of the sensitivity to precipitation was not obvious, which indicated
that precipitation was not the main factor affecting vegetation growth in the YZRB.
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We also identified the seasonal distribution of the sensitivity to temperature changes
(Figure 8), which were the average sensitivities for different seasonal months. The NDVI
is most sensitive to a temperature change in spring, which is predicted to rise by approx-
imately 3.4–7.8%. Spatially, the NDVI appears less sensitive in the south of the lower
reaches, which is in accordance with the spatial distribution of response on an annual scale.
Because the monthly NDVI is not sensitive to precipitation and shows a positive sensitivity
of <1% to precipitation change, its seasonal distributions are not included in this paper.
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4. Discussion
4.1. The Time-Lag Effects of Temperature and Precipitation on Different Types of Vegetation

The time-lag effects of temperature and precipitation on different types of vegetation
were investigated through their correlation coefficients at time lags of 0–3 months (Table 3).
We found that the highest correlations for Scrub, Steppe, Meadow, Alpine Vegetation, and
Cultivated Vegetation in response to temperature and precipitation were with a 1-month
lag. However, the highest correlations for Needleleaf Forest and Broadleaf Forest were
with 2-month lag and 3-month lag for temperature, respectively, and with a 3-month lag
for both for precipitation. We found that the most correlated variables for all vegetation
types were all temperatures with different time lags. The correlation coefficients varied
from 0.75 to 0.89.

Table 3. The correlation coefficients between the NDVI of different vegetation types and temperature
and precipitation at time lags of 0–3 months.

The NDVI of Different
Vegetation Types

Input Factors

t0 p0 t1 p1 t2 p2 t3 p3

Needleleaf Forest 0.32 0.09 0.61 0.44 0.76 0.65 0.72 0.67
Broadleaf Forest 0.02 0.34 0.34 0.11 0.63 0.42 0.75 0.58

Scrub 0.71 0.65 0.86 0.80 0.81 0.70 0.57 0.44
Steppe 0.84 0.81 0.89 0.84 0.73 0.53 0.39 0.11

Meadow 0.85 0.84 0.88 0.85 0.72 0.52 0.37 0.09
Alpine Vegetation 0.80 0.77 0.89 0.85 0.77 0.63 0.47 0.28

Cultivated Vegetation 0.73 0.66 0.85 0.81 0.77 0.70 0.51 0.42

The RF model was able to successfully evaluate the contributions of the predictors
based on its built-in variable importance evaluation processes. We plotted both the rank of
the correlation coefficients (Figure 9a) and the rank of the predictors’ importance (Figure 9b)
to explore the time-lag effects of climatic variables on each type of vegetation. The results
of the two methods were similar, although some differences remained. Both methods indi-
cated the NDVI was more sensitive to temperature than to precipitation for all vegetation
types. In the two methods, the NDVI of Needleleaf Forest, Broadleaf Forest, Scrub, and
Cultivated Vegetation had the same time lag to temperature, while the NDVI of Steppe,
Meadow, and Alpine Vegetation had a 1-month lag to temperature in the correlation analy-
sis and a 0-month lag in the RF importance evaluation. However, we found that 0-month
was the second most correlated period for temperature in the correlation analysis and
1-month was the second important period in the RF importance evaluation. The time lags
of temperature for different vegetation types were very similar for the two methods.
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The time lags for precipitation in the different vegetation types showed higher vari-
ation. Although the time lags for Needleleaf Forest were all 3 months, those of Scrub,
Steppe, Meadow, Alpine Vegetation, and Cultivated Vegetation were all 0–1 month for the
two methods. The reason for the differences may be that the RF importance evaluation
considered the inherent correlation of the climate variables and showed more differences
between less important variables than that of the correlation analysis [49,50].

4.2. Limitations

There were some limitations in our research. One limitation was that vegetation
change or evolution in the YZRB was not considered in this study, which may lead to
inaccuracies in the simulation. At the same time, we explored the effects of temperature
and precipitation disturbances on vegetation separately but did not consider the combined
effects. Vegetation is also affected by variables, such as human activities, soil moisture
content, and CO2 [51,52]. We will explore these factors as part of the model inputs in our
future research. In addition, this study established basin-scale machine learning models
based on different vegetation types. In the future, we will try to explore the relationship
between NDVI and climatic variables at higher resolutions. Vegetation cover is deeply
affected by global climate change and its sensitivity to climatic variables has attracted
worldwide attention. Due to the differences in ecological patterns and climatic conditions,
the sensitivity of vegetation cover to climate change varies significantly [53,54]. This is
the first attempt to assess the vegetation sensitivity of YZRB to climate change, which is
one of the highest basins of the world with a complex topography and diverse vegetation.
Our conclusions will not only support the land planning and water resources management
of the Tibetan Plateau but also have reference value for vegetation sensitivities studies of
high-altitude basins [55–57].

5. Conclusions

We assessed the sensitivity to climate change for different vegetation types in the YZRB
using machine learning methods. To analyze spatiotemporal variability, three machine
learning models, MLR, SVM, and RF, were adopted to simulate the relationships between
vegetation and climatic variables. RF, the best performing model, was then used to quanti-
tatively evaluate the sensitivity of each vegetation type to temperature and precipitation
change. The time-lag effects of each vegetation type on climate were also analyzed with the
proposed models. The main findings of this study are summarized as follows.

(1) RF models successfully simulated the relationships between the NDVI and climatic
variables, which were better than MLR models and SVM models. The average NASH of
MLR, SVM, and RF was 0.83, 0.75, and 0.98 in the calibration period and 0.81, 0.78, and 0.84
in the validation period. RF models exhibited the highest simulation efficiency according
to the four metrics.

(2) Different vegetation types responded positively to temperature and precipitation
changes on an annual scale, but the vegetation was more sensitive to temperature than to
precipitation in the YZRB. The NDVI was predicted to increase by 1.60–4.68% when the
temperature increased by 1.5 ◦C, while it only changed by 0.06–0.24% when the precipitation
increased by 10% in the YZRB. The NDVI was more sensitive to temperature changes in
spring and summer on a monthly scale. The NDVI was also more sensitive to temperature
rises in the upper and middle reaches, where the existing temperature was cooler.

(3) The time-lag effects of climate for each vegetation were analyzed using correlation
analysis and RF importance evaluation. For temperature, Needleleaf Forest and Broadleaf
Forest showed a 2-month lag and 3-month lag, respectively; Scrub and Cultivated Vegeta-
tion both showed a 1-month lag, while Steppe, Meadow, and Alpine Vegetation showed a
0–1 month lag. For precipitation, Needleleaf Forest and Broadleaf Forest also had longer
time lags than those of other vegetation types, although the two methods had slightly
different results.
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