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Abstract: The direct radiative effects of atmospheric aerosols are essential for climate, as well as for
other societal areas, such as the energy sector. The goal of the present study is to exploit the newly
developed ModIs Dust AeroSol (MIDAS) dataset for quantifying the direct effects on the downwelling
surface solar irradiance (DSSI), induced by the total and dust aerosol amounts, under clear-sky
conditions and the associated impacts on solar energy for the broader Mediterranean Basin, over the
period 2003–2017. Aerosol optical depth (AOD) and dust optical depth (DOD) derived by the MIDAS
dataset, along with additional aerosol and dust optical properties and atmospheric variables, were
used as inputs to radiative transfer modeling to simulate DSSI components. A 15-year climatology of
AOD, DOD and clear-sky global horizontal irradiation (GHI) and direct normal irradiation (DNI)
was derived. The spatial and temporal variability of the aerosol and dust effects on the different
DSSI components was assessed. Aerosol attenuation of annual GHI and DNI were 1–13% and 5–47%,
respectively. Over North Africa and the Middle East, attenuation by dust was found to contribute
45–90% to the overall attenuation by aerosols. The GHI and DNI attenuation during extreme dust
episodes reached 12% and 44%, respectively, over particular areas. After 2008, attenuation of DSSI by
aerosols became weaker mainly because of changes in the amount of dust. Sensitivity analysis using
different AOD/DOD inputs from Copernicus Atmosphere Monitoring Service (CAMS) reanalysis
dataset revealed that using CAMS products leads to underestimation of the aerosol and dust radiative
effects compared to MIDAS, mainly because the former underestimates DOD.

Keywords: aerosols; dust; direct radiative effects; solar energy; Mediterranean Basin

1. Introduction

Aerosols modulate the radiation field of Earth’s atmospheric system with several
implications for life on earth. The physical mechanisms through which they influence the
radiation budget are manifold. Aerosols interact directly (direct effects) with the shortwave
(SW) and longwave (LW) radiation through scattering and absorption. Moreover, through
their interactions with clouds, they have semidirect and indirect effects by altering the
atmospheric conditions related to cloud formation/dissipation due to absorbing aerosols
and by acting as cloud condensation and ice nuclei (altering the microphysical and hence
the optical properties of clouds) (e.g., [1]). The direct radiative effects of aerosols refer
to changes in radiative fluxes due to the direct aerosol–radiation interaction (radiative
effects due to aerosol–radiation interactions (REari), as renamed in the IPCC AR5 [2]).
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Cloud-free aerosol direct radiative effects depend on aerosol optical properties such as the
spectrally resolved aerosol extinction coefficient or the integrated aerosol optical depth
(AOD), the single scattering albedo (SSA), the scattering phase function or the integrated
asymmetry parameter and other environmental parameters such as surface reflectance and
the concentration of atmospheric trace gases [3–7]. Their magnitude corresponds to the
perturbation of the radiation fields induced by aerosols, within the Earth’s atmospheric
system, with respect to an atmospheric state without their presence.

Aerosols are among the main climate change drivers, and estimates of changes in
their radiative effects are highly significant for climate-change-related policy making as
they are linked to changes in surface temperature [8]. Nevertheless, estimates of the total
anthropogenic radiative forcing are still highly uncertain [9]. Several reasons contribute to
these not yet well-constrained estimates, such as the heterogeneity of the processes govern-
ing aerosols’ production and removal, which in turn regulate optical and microphysical
properties, both determining the associated aerosol–radiation interactions. Focusing on
Earth’s surface, apart from the importance of aerosols on climate, studies quantifying the
impact of total aerosols (natural and anthropogenic) on incoming solar irradiance are also
essential for other societal benefit areas such as the energy sector (e.g., [10–12]).

Dust particles constitute a major component of atmospheric aerosol load [13,14]. Their
emission is primarily wind-driven over the arid or semiarid regions of the planet. The
Sahara Desert in North Africa, the Arabian and the Asian deserts are the major dust
sources on Earth, with the highest contribution to global dust load (more than 50%) being
emitted from North Africa [15–17]. Even though the dust sources are localized, the spatial
distribution of dust over the globe is extensive due to dust mobilization under favorable
meteorological conditions. Dust can be transported over long distances with significant
implications for the climate of the affected areas and the global climate [18–20]. In addition
to its significant radiative effects, dust also plays a key role in other processes such as
the productivity of oceanic waters [21] and terrestrial ecosystems [21] and affects human
health [22–24]. The diameter of dust particles is of the order of 0.5–50 µm, and thus the
Ångström exponent of dust aerosols is smaller than 1 [25]. Dust particles generally scatter
and redistribute rather than absorb solar radiation (SSA > 0.9 at visible wavelengths),
although dust absorbs solar radiation at short (i.e., ultraviolet) and long (i.e., infrared)
wavelengths more effectively [26–28].

The Mediterranean Basin, located at the crossroads of air masses from all over the
globe [29], experiences high aerosol concentrations of both natural and anthropogenic
origin, and the aerosol spatiotemporal variability over the area has been investigated in
several studies (e.g., [30–33]). In addition, due to its proximity to the Earth’s most active
dust sources located across the Sahara Desert and Middle East deserts, the Mediterranean
Basin often experiences high dust aerosol loads (dust intrusions). Several studies have
investigated the Saharan dust transport towards the Mediterranean Basin by exploiting,
either solely or combined, in situ measurements, remote sensing (ground-based or satellite)
retrievals and atmospheric dust numerical products (e.g., [34,35]). Across the Mediter-
ranean Sea, dust concentrations fade down from south to north because of the removal of
mineral particles from the atmosphere, either due to dry or to wet deposition [36]. It should
be noted that long-range transport of Saharan mineral particles has also been recorded over
northern Europe [37,38]. Additionally, there is a distinct seasonal cycle of the longitudinal
spatial distribution of dust with higher concentrations in spring at the eastern and central
Mediterranean and in summer at the western Mediterranean [36,39,40]. The seasonal
patterns are related to the seasonality of the prevailing meteorological conditions over
the area [36,41]. This intricate aerosol regime makes Mediterranean Basin one of the most
interesting areas for investigating the aerosol and dust radiative effects.

Towards the reduction of greenhouse gas emissions and climate change mitigation, the
deployment of renewable energy technologies is one of the main pillars [42], while at the
same time renewable energy technologies provide energy in a sustainable manner. Among
renewables, the share of solar technologies is growing fast. For electricity production, the



Remote Sens. 2022, 14, 1535 3 of 29

systems in use are the photovoltaic (PV) cells and the concentrating solar power (CSP)
plants, which harness different components of the solar irradiance: the global horizontal
irradiance and the direct normal irradiance, respectively [43,44]. Within the North Africa,
Middle East and Europe (NAMEE) domain, International Energy Agency (IEA) projections
up to 2025 indicate a continuous growth in solar PV capacity, while some countries (e.g.,
Morocco) are increasing their CSP capacity [45].

Over most of the globe, the availability of downwelling surface solar irradiance
(DSSI) depends mainly on attenuation by clouds, but the role of aerosols is also significant
and under certain conditions can be dominant (e.g., [46,47]). The countries around the
Mediterranean Basin, apart from their prolonged sunshine durations, also experience high
levels of aerosol loads, mainly composed of mineral particles. In the recent study by
Fountoulakis et al. [47], it was found that for Cyprus in summer the GHI attenuation by
aerosol is comparable to the attenuation by clouds, while solely dust attenuates more DNI
than clouds. In the same study, it was found that 30–50% of the overall DSSI attenuation
by aerosols was due to dust. For lower latitudes with even more rare cloudy conditions,
aerosols and specifically desert dust constitute the most common source of DSSI attenuation,
as was demonstrated in a study for Egypt by Kosmopoulos et al. [10]. It must be pointed
out here that even for southern Europe, dust can substantially reduce surface solar radiation
during dust intrusions [48]. Thus, studying the radiative effects of dust is of great interest
for the broader Mediterranean Basin. Existing studies are limited over specific locations or
dust event days (e.g., [10,47,48]).

In order to derive the aerosol radiative effects, continuous monitoring of their opti-
cal properties is essential [49]. AOD is a quantitative measure of the integrated aerosol
extinction in the atmospheric column; hence, it constitutes the most important aerosol
optical property for estimating the aerosol direct radiative effects [50]. In the same manner,
DOD is a proxy of the mineral dust particles’ load, in optical terms, throughout the atmo-
spheric column. The most accurate estimates of those optical properties are provided from
ground-based remote sensing instruments (sun photometers), which are however sparse,
and their geographical distribution is spatially inhomogeneous. This observational gap
is complemented by satellite remote sensing along with the related retrieval algorithms,
providing considerably accurate measurements with global coverage and high spatial and
temporal resolution. Although they are still not as accurate as ground-based estimates of
the aerosol optical properties, the accuracy of satellite-based aerosol products has been
improved substantially in recent years [51,52]. A significant disadvantage of satellite prod-
ucts is that they are representative of relatively wide areas rather than specific locations,
and thus they can be highly uncertain when they are used to study aerosols over complex
environments [53,54]. MODIS instrument onboard Aqua (since May 2002) and Terra (since
December 1999) satellites provide AOD and other valuable information for aerosols world-
wide. Based on MODIS AOD product, a new DOD dataset was generated, the ModIs Dust
Aerosol (MIDAS) dataset [55], enhancing the existing dust aerosol monitoring capabilities.
Considering its global coverage at fine spatial and temporal resolution, over a long period
(2003–2017), this dataset is suitable for dust climatological studies (e.g., [47,56,57]).

Another tool for dust monitoring, on a regular basis and for long time periods, relies
on atmospheric models simulating aerosols’ life cycle. Via the assimilation of quality-
assured observations, quite reliable numerical products are also available from reanalysis
datasets [58–60]. For aerosol-related studies, one of the most exploited reanalysis datasets
is the Copernicus Atmosphere Monitoring Service (CAMS) dataset [61] providing aerosol
optical properties for the total load, as well as for aerosol species. However, compared to
satellite products, its spatial resolution is relatively low, and regardless of the assimilation
process of aerosol observations, the performance of their outputs depends on modeling
aspects (e.g., the balance between the different aerosol components constituting the aerosol
column at any given location and time) [62].

The aim of this work is to contribute towards achieving the following scientific objectives:
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- Deriving a 15-year climatology of total and dust aerosols and cloud-free surface solar
radiation in the Mediterranean Basin.

- Quantifying the long-term impact of total and dust aerosols on the solar radia-
tion/energy in the Mediterranean with respect to an aerosol-free atmosphere.

- Investigating the advantages and limitations of existing model and satellite-based
aerosol time series for solar-energy-related applications.

After the description of the datasets and the methodology in Section 2, the AOD
and DOD climatology is discussed in Section 3.1 along with the intercomparison between
MIDAS and CAMS datasets. Section 3.2 presents the aerosol and dust effects on the surface
GHI and DNI based on both datasets. In Section 3.3, focus is given on the radiative effects
for each DSSI component under extreme dust outbreaks. The interannual variability and
trends of the effects of aerosols and dust on GHI and DNI components are presented in
Section 3.4, and the clear-sky climatology of GHI and DNI is given in Section 3.5. Finally,
our concluding remarks are provided in Section 4.

2. Data and Methodology

In the present study, the aerosol and especially dust effects on DSSI in terms of GHI
and DNI were investigated over the Mediterranean Basin. Initially, two different AOD and
DOD datasets were explored, the newly developed satellite-based MIDAS and the model-
derived CAMS reanalysis datasets. As a second step, the quantification of the long-term
effects of total aerosols and dust on different DSSI components with respect to aerosol-free
conditions were derived, using both AOD and DOD datasets as inputs to radiative transfer
model (RTM) simulations. For the simulations, additional aerosol optical properties and
atmospheric parameters were used as inputs as well. An intercomparison of the results
from the two datasets was performed in order to address the last two scientific objectives
listed in Section 1. The description of the utilized datasets and the RTM simulations are
provided in Sections 2.1 and 2.2, respectively.

2.1. Data

We have used various aerosol and atmospheric-related parameters as inputs in the
RTM. Table 1 presents an overview of the used datasets, and a more analytical description
is provided in the corresponding subsections.

Table 1. Datasets of total aerosol and dust optical properties and key atmospheric parameters for
radiative transfer model (RTM) simulations of downwelling surface solar irradiance (DSSI).

Parameter Description
(Spatial–Temporal Resolution) Source Reference

Aerosol optical properties

Satellite-retrieved
aerosol optical depth (AOD)

(0.1◦ × 0.1◦, 1 day)
ModIs Dust Aerosol (MIDAS) [55]

Modeled AOD
(0.4◦ × 0.4◦, 3 h)

Copernicus Atmospheric
Monitoring Service (CAMS)

reanalysis
[61]

Single scattering albedo (SSA)
(1◦ × 1◦, 1 month)

Max-Planck Aerosol Climatology
(MACv2) [63]

Ångström exponent (AE)
(1◦ × 1◦, 1 month)

MACv2 [63]

Dust optical properties

Satellite-based
dust optical depth (DOD)

(0.1◦ × 0.1◦, 1 day)
MIDAS [55]

Modeled DOD
(0.4◦ × 0.4◦, 3 h) CAMS reanalysis [61]

Dust SSA (DU SSA)
(1◦ × 1◦, 12 monthly means) MACv2 [63]
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Table 1. Cont.

Parameter Description
(Spatial–Temporal Resolution) Source Reference

Water vapor Modeled total column water vapor (TCWV)
(0.4◦ × 0.4◦, 3 h) CAMS reanalysis [61]

Ozone
Satellite-retrieved

total ozone column (TOC)
(1◦ × 1◦/1◦ × 1.25◦, 1 day)

Ozone Monitoring Instrument
(OMI) TOMS-Like Level 3

product/Earth Probe (EP) Total
Ozone Mapping Spectrometer

(TOMS) Level 3 version 8 product

[64,65]

2.1.1. AOD and DOD—ModIs Dust Aerosol (MIDAS) Dataset

MIDAS [55] constitutes a global fine-resolution (0.1◦ × 0.1◦) dataset providing colum-
nar dust optical depth (DOD) at 550 nm, on a daily basis, over a 15-year period (2003–2017).
In brief, MIDAS DOD product has been developed through the synergy of quality assured
MODIS-Aqua Level 2 AOD and the dust fraction (MDF) to the total aerosol load, in optical
terms, acquired from the MERRA-2 reanalysis. Along with DODs, it also provides the
associated grid-cell uncertainty estimated using reference AERONET retrievals [66] and
LIVAS [67] products for AOD and MDF, respectively. A comprehensive evaluation of the
MIDAS DOD versus AERONET DOD-like and an intercomparison against MERRA-2 and
LIVAS DODs justified its reliability and validity as well as its caveats which should be
taken into account. For the estimation of the radiative effects attributed to the total aerosol
load, we used the MODIS-Aqua AOD stored in the MIDAS files. Actually, the MIDAS AOD
is the raw MODIS-Aqua AOD (Collection 6.1; [68]), produced by merging Dark Target and
Deep Blue retrievals according to Sayer et al. [69], on which quality filters (see Section 2.1
in [55]) have been applied, and it has been reprojected on an equal latitude–longitude grid
to that of DOD.

2.1.2. AOD, DOD and Total Column Water Vapor (TCWV)—Copernicus Atmospheric
Monitoring Service (CAMS) Reanalysis Dataset

The CAMS reanalysis, available from 2003 onwards, is the global reanalysis dataset of
atmospheric composition of the European Centre for Medium-Range Weather Forecasts
(ECMWF), consisting of three-dimensional time-consistent atmospheric composition fields,
including aerosols and chemical species [61]. It is based on ECMWF’s Integrated Forecast
System (IFS), including an aerosol module described in Morcrette et al. [70]. Five species of
tropospheric aerosols are included in the CAMS aerosol model, including dust. For dust
sources, the parameterization of Ginoux et al. [71] is implemented. The satellite-derived
aerosol products that were assimilated in the CAMS reanalysis were the MODIS-Aqua
and MODIS-Terra AOD retrievals [58] and, in addition, the retrievals from the Advanced
Along-Track Scanning Radiometer (AATSR) onboard Envisat from 2003 to March 2012.
More details regarding the updates in the meteorological part of IFS and in the aerosol and
chemical modules, the data assimilation process and the emission datasets are given in
Innes et al. [61] and the references therein. CAMS reanalysis products are available from the
Copernicus Atmosphere Data Store (ADS, https://ads.atmosphere.copernicus.eu/#!/home
(accessed on 25 January 2022)) on a 3-hourly basis. AOD and DOD at 550 nm and TCWV
were obtained programmatically for the same period with the MIDAS dataset (2003–2017)
on a 0.4◦ × 0.4◦ lat/lon grid.

2.1.3. Additional Aerosol and Dust Optical Properties (SSA and AE)

For the additional UV–visible–near-IR optical properties for all aerosols and dust,
climatological values from the second version of the Max-Planck Aerosol Climatology
(MACv2) [63] were utilized, which are available at a global scale with a 1◦ × 1◦ spatial
resolution. The interannual variability of total aerosol optical properties is provided over

https://ads.atmosphere.copernicus.eu/#!/home
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the time period 2001–2016 in terms of monthly means. Monthly climatological values
corresponding to the same period are provided for five aerosol species, including dust.

In the current analysis, SSA at 550 nm was used for total aerosols and dust (DU SSA).
AODs at 470 nm and 850 nm, for total aerosols, were obtained from MACv2 and were used
to calculate the Ångström exponent (AE) (AE 470–850 nm). For dust, a fixed climatological
value of 0.4 for AE 440–675 nm was used as proposed by Taylor et al. [72] for the region
of study.

2.1.4. Total Ozone Column (TOC)

To obtain TOC data for the entire period, a new dataset was constructed by combining
data from Ozone Monitoring Instrument (OMI) onboard NASA’s Aura satellite from
1 October 2004 until 31 December 2017 and from Total Ozone Mapping Spectrometer
(TOMS) onboard the Earth Probe (EP) satellite from 1 January 2003 to 30 September 2004.
The satellite-based TOC retrievals were collected from the daily global OMI TOMS-Like
TOC Level 3 (OMTO3d) gridded on a 1◦ × 1◦ grid product [64] and from the EP TOMS
Level 3 (TOMSEPL3) version 8 product [65], which provides daily data on a global grid of
1◦ × 1.25◦.

2.2. Methodology
2.2.1. Spatial and Temporal Extent of the Study

The study was performed for the domain that is confined between 27◦N–50◦N and
15◦W–40◦E, which includes the counties around the Mediterranean Sea, as well as part of
Central Europe and the Middle East. Analysis was performed with a spatial resolution of
0.4◦ × 0.4◦ and for the period 2003–2017.

2.2.2. Library for Radiative Transfer (libRadtran) Simulations

The simulations of DSSI components for cloud-free conditions were performed using
the uvspec model from the libRadtran package [73]. Using the radiative transfer solver
sdisort [74], pseudospectral simulations were performed with a resolution of 1 nm for the
spectrum range of 280–3000 nm, using for the molecular absorption the parameterization
of LOWTRAN band model [75], as adopted from the SBDART code [76]. The Kurucz
1.0 nm [77] extraterrestrial solar spectrum and the standard US atmospheric profile [78]
were utilized, and the surface albedo was set to 0.2.

2.2.3. Database (DB) for Radiative Properties

For quantifying the impact of total aerosols and dust on the DSSI components (GHI
and DNI), we have performed RTM simulations (see Section 2.2.4) using satellite (MIDAS)
retrievals and reanalysis (CAMS) products of AOD and DOD as inputs, complemented by
additional aerosol optical properties and atmospheric parameters acquired from the MACv2
climatology, spaceborne observations (OMI, TOMS) and reanalysis products (CAMS),
which are described in detail in Section 2.1.

The above datasets differ in spatial and temporal resolution. Initially, the spatial and
temporal homogenization of datasets with missing values was performed, which was then
followed by the geolocation and synchronization among all datasets in order to generate a
complete database (DB) of all the input parameters needed for the RTM simulations (SZA,
AOD or DOD, SSA, AE, TCWV, TOC) on a 0.4◦ × 0.4◦ lon/lat grid, on an hourly basis,
which was selected to be the frequency of RTM simulations in order to account for the sun
elevation. Figure 1 provides a schematic overview of this process.

The MIDAS dataset was aggregated to the coarser spatial resolution of 0.4◦ × 0.4◦ in
order to achieve a small number of missing values. The median value was selected as the
aggregation method, as a nonparametric measure of central tendency, based on the findings
of Sayer and Knobelspiesse [79]. In order to homogenize the MIDAS dataset in time and
space, the missing values were filled by monthly means. Seasonal means were utilized
when the monthly data availability was low (<20%). In cases with low seasonal availability,
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the spatial gaps were filled using bilinear interpolation. For the 1 h RTM simulations, daily
MIDAS values were used and the AOD and DOD were assumed invariant in the day.
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Figure 1. Schematic overview of the database (DB) created for the RTM simulations, on a
0.4◦ × 0.4◦ lon/lat grid and 1 h temporal resolution.

The diurnal variability of CAMS datasets (AOD, DOD and TCWV) was taken into
account and the 3 h values were assumed invariant within each 3-h time interval. For
TOC, a temporal fitting was performed filling the days missing with monthly mean values,
and a spatial bilinear fit was performed in order to fill the gaps in space. Both OMI and
TOMS datasets were bilinearly interpolated to a 0.4◦ × 0.4◦ grid. Again, TOC was assumed
invariant in the day. The 1◦ × 1◦ fields of MACv2 were also bilinearly interpolated to the
0.4◦ × 0.4◦ grid and the monthly values of SSA and AE were used, assuming that they
remain constant during each month.

2.2.4. RTM Methodology

The hourly values of clear-sky DSSI in terms of global and direct components were
obtained relying on precalculated look-up tables (LUTs), in order to achieve realistic
computational times, as similarly done in Kosmopoulos et al. [80]. Spectral LUTs were
constructed containing simulated surface spectral irradiances (global and direct) for a
wide range of SZAs and atmospheric factors affecting DSSI (Figure 2a) under cloudless
conditions. The simulations for the creation of the LUT were performed using uvspec
(Section 2.2.2). All possible combinations of the input parameters of Figure 2a resulted
in 74,520 libRadtran simulations of the spectral LUTs. The output spectral irradiances
were integrated over the whole SW spectrum to obtain the total irradiances. In order to
discretize further, we applied interpolation on the spectrally integrated values, and finer
LUTs (Figure 2b) were derived, as they could result from over 200 million hypothetical
RTM runs.

Using the fine LUTs and inputs from DB described in Section 2.2.3, instantaneous
values of total irradiances (global and direct) every 1 h during daytime were extracted
for each grid cell (0.4◦ × 0.4◦) for 2003–2017. This procedure was repeated five times, as
different experiments, described in Table 2, in order to quantify the total aerosol as well as
the dust effect on different DSSI components, for the two different datasets (MIDAS, CAMS).
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Table 2. The different experiments for which DSSI values were extracted from the fine LUTs.

Atmospheric Conditions Dataset

Aerosol included MIDAS AOD
CAMS AOD

Dust included MIDAS DOD

Aerosol-free CAMS DOD
AOD = 0

Integrating the 1 h instantaneous values of total irradiances over sunlight hours,
the daily global horizontal irradiation (GHI) and direct normal irradiation (DNI) compo-
nents (in MJ/m2) were calculated, and those values were post-corrected for the Earth–
Sun distance, and for the surface elevation following the methodology described in
Fountoulakis et al. [47]. Using LUT instead of simulating DSSI for the exact conditions
of each time step induced some additional uncertainty in the results, which however is
small. By comparing the daily integrals using both approaches for particular grid points, it
was estimated that the additional (2-fold) uncertainty in the daily integrals is ~0.2 kW/m2,
which for the domain of study corresponds to less than 1% of the simulated DSSI in spring,
summer and autumn and to less than 10% at the northernmost latitudes of the domain in
winter. The corresponding uncertainty in the monthly integrals is much smaller, less than
1% in all cases.

Using the simulated daily irradiations, mean annual and seasonal integrals (INTs) of
GHI and DNI, for cloudless conditions, were calculated for the five different experiments
described in Table 2 using the following formula:

((INTi_on − INTaer_free)/INTaer_free) × 100% (1)

where i stands for aerosols and dust. The relative change (expressed in %) in DSSI due
to aerosols and dust presence was calculated with respect to an aerosol-free atmosphere.
Using the same formula, the daily relative changes were calculated as well.
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2.2.5. Extreme Dust Events

The broader Mediterranean Basin is an area frequently affected by dust outbreaks [57,81],
resulting in extremely high concentrations of mineral particles and maximized DODs. Thus,
we aimed to quantify the impact of those extreme DOD values on GHI and DNI. To this
end, the methodology proposed by Gkikas et al. [82] was applied to MIDAS DOD values
in order to define the extreme dust episode days (eDEDs) by also adapting the objective
and dynamic algorithm of Gkikas et al. [83] to MIDAS DODs. First, for every pixel, the
mean DOD (DOD) and the associated standard deviation (σDOD) values were calculated,
using the daily values of DOD over the time period 2003–2017. An extreme dust episode
occurs on a specific day and at a specific location (pixel) when DOD values are higher than
a critical value (threshold):

DOD ≥ DOD + 4σDOD (2)

This algorithm is characterized as dynamic since the DOD threshold values are not
constant for each pixel. Finally, in order to define a day as an eDED, at least 300 pixels
should undergo an extreme dust episode, providing that the data availability for this day
is more than 50%. From our analysis, 67 eDEDs were found for the whole study period
2003–2017, or on average 4.5 eDEDs year−1.

3. Results and Discussion
3.1. Satellite-Derived and Modeled AODs and DODs—Climatology and Intercomparison

One of the aims of this study is to investigate the benefits and the drawbacks of
choosing between satellite- and model-derived AOD and DOD datasets for estimating
their radiative effects. To this end, as described in Section 2, MIDAS and CAMS datasets
were explored. For the MIDAS–CAMS comparison, the aggregated MIDAS datasets were
used, before filling in the missing values (see Section 2.2.3). CAMS datasets, which have a
diurnal variation (3 h time resolution), were synchronized with MIDAS datasets (MODIS-
Aqua overpass time) in order to achieve an exact collocation. In Figure 3, the MIDAS
cloudless sky data availability (expressed in percentage) is illustrated. Three regions can
be distinguished. North Africa, which, due to its scarce cloudiness, has the highest data
availability, with more than 70% of daily satellite retrievals with respect to the whole period.
Over the Mediterranean Sea, data availability decreases down to 60%. Over Europe, the
MIDAS data amount further decreases and is minimized (~20%) in mountainous regions
(i.e., Alps). For the temporal aggregation, only grid points with at least 20% data availability
on annual and seasonal bases were used, to ensure the representativeness of the results.
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The geographical distribution of the long-term annual averaged values of AOD
(Figure 4a,b) and DOD (Figure 5a,b) were derived for both datasets. The correspond-
ing seasonal results are given in the Supplementary Materials (Figures S1–S4). Our analysis
expands further CAMS DOD product evaluation [84] in terms of its spatial and temporal
variability performance. The frequency histogram of the CAMS–MODIS biases and their
mean annual geographical distribution are presented in panels c and d, respectively, for
AOD (Figure 4) and DOD (Figure 5). By performing t-test for the differences shown in
Figures 4d and 5d, the majority of differences were found to be statistically significant (not
shown in the figures for clarity) on a 95% confidence level (p-value < 0.05).
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3.1.1. Aerosol Optical Depth

In general, the AOD spatial features are similarly reproduced for both datasets
(Figure 4a,b), and the regional averages are almost equal (0.19 ± 0.06 for MODIS and
0.18 ± 0.06 for CAMS, Table 3). Our findings are also in good agreement with those of
previous studies focusing on the same region [30,33,85]. Between the two datasets, differ-
ences were found in the magnitude of the maximum AOD levels. The annual mean AOD
values for each individual pixel range from 0.05 to 0.48 for MIDAS and from 0.05 to 0.37
for CAMS. For both datasets, the maximum and minimum AOD values were found over
the same areas. Over North Africa and parts of the Middle East, maximum AOD values
were derived that were mainly attributed to desert dust. Large AOD values related to
anthropogenic activity [86,87] were found over the megacity of Cairo, Egypt, and the Po
Valley, Italy. Low AOD values (0.05–0.15) were found over most of the Iberian Peninsula
and southern France, which is in agreement with Obregon et al. [88], who attributed the
low AOD to the clean air masses that were transferred over these areas from the Atlantic
Ocean due to the westerly air flow (Obregon et al. [88] and the references therein).

Overall, the CAMS-simulated AODs are slightly underestimated (mean bias −0.006)
with respect to MIDAS AOD (Figure 4c), which was found to be statistically significant on
the 95% confidence level (p-value < 0.05, t-test for the differences). This is in agreement
with the results of previous studies [84], where lower CAMS AODs relative to MODIS
were reported over the NAMEE domain. The geographical distribution of the annual mean
bias (Figure 4d) revealed areas with annual mean bias that differed a lot from the average
value for the whole region. The most significant negative differences were found over
an extensive area of Northeast Africa and parts of the Middle East (with annual mean
bias up to −0.14), which can be explained by the AOD overestimation of MODIS Dark
Target and Deep Blue combined product over these areas [68]. There are also areas with
much higher CAMS AOD values relative to MIDAS. Maximum positive differences (up
to 0.1) were found over Northwest Africa, which can be explained by the CAMS model
overestimation of the organic matter over that area [84]. This CAMS AOD overestimation
is more pronounced in summer (Figure S5c).

Table 3. Regional averages of mean annual and seasonal AOD and DOD at 550 nm from MIDAS and
CAMS and CAMS–MIDAS bias. The maximum of seasonal values is denoted as bold, emphasizing
the peak of the seasonal cycle.

AOD DOD

CAMS MIDAS Mean Bias
(CAMS–MIDAS) CAMS MIDAS Mean Bias

(CAMS–MIDAS)

Annual

0.18 ± 0.06 0.19 ± 0.06 −0.005 ± 0.025 0.06 ± 0.06 0.08 ± 0.07 −0.026 ± 0.021

Seasonal

winter 0.11 ± 0.05 0.13 ± 0.06 −0.019 ± 0.021 0.03 ± 0.03 0.06 ± 0.05 −0.030 ± 0.025

spring 0.21 ± 0.07 0.21 ± 0.07 −0.003 ± 0.027 0.07 ± 0.07 0.11 ± 0.08 −0.037 ± 0.024

summer 0.23 ± 0.08 0.23 ± 0.07 0.003 ± 0.038 0.08 ± 0.08 0.10 ± 0.08 −0.019 ± 0.027

autumn 0.15 ± 0.06 0.16 ± 0.07 −0.007 ± 0.028 0.05 ± 0.05 0.07 ± 0.06 −0.023 ± 0.022

There is a clear seasonal cycle (Figures S1 and S2) of the AOD over the Mediterranean
Basin. CAMS AOD reproduces the regional patterns of the MODIS AOD seasonal variability
quite well, but again there were differences in the magnitude of maximum seasonally
averaged AODs between the two datasets. In summer, AODs are maximized (0.66 for
MODIS and not exceeding 0.56 for CAMS) over North Africa, particularly in its western
parts. Large AOD values were also found over southeast Europe in spring and summer,
which are mainly due to emissions of anthropogenic aerosols such as sulfates [33], with a
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peak in spring over Po Valley with mean values of 0.37 for MODIS and 0.28 for CAMS. In
Table 3, the regionally averaged seasonal mean AOD values are summarized. A distinct
seasonal cycle was revealed in both datasets with maximum values during summer and
minimum values during winter, which is the same as the seasonal cycle reported by
Papadimas et al. [30]. The seasonal variations of AOD are linked to the atmospheric
circulation and the meteorological conditions over the study area that are affecting the
aerosol emission, removal and transport processes [82,89].

3.1.2. Dust Optical Depth

There is a clear latitudinal gradient of DOD (Figure 5a,b). For both datasets, the largest
DOD values were found over North Africa and parts of the Middle East, where major
dust sources (Sahara and Arabian Peninsula deserts) are located [15,17]. For the annually
averaged MIDAS DOD, a maximum of 0.35 was found over a persistently dust-active
region of salt lakes (local “chotts”) and dry lakes in the borders of Tunisia and northeast
Algeria. Large values (0.32) were also found over the desert of central Algeria. Over the
eastern Libyan Desert and Egypt, for most pixels, DOD ranges from 0.12 to 0.25. The
same range of values was found over the dust sources of Mesopotamia and the Jordan
River Basin in the Middle East. A CAMS DOD deficiency is reflected in the systematically
lower corresponding values over the aforementioned sources (0.2, 0.26 and 0.05 to 0.15
respectively). Regarding the regional averages (Table 3), there is a small difference between
MIDAS and CAMS (0.08 ± 0.07 and 0.06 ± 0.06 respectively) in absolute values.

A relatively high, statistically significant at the 95% confidence level, underestimation
(mean bias almost −0.03) of CAMS DODs against MIDAS (Figure 5c) was found. Average
CAMS DOD is almost 40% lower compared to MIDAS DOD, which is in agreement with
the underestimation of CAMS DOD (up to 46%) with respect to AERONET observations
reported by Bennouna et al. [84] over the same area. According to the latter study, the
higher CAMS DOD underestimation was found during wintertime, which was attributed
to overestimations in biomass-burning organic matter (OM). In summer, the DOD underes-
timation was attributed to the overestimation of secondary organics over heavily populated
areas. The geographical distribution of annual mean bias (Figure 5d) revealed that MIDAS
DOD is larger than CAMS DOD almost everywhere. The largest values of CAMS DOD
underestimation (up to −0.15) were found over the dust sources of the Saharan and Mid-
dle East deserts, not only for the annually averaged DOD but also for the seasonal DOD
(Figure S6).

The geographical distribution of DOD over the Mediterranean Basin was found
to follow a seasonal cycle (Figures S3 and S4) with maxima in spring and summer, in
agreement with the findings of previous studies [33,36,39]. In winter, high DOD levels
are confined mainly over northeastern Africa, with DODs up to 0.25 and 0.13 for MIDAS
and CAMS, respectively. Dust activity is enhanced in spring, with elevated DOD values
(maximum values up to 0.42 for MIDAS and 0.27 for CAMS) over an extended area covering
the central and eastern parts of North Africa and the part of the Middle East. In summer,
elevated dust levels were found mainly over northwestern Africa, while the highest mean
seasonal DOD values were found for this season. In summer, the smallest differences
between the two datasets were found (DOD equal to 0.45 for MIDAS and 0.44 for CAMS).
This seasonal cycle of dust activity and transport over the Mediterranean is in agreement
with previous studies, which also investigated the atmospheric circulation patterns favoring
this cycle [41].

The differences that were found between the two different datasets (MIDAS, CAMS),
especially regarding the maximum AOD/DOD levels, were investigated further. It was
found that a great portion of MIDAS high AOD and DOD values are missing from the
CAMS dataset. Table 4 summarizes the amount of data that are higher than 1, 1.5, 2 and 3
in terms of AOD and DOD for both datasets. It also shows the percentage of the missing
high values from CAMS datasets compared to MIDAS. For the MIDAS AOD dataset, 0.05%
of the values exceed 2, while the corresponding percentage for CAMS is only 0.0015%. For
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DOD, over 90% of the missing high values have a lower threshold of DOD 1.5, due to
strong CAMS DOD underestimation. It is clear from the results that for very high aerosol
burdens there are significant differences between the explored datasets, especially when
considering the dust component.

Finally, based on the MIDAS dataset, we estimated that the long-term dust contribution
to total aerosols in optical terms ranges from 40% to 90%, over North Africa and the Middle
East, making dust the most important aerosol component over these areas.

Table 4. Summary statistics of AOD and DOD (from both MIDAS and CAMS datasets) values greater
than specific threshold values 1, 1.5, 2 and 3.

AOD DOD

CAMS MIDAS Missing from CAMS
Compared to MIDAS CAMS MIDAS Missing from CAMS

Compared to MIDAS

>1 0.19% 0.46% 57% 0.08% 0.31% 75%

>1.5 0.02% 0.13% 85% 0.007% 0.09% 92%

>2 0.0015% 0.05% 97% 0.0008% 0.04% 98%

>3 0.000009% 0.014% ~100% 0 0.01% 100%

3.2. Aerosol and Dust Effects on DSSI

In this section, the quantification of total aerosol and dust radiative effects on GHI
and DNI over the Mediterranean Basin is presented. Moreover, the effects on DSSI when
different datasets (MIDAS or CAMS) of AOD/DOD are used were investigated. For this
purpose, in total ~23 million data points were compared. The average number of data points
(days) compared for each of the ~8000 pixels of the Mediterranean Basin was ~3000 per
pixel or ~200 per pixel per year. As mentioned, missing data are related to MIDAS gaps
due to cloudy pixel scenes.

The change in the mean annual integral of GHI due to the presence of total aerosols and
dust is presented in Figures 6 and 7, respectively, estimated using MIDAS (panel a) and CAMS
(panel b) datasets. The corresponding results for DNI are shown in Figures 8 and 9. The
corresponding seasonal results are given in the Supplementary Materials (Figures S7–S14). In
all cases, the patterns of GHI and DNI changes are consistent with those of AOD and DOD.
The higher the AOD and DOD values are, the higher their radiative effect. Due to the
interactions of the incoming solar radiation with the overlying aerosol (dust) layers, the
GHI and DNI reaching the surface are reduced with respect to an aerosol-free atmosphere,
thus explaining the existence of negative values throughout the domain. The day-to-day
variations of these effects are presented in Figure 10. AOD GHI attenuation stands for the
GHI reduction by total aerosols and DOD GHI attenuation means the GHI reduction by
the dust component. The same nomenclature is used for the DNI component.

3.2.1. Aerosol Effects on GHI

There is a qualitative agreement in the geographical distribution of the annual AOD
GHI attenuation between the two datasets (Figure 6), and their regional averages using
the MIDAS dataset (5.2%, Table 5) are almost the same as those with CAMS (5.1%). The
differences in the magnitude of annual mean AODs and especially for the maximum values
were also inherited to their radiative effects. The long-term GHI reduction due to aerosols
was found to range from 1% to 13% for MIDAS and from 2% to 10% for CAMS.

In general, three subdomains (D) are highlighted for the annual AOD GHI attenuation,
based on aerosol load spatial patterns. The highest effects were found over North Africa
and the Middle East (D1), where the annual AOD GHI attenuation varies from 4% to 13%
based on the MIDAS dataset (4% to 10% for CAMS). Lower values were found for central
and southeastern Europe and the Anatolian Peninsula (D2), ranging from 3% to 8% (3% to
7%), with the largest values over the Po Valley. Over the Iberian Peninsula and southern
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France (D3), the lowest annual AOD GHI attenuation was found, ranging from 1% to 6%
(2% to 5%), with the exception of southeastern Spain (attenuation reaches 8% only for
MIDAS dataset). The same low values of the total aerosol effect on the downwelling surface
fluxes of the global solar radiation were also found in previous studies [88,90] over the
same area.
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Table 5. Change (in %) of the regional averaged mean annual and seasonal integrals of GHI due to
total aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum of
seasonal values is denoted as bold, emphasizing the peak of the seasonal cycle.

AOD DOD

CAMS MIDAS CAMS MIDAS

Annual

−5.1 (±1.5) −5.2 (±1.6) −1.7 (± 1.7) −2.4 (±1.8)

Seasonal

winter −4.9 (±1.5) −5.5 (±1.7) −1.2 (± 1.2) −2.3 (±1.7)

spring −5.3 (±1.7) −5.3 (±1.8) −1.9 (± 1.9) −2.9 (±2.0)

summer −5.2 (±1.9) −5.0 (±1.7) −1.9 (± 2.1) −2.3 (±2.0)

autumn −5.0 (±1.5) −5.1 (±1.6) −1.5 (± 1.5) −2.2 (±1.8)

There are pronounced seasonal variations (Figures S7 and S8) of the AOD GHI at-
tenuation geographical distribution. The maximum MIDAS AOD GHI attenuation up to
14% (10% for CAMS) was found in spring over North Africa. For CAMS, the maximum
reduction was found for summer over northwestern Africa and was 13%, which was similar
to the corresponding attenuation for the MODIS dataset. In Table 5, the regional averages
of the seasonal AOD GHI attenuation are summarized. The seasonal cycle of AOD GHI
attenuation for both datasets differs from the seasonal cycle of the corresponding AOD
values. The most notable difference is that the peak of AOD GHI attenuation was derived
in winter for the MIDAS dataset instead of summer, when the peak of MIDAS AOD was
found. The unexpected peak of the GHI attenuation in winter was mainly due to significant
attenuation of the GHI over Egypt and eastern Libya, which was subsequently attributed to
minimum seasonal SSA values in winter over the area (Figure S15a). For the CAMS AOD
dataset, a small shift of maximum GHI attenuation to spring instead of summer was found.

3.2.2. Dust Effects on GHI

Under the absence of nondust aerosol species, the spatial patterns of GHI attenuation,
based on MIDAS and CAMS DODs (Figures 7, S9 and S10), show a clear south–north
gradient regulated by the reduction in dust load amount from sources to distant downwind
regions. The CAMS DOD underestimation is also depicted in the GHI attenuation which
is lower than the MIDAS GHI attenuation. Maximum values of the annual DOD GHI
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attenuation were found over North Africa and parts of the Middle East, ranging from
2% to 10% for MIDAS and from 2% to 8% for CAMS. This attenuation of GHI by dust
accounts for ~45–90% of the overall attenuation by aerosols over this area on annual basis.
Dust contribution becomes more significant (up to 95%) on a seasonal basis over the same
areas. In summer, the seasonal mean reached 11% for MIDAS and 10.5% for CAMS, over
northwestern Africa. Except for summer, the CAMS DOD GHI attenuation is significantly
lower than the MIDAS DOD GHI attenuation for the rest of the year.

Regarding the regionally averaged values (Table 5), the annual GHI attenuation due
to MIDAS DOD (2.4%) is almost 30% larger than the attenuation estimated for CAMS
DOD (1.7%). The seasonal cycle of GHI attenuation attributed to dust is the same as the
seasonal cycle of DOD with maxima in spring and summer, with the spring peak being
higher by 21% than the summer peak (for MIDAS), which could not be explained solely by
the corresponding DOD differences between the two seasons (9%). The sharp MIDAS peak
in spring can also be explained by the lower DU SSA values over North Africa and parts of
the Middle East during spring (Figure S16b).
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3.2.3. Aerosol Effects on DNI

The average of AOD DNI attenuation (Figure 8) ranged from 5% to 47% for MIDAS
and from 10% to 39% for CAMS. The AOD differences between the CAMS and MIDAS
datasets were amplified in terms of DNI attenuation. The maximum of DNI attenuation
was found for D1 for both datasets, with values ranging from 15% to 47% for MIDAS and
to 39% for CAMS. In D1, areas such as Morocco, North Algeria, North Tunisia and the areas
around the Red Sea, annual DNI attenuations were less than 20%, which makes these areas
favorable for CSP (DNI-related) installations. For D2, an average DNI reduction between
15% and 25% was derived, similar for both datasets, except for Po Valley where CAMS
DNI attenuation (26%) was 6% lower than the MIDAS DNI attenuation (32%). The lowest
values were found for D3 ranging from 5% to 25% (except for southeastern Spain where it
was 35%) for MIDAS and from 10% to 20% for CAMS. The seasonal AOD DNI attenuation
values (Figures S11 and S12) reached higher values up to 53% for MIDAS and 49% for
CAMS, which were found over Northwest Africa in summer. The seasonal cycle (Table 6)
of DNI AOD attenuation followed the corresponding seasonal cycle of the AOD, for both
datasets, with maximum in summer and minimum in winter.
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3.2.4. Dust Effects on DNI

The peak of DNI attenuation due to dust was found over North Africa and the Middle
East, with values ranging from 9% to 37% for MIDAS and from 9% to 28% for CAMS
(Figure 9). In summer, over northwestern Africa, the reductions reached values up to 40%
and 38% for MIDAS and CAMS (Figures S13 and S14), respectively. The contribution of dust
to the overall DNI attenuation by aerosols is ~45–90%. For the regionally averaged values
(Table 6), a larger DNI attenuation due to MIDAS DOD (10.7%) was found relative to CAMS
DOD attenuation (7.5%). The difference can be attributed to the strong underestimation of
CAMS DOD, especially over northeastern Africa and the Middle East.
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Table 6. Change (in %) of the regional averaged mean annual and seasonal integrals of DNI due
to total aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum
seasonal value is denoted as bold, emphasizing the peak of the seasonal cycle.

AOD DOD

CAMS MIDAS CAMS MIDAS

Annual

−22.2 (±5.6) −22.1(±5.6) −7.5 (±6.7) −10.7 (±7.2)

Seasonal

winter −17.9 (±5.5) −19.6 (±6.0) −4.9 (±4.7) −9.0 (±7.3)

spring −23.6 (±6.2) −23.2 (±6.7) −8.5 (±7.6) −12.7 (±7.9)

summer −24.0 (±7.3) −23.3 (±6.5) −9.1 (±8.8) −11.2 (±8.2)

autumn −20.5 (±5.8) −20.5 (±6.2) −6.4 (±6.1) −9.4 (±7.2)
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3.2.5. Daily Variability

The variability of the daily GHI attenuation due to total aerosols for all pixels (Figure 10a)
is much larger than the variability in the annual and seasonal values. The underestimation
of CAMS AOD is reflected in the systematically lower values of the daily GHI attenuation.
There is no value of GHI reduction due to CAMS AOD above 50%, which is related to the
absence of CAMS AOD above 3 (see Section 3.1). It is noteworthy that there are days when
aerosols attenuated GHI by ~75% (for the MIDAS AOD). The daily values of GHI reduction
due to dust using the MIDAS DOD dataset are constantly larger than those when CAMS
DOD is used (Figure 10b), with the only exception being the lower bin around zero. There
are days when the MIDAS DOD GHI attenuation exceeded 60%, while the upper limit
for CAMS was ~45%. The strong impact of the aerosol particles on the direct component
of solar radiation reaching the Earth’s surface is depicted in the distributions of the DNI
attenuation due to both total aerosols (Figure 10c) and dust (Figure 10d) with values up to
100% for the MIDAS dataset.
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The intercomparison between MIDAS and CAMS AOD and DOD effects on DSSI
showed how the AOD and DOD differences between the two datasets were expressed
in differences in their radiative effects. Underestimation of high AODs and strong DOD
underestimation from CAMS were clearly depicted in the attenuation of the DSSI. Thus, the
MIDAS dataset is used and discussed in the subsequent analysis. The resulting radiative
effects on the surface indicated the important role of total aerosols and especially dust over
the Middle East and North Africa (MENA) region, where DSSI attenuation by clouds is
comparable or even lower than aerosols.

3.3. Extreme Dust Events

Figure 11a presents the geographical distribution of mean MIDAS DOD from the
resulting 67 eDEDs. The highest values up to 0.5 of mean DOD from the extremes were
found over northwestern Africa, while significantly high mean values up to 0.43 and 0.35
were found also over Egypt and the Middle East, respectively. The highest values of the
associated impacts on GHI and DNI, up to 12% and 44%, respectively (Figure 11b,c), were
found over northwestern Africa, specifically over southern Tunisia and central Algeria.
Large values of eDED mean attenuation were also found over Libya, Egypt and the Middle
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East, with values ranging from 4% to 9% for GHI and 17% to 35% for DNI for the bigger
part of these areas. Cyprus is the Mediterranean island that was affected the most by the
resulting extreme dust events with mean values of GHI and DNI attenuation up to 6.5%
and 24%, respectively. For the southern European countries, lower values of mean eDED
attenuation were derived, up to 4% for GHI and 19% for DNI, with the exception of very
high values over southeastern Spain, up to 5% and 23%, respectively.
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It should be emphasized here that these results correspond to the long-term (2003–2017)
average of the eDEDs and their radiative effects over the region of interest (ROI). Individual
dust events are associated with extremely high dust concentrations, resulting in GHI and
DNI attenuations up to 50% and 90%, respectively [48].

3.4. Interannual Variability and Trends

Using the simulated clear-sky DSSI, we investigated the interannual variability of its
changes that were attributed to total aerosols and the dust and nondust components. The
nondust optical depth (nDOD), which is considered to be the optical depth of all other
aerosol components besides dust, was derived by subtracting DOD from AOD. The main
assumption to derive nDOD is that the dust particles are externally mixed with the rest of
the aerosol chemical species. For the nDOD RTM simulations, the same additional optical
properties as those of total aerosols were assumed. By comparison with the RTM results
without aerosols, the corresponding annual GHI and DNI attenuations due to all other
aerosol components except dust were derived (nDOD GHI and DNI attenuation hereafter).
The interannual variability of the AOD (red line), DOD (blue line) and nDOD (green line)
GHI and DNI attenuation is presented (Figure 12b,c) for three different domain averages.
The selection of the domains for the spatial averaging was based on the south-to-north
gradient of dust, and the geographical limits of those domains are illustrated in Figure 12a.

The year-to-year variability of GHI attenuation by the different aerosol components
is weaker (0.5% to 1%) compared to the corresponding variability of the DNI attenuation
(2–4%). For the DSSI attenuation (both GHI and DNI) by total aerosols, a successive
decline was found after 2008, which is more prominent for D3. This reduction in the AOD
DSSI attenuation is in line with the brightening effect over the Mediterranean reported in
other studies [91,92]. The resulting decline in the DSSI attenuation by aerosol is attributed
mainly to the dust component for D1 and D2, where the variability of annual DOD DSSI
attenuation is also large and highly correlated with annual attenuation by total aerosols
(correlation coefficients (cc) ranging from 0.85 to 0.92). For D3, which has the sharpest
decrease in DSSI attenuation by total aerosols, this is attributed to both dust (cc = 0.84) and
nondust components (cc = 0.87).

The increase in GHI (DNI) in D2 and D3 represents the average of positive, statistically
significant trends of the order of 1–2% (3–6%)/decade, mainly attributed to decreases in
DOD, over the Mediterranean Sea and most of Europe, and negative, nonsignificant, trends
over the Anatolian Peninsula. In D1, positive, significant trends in GHI (DNI) of the order
of 1% (3–4%)/decade were found over Libya and northwestern Egypt, while negative
significant trends of similar magnitude were found over many regions of the remaining D1
area. The overall result was a small positive trend during the whole period (2003–2017),
which—as discussed earlier—mainly depicts the increase in 2008–2017. More information
regarding the spatial distribution of the trends can be found in the Supplementary Materials
(Figure S17).
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Figure 12. (a) The geographical limits of the domains used for the spatial averaging. Interannual
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(DOD, blue line) and other aerosol components beside dust (nDOD, green line) regional averaged for
domains 1, 2 and 3 for the 15-year period (2003–2017).
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3.5. GHI and DNI Clear-Sky Climatology

The availability of solar resources at the Earth’s surface is essential information for the
different phases of a plant’s deployment and operation. Average annual solar irradiation
is a primary site selection criterion [44], and a low seasonal variability is preferable in
order to match the power demand. According to the results of previous sections, there
are areas where the GHI and DNI attenuation due to aerosols can reach 13% and 50%,
respectively, which are mainly areas with high solar energy potential (e.g., North Africa).
So, the clear-sky GHI and DNI mean annual integrals based on high-quality AOD retrievals
are of great importance for such areas with scarce cloudiness.

The clear-sky climatology of GHI and DNI was derived using the MODIS AOD as
input in the RTM. Using the daily irradiations (see Section 2.2.4), annual and seasonal inte-
grals of GHI and DNI were derived for every year, and their mean values were calculated
for the entire period (2003–2017) and are presented in Figures 13, S18 and S19, while their
spatial averages are summarized in Table 7. Given the fact that the cloud effects have not
been taken into account, the description of the results is focused on the south part of the
domain, over North Africa and the Middle East, which are areas with high solar energy
potential, scarce cloudiness and high aerosol loads.
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Table 7. Regional averages of mean annual and seasonal integrals of clear—sky GHI and DNI using
ModIs AOD.

GHI (MJ/m2) DNI (MJ/m2)

Annual

7486 (±630) 9899 (±616)

Seasonal

winter 1074 (±273) 1972 (±231)

spring 2287 (±116) 2747 (±247)

summer 2612 (±57) 2931 (±299)

autumn 1512 (±219) 2249 (±143)

The patterns of both GHI and DNI spatial variability are mainly determined by MODIS
AOD (Section 3.1) and the surface altitude. For GHI, a latitudinal gradient (south-to-north)
is evident as well. Over North Africa and the Middle East, the cumulative annual GHI
and DNI range from 7500 to 8800 MJ/m2 and from 7000 to 12,000 MJ/m2, respectively
(Figure 13). Maximum values are observed in the Atlas Mountains (Northwest Africa), in
the western parts of Libya and the southeastern parts of the ROI. Regarding the spatial
variability of the seasonal integrals, we focused on spring and summer, when the effect
of clouds is minimal over the ROI. At this time of the year, the distribution of aerosols
expands to the western parts of North Africa, and the spatial variability of DSSI components
follows that pattern. While the maximum levels of DNI over the high-altitude areas are
~3300 MJ/m2 in spring and ~3100 MJ/m2 in summer, very low levels of ~1800 MJ/m2 were
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found in the same seasons for aerosol-affected areas. These differences are less pronounced
for GHI (400 MJ/m2 difference in both seasons).

4. Summary and Conclusions

The broader Mediterranean Basin hosts and receives various aerosol types, which are
quite variable in spatial and temporal scales. The overarching goal of the present study is to
provide an insight into the perturbation of the surface solar radiation, and the subsequent
impacts on solar energy production, attributed to the presence of all aerosol types, but with
special emphasis on dust. AOD and DOD from two different datasets (MIDAS and CAMS)
were used as inputs to the libRadtran RTM (in terms of precalculated LUTs) along with
other necessary aerosol and atmospheric parameters under clear-sky conditions. Model
outputs were the GHI and DNI, which are of particular interest for different solar power
systems (PV and CSP, respectively). Our study domain encloses the broader Mediterranean
Basin, and the study period spans from 2003 to 2017 (15 years).

The intercomparison between MIDAS and CAMS datasets revealed that the latter
slightly underestimates AOD, and this is mainly evident over areas hosting major aerosol
sources, while it strongly underestimates DOD by up to 40% (−0.03) with respect to
MIDAS, which is in agreement with the underestimation reported by Bennouna et al. [84]
when compared with ground-based retrievals. The CAMS underestimation of high AODs
resulted in weaker GHI and DNI attenuations on average by 1–4% and 4–11%, respectively.
Likewise, due to the pronounced CAMS DOD underestimation, weaker attenuations were
found (by 0.5–4% for GHI and 1–15% for DNI). These findings reveal that using CAMS
DOD to describe the radiative effects of dust would give highly uncertain results, especially
over areas that are significantly affected by dust, and highlight the importance of using
reliable aerosol and dust optical properties to accurately simulate DSSI.

Using the high-quality satellite-derived MIDAS AOD/DOD datasets, a 15-year cli-
matology of total aerosols and dust was established for the broader Mediterranean Basin.
The largest AODs were found over dust sources or areas affected by dust transport, with
maximum long-term averaged AOD up to 0.48 over Northwest Africa (up to 0.66 for
summer season). Over the same area, the peak of MIDAS DOD values was derived as well,
with a mean annual value up to 0.35 (up to 0.45 for summer). Dust was found to contribute
to total aerosol loads, in optical terms, from 40% to 90% over North Africa and the Middle
East, making dust the most important aerosol component over these areas.

Aerosols attenuate GHI by 1–13% and DNI by 5–47%. The largest attenuation (4–13%
for GHI and 15–47% for DNI) was found over North Africa and the Middle East. Over the
same areas, the GHI and DNI reduction by dust ranged from 2–10% and 9–37%, respectively,
contributing by 45–90% to the total aerosol effects on DSSI. During the dry seasons of the
year, when the cloud effects over these areas are comparable or even lower than the effects
of aerosols, the maximum of aerosol and dust attenuation of the GHI (up to 14% and 11%,
respectively) and DNI (up to 53% and 40%, respectively) was found, with the dust being
responsible for up to 95% of the AOD DSSI attenuation. On a daily basis, the GHI reduction
due to total and dust aerosol reached substantially higher values, up to ~75% and ~60%,
respectively. There were days when the DNI component was totally blocked (−100%)
under high aerosol and dust loads.

The investigation of the intra-annual variability of the effects of aerosols and dust on
GHI revealed, apart from their seasonal variations, the significant role of SSA in calculating
the radiative effects of aerosols. The combination of low SSA values with considerable
AODs/DODs resulted in peak of regional averaged AOD GHI attenuation in winter, which
is reversed compared to the seasonal cycle of MIDAS AOD (maximum in summer and
minimum in winter). The same reasons explain the sharp peak of regional averaged DOD
GHI attenuation in spring.

The interannual variability of the DSSI attenuation by total aerosol, dust and total
aerosol excluding dust was assessed for three subdomains covering the Mediterranean
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Basin. After 2008, a successive decline in aerosol effects on DSSI was found for all domains,
which was attributed mainly to the reduction in dust.

Since it is well documented that the Mediterranean Basin is frequently affected by dust
intrusions, an assessment of the GHI and DNI attenuation was conducted for extreme dust
events over the area. Using the MIDAS DOD dataset and by adopting the methodology
proposed by [82,83], 67 eDEDs (4.5 eDEDs year−1) were identified over the study area
for the period 2003–2017. The average DOD during these events reached values up to
0.50 (over North Africa) and the corresponding GHI and DNI attenuations were 12%
and 44%, respectively. South Europe was also found to be affected by eDEDs, with the
largest GHI and DNI attenuations taking place in southeastern Spain, reaching 5% and
25%, respectively.

Taking advantage of the 15 years of high-quality daily satellite retrievals of AOD from
the MIDAS dataset, a clear-sky GHI and DNI climatology for the broader Mediterranean
Basin was derived. An added value of this new, clear-sky climatology is that the DSSI values
were simulated using, apart from satellite-derived AOD, a climatology of additional aerosol
optical properties (SSA, AE), as well as model and satellite products for key atmospheric
factors (TCWV and TOC). For the south part of the ROI, in summer when the levels of DSSI
are maximum, the main attenuator of GHI and DNI is aerosols (e.g., [47]). Thus, special
attention was paid to North Africa and the Middle East, where in summer, high spatial
variability of GHI and DNI was found, of 14% and 42%, respectively.

The basic limitations of the study are linked with the RTM inputs and their uncer-
tainties. The main parameter to consider is the optical depth (total aerosol or dust). The
uncertainties (MODIS-AOD, MIDAS-DOD, CAMS) have been documented based on the
corresponding literature. In addition, SSA and AE data were used as monthly values for
a 1◦ × 1◦ grid through MACv2 climatology. Day-to-day variability of such parameters
can affect the calculated DSSI on a daily basis. However, it has an almost negligible effect
when using monthly GHI and DNI for describing the basic climatology of the region
under study, especially when optical depth data are relatively accurate. Finally, cloud
contamination for satellite-based data is a factor that can affect such DSSI results. However,
basic comparison of such data with CAMS modeled data showed no significant systematic
optical depth overestimation from the satellite-based data. The same results have been
documented when MODIS and MIDAS optical depth comparisons with AERONET have
been initiated. Finally, aerosol profiling could have a negligible impact on surface-based
calculated irradiances [5].

In conclusion, this study aims to contribute towards a better understanding of the role
of aerosols and especially of dust on surface solar radiation in terms of GHI and DNI over
the Mediterranean Basin. The results of this analysis, apart from their importance from the
perspective of climate science, provide valuable information in terms of management and
future planning of PV and CSP installations.
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did not fulfill the criterion of at least 20% data availability on annual basis, Figure S3: Geographical
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Geographical distribution of annual mean CAMS–MIDAS DOD biases. Blank grid points are those
that did not fulfill the criterion of at least 20% data availability on annual basis, Figure S7: Change
(in %) of the mean seasonal integral of GHI due to the presence of aerosols under MODIS AOD.
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under CAMS AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on annual basis, Figure S9: Change (in %) of the mean annual integral of GHI due to the
presence of dust under MIDAS DOD. Blank grid points are those that did not fulfill the criterion of at
least 20% data availability on annual basis, Figure S10: Change (in %) of the mean annual integral of
GHI due to the presence of dust under CAMS DOD. Blank grid points are those that did not fulfill
the criterion of at least 20% data availability on annual basis, Figure S11: Change (in %) of the mean
annual integral of DNI due to the presence of aerosols under MODIS AOD. Blank grid points are
those that did not fulfill the criterion of at least 20% data availability on annual basis, Figure S12:
Change (in %) of the mean annual integral of DNI due to the presence of aerosols under CAMS AOD.
Blank grid points are those that did not fulfill the criterion of at least 20% data availability on annual
basis, Figure S13: Change (in %) of the mean annual integral of DNI due to the presence of dust
under MIDAS DOD. Blank grid points are those that did not fulfill the criterion of at least 20% data
availability on annual basis, Figure S14: Change (in %) of the mean annual integral of DNI due to the
presence of dust under CAMS DOD. Blank grid points are those that did not fulfill the criterion of at
least 20% data availability on annual basis, Figure S15: Geographical distribution of seasonal mean
SSA (MACv2 [63]), Figure S16: Geographical distribution of seasonal mean DU SSA (MACv2 [63]),
Figure S17: Trends in % per decade for GHI (panels (a,b)) and DNI (panels (c,d)) due to the changes
in AOD (panels (a,c)) and DOD (panels (b,d)).Figure S18: Mean seasonal integrals for clear-sky GHI
using MODIS AOD, Figure S19: Mean seasonal integrals for clear-sky DNI using MODIS AOD.
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ADS Atmosphere Data Store
AE Ångström exponent
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CAMS Copernicus Atmospheric Monitoring Service
CSP concentrating solar power
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DNI direct normal irradiation
DOD dust optical depth
DSSI downwelling surface solar irradiance
DU SSA dust single scattering albedo
ECMWF European Centre for Medium-Range Weather Forecasts
eDED extreme dust episode day
EP Earth Probe
GHI global horizontal irradiation
IEA International Energy Agency
IFS Integrated Forecast System
INT integral
IPCC AR5 Intergovernmental Panel on Climate Change 5th Assessment Report
IR infrared
LIVAS Lidar Climatology of Vertical Aerosol Structure
LUT look-up table
LW longwave
MACv2 Max-Planck Aerosol Climatology version 2
MDF MERRA-2 Dust Fraction
MENA Middle East and North Africa
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications version 2
MIDAS ModIs Dust Aerosol
MODIS Moderate-Resolution Imaging Spectrometer
NAMEE North Africa, Middle East and Europe
nDOD nondust optical depth
OMI Ozone Monitoring Instrument
PV photovoltaic
REari radiative effects due to aerosol–radiation interactions
ROI region of interest
RTM radiative transfer model
SW shortwave
TCWV total column of water vapor
TOC total ozone column
TOMS Total Ozone Mapping Spectrometer
UV ultraviolet
SSA single scattering albedo
SZA solar zenith angle
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32. Basart, S.; Pay, M.T.; Jorba, O.; Pérez, C.; Jiḿnez-Guerrero, P.; Schulz, M.; Baldasano, J.M. Aerosols in the CALIOPE air quality
modelling system: Evaluation and analysis of PM levels, optical depths and chemical composition over Europe. Atmos. Chem.
Phys. 2012, 12, 3363–3392. [CrossRef]

33. Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J.J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; et al. A 4-D
climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a
comparative evaluation and blending of remote sensing and model products. Atmos. Meas. Tech. 2013, 6, 1287–1314. [CrossRef]

http://doi.org/10.1007/s00382-020-05498-7
http://doi.org/10.3390/rs10121870
http://doi.org/10.3390/rs13163248
http://doi.org/10.1088/1748-9326/ac5143
http://doi.org/10.5194/acp-6-1777-2006
http://doi.org/10.3390/rs13091811
http://doi.org/10.1029/2000RG000095
http://doi.org/10.1088/1755-1307/7/1/012001
http://doi.org/10.1029/2012RG000388
http://doi.org/10.1029/2005JD006207
http://doi.org/10.1038/s41598-021-91481-z
http://doi.org/10.1126/science.1105959
http://doi.org/10.1016/j.envint.2021.106790
http://doi.org/10.1016/j.envint.2019.05.061
http://doi.org/10.1016/j.atmosenv.2019.117187
http://doi.org/10.5194/amt-12-3789-2019
http://doi.org/10.5194/acp-14-9213-2014
http://doi.org/10.1111/j.1600-0889.2008.00389.x
http://doi.org/10.5194/acp-19-15503-2019
http://doi.org/10.1126/science.1075457
http://doi.org/10.1029/2007JD009189
http://doi.org/10.1029/2009JD011982
http://doi.org/10.5194/acp-12-3363-2012
http://doi.org/10.5194/amt-6-1287-2013


Remote Sens. 2022, 14, 1535 27 of 29

34. Engelstaedter, S.; Tegen, I.; Washington, R. North African dust emissions and transport. Earth-Sci. Rev. 2006, 79, 73–100. [CrossRef]
35. Nastos, P.T. Meteorological patterns associated with intense saharan dust outbreaks over greece in winter. Adv. Meteorol. 2012,

2012, 12–14. [CrossRef]
36. Moulin, C.; Lambert, C.E.; Dayan, U.; Masson, V.; Ramonet, M.; Bousquet, P.; Legrand, M.; Balkanski, Y.J.; Guelle, W.; Marticorena,

B.; et al. Satellite climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res. Atmos. 1998, 103,
13137–13144. [CrossRef]

37. Papayannis, A.; Amiridis, V.; Mona, L.; Tsaknakis, G.; Balis, D.; Bösenberg, J.; Chaikovski, A.; De Tomasi, F.; Grigorov, I.; Mattis, I.;
et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). J. Geophys. Res. Atmos.
2008, 113, D10204. [CrossRef]

38. Bégue, N.; Tulet, P.; Chaboureau, J.P.; Roberts, G.; Gomes, L.; Mallet, M. Long-range transport of Saharan dust over northwestern
Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging. J. Geophys. Res. Atmos. 2012,
117, D17201. [CrossRef]

39. Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Katsoulis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Torres, O. The regime of intense
desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos. Chem.
Phys. 2013, 13, 12135–12154. [CrossRef]

40. Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.A.; Lelieveld, J.; Zanis, P.; Pöschl, U.; Levy, R.; Amiridis, V.; Marinou, E.;
Tsikerdekis, A. Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern
Mediterranean. Atmos. Chem. Phys. 2016, 16, 13853–13884. [CrossRef]

41. Gkikas, A.; Houssos, E.E.; Lolis, C.J.; Bartzokas, A.; Mihalopoulos, N.; Hatzianastassiou, N. Atmospheric circulation evolution
related to desert-dust episodes over the Mediterranean. Q. J. R. Meteorol. Soc. 2015, 141, 1634–1645. [CrossRef]

42. Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.;
Schlömer, S. (Eds.) IPCC Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on
Climate Change; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781107023406.

43. Kato, T. Prediction of photovoltaic power generation output and network operation. In Integration of Distributed Energy Resources
in Power Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–108.

44. Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource
Data for Solar Energy Applications; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021.

45. International Energy Agency. Renewables 2020—Analysis and Forecast to 2025; IEA: Paris, France, 2020.
46. Neher, I.; Buchmann, T.; Crewell, S.; Pospichal, B.; Meilinger, S. Impact of atmospheric aerosols on solar power. Meteorol. Z. 2019,

28, 305–321. [CrossRef]
47. Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.-P.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.;

Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus.
Remote Sens. 2021, 13, 2319. [CrossRef]

48. Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos,
S.; Gerasopoulos, E.; et al. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and
ground-based measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [CrossRef]

49. Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [CrossRef]
[PubMed]

50. WMO. WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations; WMO: Geneva, Switzerland, 2016;
ISBN 9789263111777. Available online: https://library.wmo.int/doc_num.php?explnum_id=3073 (accessed on 25 January 2022).

51. Sayer, A.M.; Govaerts, Y.; Kolmonen, P.; Lipponen, A.; Luffarelli, M.; Mielonen, T.; Patadia, F.; Popp, T.; Povey, A.C.; Stebel, K.;
et al. A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing. Atmos.
Meas. Tech. 2020, 13, 373–404. [CrossRef]

52. Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.-J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue”
aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [CrossRef]

53. Wei, X.; Chang, N.-B.; Bai, K.; Gao, W. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives.
Crit. Rev. Environ. Sci. Technol. 2020, 50, 1640–1725. [CrossRef]

54. Kazadzis, S.; Bais, A.; Balis, D.; Kouremeti, N.; Zempila, M.; Arola, A.; Giannakaki, E.; Amiridis, V.; Kazantzidis, A. Spatial and
temporal UV irradiance and aerosol variability within the area of an OMI satellite pixel. Atmos. Chem. Phys. 2009, 9, 4593–4601.
[CrossRef]

55. Gkikas, A.; Proestakis, E.; Amiridis, V.; Kazadzis, S.; Di Tomaso, E.; Tsekeri, A.; Marinou, E.; Hatzianastassiou, N.; Pérez
Garciá-Pando, C. ModIs Dust AeroSol (MIDAS): A global fine-resolution dust optical depth data set. Atmos. Meas. Tech. 2021, 14,
309–334. [CrossRef]

56. Logothetis, S.A.; Salamalikis, V.; Gkikas, A.; Kazadzis, S.; Amiridis, V.; Kazantzidis, A. 15-Year Variability of Desert Dust Optical
Depth on Global and Regional Scales. Atmos. Chem. Phys. 2021, 21, 16499–16529. [CrossRef]

57. Gkikas, A.; Proestakis, E.; Amiridis, V.; Kazadzis, S.; Di Tomaso, E.; Marinou, E.; Hatzianastassiou, N.; Kok, J.F.; García-Pando,
C.P. Quantification of the dust optical depth across spatiotemporal scales with the MIDAS global dataset (2003–2017). Atmos.
Chem. Phys. 2022, 22, 3553–3578. [CrossRef]

http://doi.org/10.1016/j.earscirev.2006.06.004
http://doi.org/10.1155/2012/828301
http://doi.org/10.1029/98JD00171
http://doi.org/10.1029/2007JD009028
http://doi.org/10.1029/2012JD017611
http://doi.org/10.5194/acp-13-12135-2013
http://doi.org/10.5194/acp-16-13853-2016
http://doi.org/10.1002/qj.2466
http://doi.org/10.1127/metz/2019/0969
http://doi.org/10.3390/rs13122319
http://doi.org/10.5194/amt-10-2435-2017
http://doi.org/10.1038/nature01091
http://www.ncbi.nlm.nih.gov/pubmed/12226676
https://library.wmo.int/doc_num.php?explnum_id=3073
http://doi.org/10.5194/amt-13-373-2020
http://doi.org/10.1002/jgrd.50600
http://doi.org/10.1080/10643389.2019.1665944
http://doi.org/10.5194/acp-9-4593-2009
http://doi.org/10.5194/amt-14-309-2021
http://doi.org/10.5194/acp-21-16499-2021
http://doi.org/10.5194/acp-22-3553-2022


Remote Sens. 2022, 14, 1535 28 of 29

58. Benedetti, A.; Morcrette, J.J.; Boucher, O.; Dethof, A.; Engelen, R.J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.W.; et al.
Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts integrated forecast system: 2. data
assimilation. J. Geophys. Res. Atmos. 2009, 114, D13205. [CrossRef]

59. Benedetti, A.; Reid, J.S.; Knippertz, P.; Marsham, J.H.; Di Giuseppe, F.; Rémy, S.; Basart, S.; Boucher, O.; Brooks, I.M.; Menut, L.;
et al. Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmos. Chem. Phys. 2018,
18, 10615–10643. [CrossRef]

60. Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair,
J.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017,
30, 6823–6850. [CrossRef] [PubMed]

61. Inness, A.; Ades, M.; Agustí-Panareda, A.; Barr, J.; Benedictow, A.; Blechschmidt, A.M.; Jose Dominguez, J.; Engelen, R.; Eskes, H.;
Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [CrossRef]

62. Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years
of AERONET observations. Atmos. Environ. 2020, 225, 117216. [CrossRef]

63. Kinne, S. The MACv2 aerosol climatology. Tellus B Chem. Phys. Meteorol. 2019, 71, 1663994. [CrossRef]
64. Bhartia, P.K. OMI/Aura TOMS-Like Ozone, Aerosol Index, Cloud Radiance Fraction L3 1 day 1 Degree × 1 Degree V3. NASA

Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online:
https://disc.gsfc.nasa.gov/datasets/OMTO3d_003/summary (accessed on 25 January 2022).

65. TOMS Science Team (Unrealeased) TOMS Earth-Probe Total Ozone (O3) Aerosol Index UV-Reflectivity UV-B Erythemal Ir-
radiances Daily L3 Global 1 Deg × 1.25 Deg V008 Greenbelt, MD, Goddard Earth Sciences Data and Inf. Available online:
https://disc.gsfc.nasa.gov/datasets/TOMSEPL3_008/summary (accessed on 25 January 2022).

66. Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.;
et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control
algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech.
2019, 12, 169–209. [CrossRef]

67. Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.;
Solomos, S.; et al. LIVAS: A 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos. Chem.
Phys. 2015, 15, 7127–7153. [CrossRef]

68. Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and
comparison. Atmos. Environ. 2019, 201, 428–440. [CrossRef]

69. Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. Modis collection 6 aerosol products: Comparison
between aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J. Geophys. Res. 2014, 119,
13,965–13,989. [CrossRef]

70. Morcrette, J.J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger,
M.; et al. Aerosol analysis and forecast in the european centre for medium-range weather forecasts integrated forecast system:
Forward modeling. J. Geophys. Res. Atmos. 2009, 114, D06206. [CrossRef]

71. Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols
simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [CrossRef]

72. Taylor, M.; Kazadzis, S.; Amiridis, V.; Kahn, R.A. Global aerosol mixtures and their multiyear and seasonal characteristics. Atmos.
Environ. 2015, 116, 112–129. [CrossRef]

73. Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and
examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [CrossRef]

74. Dahlback, A.; Stamnes, K. A new spherical model for computing the radiation field available for photolysis and heating at
twilight. Planet. Space Sci. 1991, 39, 671–683. [CrossRef]

75. Pierluissi, J.H.; Peng, G.-S. New Molecular Transmission Band Models For LOWTRAN. Opt. Eng. 1985, 24, 243541. [CrossRef]
76. Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative

Transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [CrossRef]
77. Kurucz, R.L. Synthetic Infrared Spectra. Symp. Int. Astron. Union 1994, 154, 523–531. [CrossRef]
78. Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettle, E.P. AFGL Atmospheric Constituent Profiles (0.120 km); Air

Force Geophysics Lab: Hanscom AFB, MA, USA, 1986.
79. Sayer, A.M.; Knobelspiesse, K.D. How should we aggregate data? Methods accounting for the numerical distributions, with an

assessment of aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 15023–15048. [CrossRef]
80. Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Raptis, P.I.; Keramitsoglou, I.; Kiranoudis, C.; Bais, A.F. Assessment of surface solar

irradiance derived from real-time modelling techniques and verification with ground-based measurements. Atmos. Meas. Tech.
2018, 11, 907–924. [CrossRef]

81. Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al.
Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016,
16, 8609–8642. [CrossRef]

82. Gkikas, A.; Houssos, E.E.; Hatzianastassiou, N.; Papadimas, C.D.; Bartzokas, A. Synoptic conditions favouring the occurrence of
aerosol episodes over the broader Mediterranean basin. Q. J. R. Meteorol. Soc. 2012, 138, 932–949. [CrossRef]

http://doi.org/10.1029/2008JD011115
http://doi.org/10.5194/acp-18-10615-2018
http://doi.org/10.1175/JCLI-D-16-0609.1
http://www.ncbi.nlm.nih.gov/pubmed/29576684
http://doi.org/10.5194/acp-19-3515-2019
http://doi.org/10.1016/j.atmosenv.2019.117216
http://doi.org/10.1080/16000889.2019.1623639
https://disc.gsfc.nasa.gov/datasets/OMTO3d_003/summary
https://disc.gsfc.nasa.gov/datasets/TOMSEPL3_008/summary
http://doi.org/10.5194/amt-12-169-2019
http://doi.org/10.5194/acp-15-7127-2015
http://doi.org/10.1016/j.atmosenv.2018.12.004
http://doi.org/10.1002/2014JD022453
http://doi.org/10.1029/2008JD011235
http://doi.org/10.1029/2000JD000053
http://doi.org/10.1016/j.atmosenv.2015.06.029
http://doi.org/10.5194/acp-5-1855-2005
http://doi.org/10.1016/0032-0633(91)90061-E
http://doi.org/10.1117/12.7973523
http://doi.org/10.1175/1520-0477(1998)079&lt;2101:SARATS&gt;2.0.CO;2
http://doi.org/10.1017/S0074180900124805
http://doi.org/10.5194/acp-19-15023-2019
http://doi.org/10.5194/amt-11-907-2018
http://doi.org/10.5194/acp-16-8609-2016
http://doi.org/10.1002/qj.978


Remote Sens. 2022, 14, 1535 29 of 29

83. Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N. Aerosol events in the broader Mediterranean basin based on 7-year (2000–2007)
MODIS C005 data. Ann. Geophys. 2009, 27, 3509–3522. [CrossRef]

84. Bennouna, Y.; Christophe, Y.; Schulz, M.Y.; Christophe, H.J.; Eskes, S.; Basart, A.; Benedictow, A.M.; Blechschmidt, S.; Chabrillat,
H.; Clark, E. Validation Report of the CAMS Global Reanalysis of Aerosols and Reactive Gases, Years 2003–2019. Copernicus
Atmosphere Monitoring Service (CAMS) Report. April 2020. Available online: https://atmosphere.copernicus.eu/sites/default/
files/2020-04/CAMS84_2018SC2_D5.1.1-2019.pdf (accessed on 25 January 2022). [CrossRef]

85. Floutsi, A.A.; Korras-Carraca, M.B.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and trends of aerosol optical
depth over the Mediterranean basin during the last 12years (2002–2014) based on Collection 006 MODIS-Aqua data. Sci. Total
Environ. 2016, 551–552, 292–303. [CrossRef]

86. El-Metwally, M.; Alfaro, S.C.; Abdel Wahab, M.; Chatenet, B. Aerosol characteristics over urban Cairo: Seasonal variations as
retrieved from Sun photometer measurements. J. Geophys. Res. Atmos. 2008, 113, D14219. [CrossRef]

87. Crosier, J.; Allan, J.D.; Coe, H.; Bower, K.N.; Formenti, P.; Williams, P.I. Chemical composition of summertime aerosol in the Po
Valley (Italy), northern Adriatic and Black Sea. Q. J. R. Meteorol. Soc. 2007, 133, 61–75. [CrossRef]

88. Obregón, M.A.; Costa, M.J.; Silva, A.M.; Serrano, A. Spatial and Temporal Variation of Aerosol and Water Vapour Effects on Solar
Radiation in the Mediterranean Basin during the Last Two Decades. Remote Sens. 2020, 12, 1316. [CrossRef]

89. Diémoz, H.; Barnaba, F.; Magri, T.; Pession, G.; Dionisi, D.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Ceca, L.S.D.; Hervo,
M.; et al. Transport of Po Valley aerosol pollution to the northwestern Alps-Part 1: Phenomenology. Atmos. Chem. Phys. 2019, 19,
3065–3095. [CrossRef]

90. Papadimas, C.D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I. The direct effect of aerosols
on solar radiation over the broader Mediterranean basin. Atmos. Chem. Phys. 2012, 12, 7165–7185. [CrossRef]

91. Nastos, P.T.; Kambeyidis, H.D.; Demetriou, D. Solar dimming/brightening within the Mediterranean. In Proceedings of the 13th
International Conference on Environmental Science and Technology, Athens, Greece, 5–7 September 2013; Global NEST: Athens,
Greece, 2013; ISBN 978-960-7475-51-0.

92. Kazadzis, S.; Founda, D.; Psiloglou, B.E.; Kambezidis, H.; Mihalopoulos, N.; Sanchez-Lorenzo, A.; Meleti, C.; Raptis, P.I.; Pierros,
F.; Nabat, P. Long-term series and trends in surface solar radiation in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 2395–2411.
[CrossRef]

http://doi.org/10.5194/angeo-27-3509-2009
https://atmosphere.copernicus.eu/sites/default/files/2020-04/CAMS84_2018SC2_D5.1.1-2019.pdf
https://atmosphere.copernicus.eu/sites/default/files/2020-04/CAMS84_2018SC2_D5.1.1-2019.pdf
http://doi.org/10.24380/2v3p-ab79
http://doi.org/10.1016/j.scitotenv.2016.01.192
http://doi.org/10.1029/2008JD009834
http://doi.org/10.1002/qj.88
http://doi.org/10.3390/rs12081316
http://doi.org/10.5194/acp-19-3065-2019
http://doi.org/10.5194/acp-12-7165-2012
http://doi.org/10.5194/acp-18-2395-2018

	Introduction 
	Data and Methodology 
	Data 
	AOD and DOD—ModIs Dust Aerosol (MIDAS) Dataset 
	AOD, DOD and Total Column Water Vapor (TCWV)—Copernicus Atmospheric Monitoring Service (CAMS) Reanalysis Dataset 
	Additional Aerosol and Dust Optical Properties (SSA and AE) 
	Total Ozone Column (TOC) 

	Methodology 
	Spatial and Temporal Extent of the Study 
	Library for Radiative Transfer (libRadtran) Simulations 
	Database (DB) for Radiative Properties 
	RTM Methodology 
	Extreme Dust Events 


	Results and Discussion 
	Satellite-Derived and Modeled AODs and DODs—Climatology and Intercomparison 
	Aerosol Optical Depth 
	Dust Optical Depth 

	Aerosol and Dust Effects on DSSI 
	Aerosol Effects on GHI 
	Dust Effects on GHI 
	Aerosol Effects on DNI 
	Dust Effects on DNI 
	Daily Variability 

	Extreme Dust Events 
	Interannual Variability and Trends 
	GHI and DNI Clear-Sky Climatology 

	Summary and Conclusions 
	References

