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Abstract: The direct radiative effects of atmospheric aerosols are essential for climate, as well as for 

other societal areas, such as the energy sector. The goal of the present study is to exploit the newly 

developed ModIs Dust AeroSol (MIDAS) dataset for quantifying the direct effects on the down-

welling surface solar irradiance (DSSI), induced by the total and dust aerosol amounts, under clear-

sky conditions and the associated impacts on solar energy for the broader Mediterranean Basin, 

over the period 2003–2017. Aerosol optical depth (AOD) and dust optical depth (DOD) derived by 

the MIDAS dataset, along with additional aerosol and dust optical properties and atmospheric var-

iables, were used as inputs to radiative transfer modeling to simulate DSSI components. A 15-year 

climatology of AOD, DOD and clear-sky global horizontal irradiation (GHI) and direct normal ir-

radiation (DNI) was derived. The spatial and temporal variability of the aerosol and dust effects on 

the different DSSI components was assessed. Aerosol attenuation of annual GHI and DNI were 1–

13% and 5–47%, respectively. Over North Africa and the Middle East, attenuation by dust was 

found to contribute 45–90% to the overall attenuation by aerosols. The GHI and DNI attenuation 

during extreme dust episodes reached 12% and 44%, respectively, over particular areas. After 2008, 

attenuation of DSSI by aerosols became weaker mainly because of changes in the amount of dust. 

Sensitivity analysis using different AOD/DOD inputs from Copernicus Atmosphere Monitoring 

Service (CAMS) reanalysis dataset revealed that using CAMS products leads to underestimation of 

the aerosol and dust radiative effects compared to MIDAS, mainly because the former underesti-

mates DOD. 
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1. Introduction 

Aerosols modulate the radiation field of Earth’s atmospheric system with several im-

plications for life on earth. The physical mechanisms through which they influence the 

radiation budget are manifold. Aerosols interact directly (direct effects) with the 

shortwave (SW) and longwave (LW) radiation through scattering and absorption. More-

over, through their interactions with clouds, they have semidirect and indirect effects by 

altering the atmospheric conditions related to cloud formation/dissipation due to absorb-

ing aerosols and by acting as cloud condensation and ice nuclei (altering the microphysi-

cal and hence the optical properties of clouds) (e.g., [1]). The direct radiative effects of 
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aerosols refer to changes in radiative fluxes due to the direct aerosol–radiation interaction 

(radiative effects due to aerosol–radiation interactions (REari), as renamed in the IPCC 

AR5 [2]). Cloud-free aerosol direct radiative effects depend on aerosol optical properties 

such as the spectrally resolved aerosol extinction coefficient or the integrated aerosol op-

tical depth (AOD), the single scattering albedo (SSA), the scattering phase function or the 

integrated asymmetry parameter and other environmental parameters such as surface re-

flectance and the concentration of atmospheric trace gases [3–7]. Their magnitude corre-

sponds to the perturbation of the radiation fields induced by aerosols, within the Earth’s 

atmospheric system, with respect to an atmospheric state without their presence.  

Aerosols are among the main climate change drivers, and estimates of changes in 

their radiative effects are highly significant for climate-change-related policy making as 

they are linked to changes in surface temperature [8]. Nevertheless, estimates of the total 

anthropogenic radiative forcing are still highly uncertain [9]. Several reasons contribute 

to these not yet well-constrained estimates, such as the heterogeneity of the processes gov-

erning aerosols’ production and removal, which in turn regulate optical and microphysi-

cal properties, both determining the associated aerosol–radiation interactions. Focusing 

on Earth’s surface, apart from the importance of aerosols on climate, studies quantifying 

the impact of total aerosols (natural and anthropogenic) on incoming solar irradiance are 

also essential for other societal benefit areas such as the energy sector (e.g., [10–12]). 

Dust particles constitute a major component of atmospheric aerosol load [13,14]. 

Their emission is primarily wind-driven over the arid or semiarid regions of the planet. 

The Sahara Desert in North Africa, the Arabian and the Asian deserts are the major dust 

sources on Earth, with the highest contribution to global dust load (more than 50%) being 

emitted from North Africa [15–17]. Even though the dust sources are localized, the spatial 

distribution of dust over the globe is extensive due to dust mobilization under favorable 

meteorological conditions. Dust can be transported over long distances with significant 

implications for the climate of the affected areas and the global climate [18–20]. In addition 

to its significant radiative effects, dust also plays a key role in other processes such as the 

productivity of oceanic waters [21] and terrestrial ecosystems [21] and affects human 

health [22–24]. The diameter of dust particles is of the order of 0.5 – 50 μm, and thus the 

Ångström exponent of dust aerosols is smaller than 1 [25]. Dust particles generally scatter 

and redistribute rather than absorb solar radiation (SSA > 0.9 at visible wavelengths), alt-

hough dust absorbs solar radiation at short (i.e., ultraviolet) and long (i.e., infrared) wave-

lengths more effectively [26–28]. 

The Mediterranean Basin, located at the crossroads of air masses from all over the 

globe [29], experiences high aerosol concentrations of both natural and anthropogenic 

origin, and the aerosol spatiotemporal variability over the area has been investigated in 

several studies (e.g., [30–33]). In addition, due to its proximity to the Earth’s most active 

dust sources located across the Sahara Desert and Middle East deserts, the Mediterranean 

Basin often experiences high dust aerosol loads (dust intrusions). Several studies have 

investigated the Saharan dust transport towards the Mediterranean Basin by exploiting, 

either solely or combined, in situ measurements, remote sensing (ground-based or satel-

lite) retrievals and atmospheric dust numerical products (e.g., [34,35]). Across the Medi-

terranean Sea, dust concentrations fade down from south to north because of the removal 

of mineral particles from the atmosphere, either due to dry or to wet deposition [36]. It 

should be noted that long-range transport of Saharan mineral particles has also been rec-

orded over northern Europe [37,38]. Additionally, there is a distinct seasonal cycle of the 

longitudinal spatial distribution of dust with higher concentrations in spring at the eastern 

and central Mediterranean and in summer at the western Mediterranean [36,39,40]. The 

seasonal patterns are related to the seasonality of the prevailing meteorological conditions 

over the area [36,41]. This intricate aerosol regime makes Mediterranean Basin one of the 

most interesting areas for investigating the aerosol and dust radiative effects. 

Towards the reduction of greenhouse gas emissions and climate change mitigation, 

the deployment of renewable energy technologies is one of the main pillars [42], while at 
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the same time renewable energy technologies provide energy in a sustainable manner. 

Among renewables, the share of solar technologies is growing fast. For electricity produc-

tion, the systems in use are the photovoltaic (PV) cells and the concentrating solar power 

(CSP) plants, which harness different components of the solar irradiance: the global hori-

zontal irradiance and the direct normal irradiance, respectively [43,44]. Within the North 

Africa, Middle East and Europe (NAMEE) domain, International Energy Agency (IEA) 

projections up to 2025 indicate a continuous growth in solar PV capacity, while some 

countries (e.g., Morocco) are increasing their CSP capacity [45]. 

Over most of the globe, the availability of downwelling surface solar irradiance 

(DSSI) depends mainly on attenuation by clouds, but the role of aerosols is also significant 

and under certain conditions can be dominant (e.g., [46,47]). The countries around the 

Mediterranean Basin, apart from their prolonged sunshine durations, also experience high 

levels of aerosol loads, mainly composed of mineral particles. In the recent study by 

Fountoulakis et al. [47], it was found that for Cyprus in summer the GHI attenuation by 

aerosol is comparable to the attenuation by clouds, while solely dust attenuates more DNI 

than clouds. In the same study, it was found that 30–50% of the overall DSSI attenuation 

by aerosols was due to dust. For lower latitudes with even more rare cloudy conditions, 

aerosols and specifically desert dust constitute the most common source of DSSI attenua-

tion, as was demonstrated in a study for Egypt by Kosmopoulos et al. [10]. It must be 

pointed out here that even for southern Europe, dust can substantially reduce surface so-

lar radiation during dust intrusions [48]. Thus, studying the radiative effects of dust is of 

great interest for the broader Mediterranean Basin. Existing studies are limited over spe-

cific locations or dust event days (e.g., [10,47,48]). 

In order to derive the aerosol radiative effects, continuous monitoring of their optical 

properties is essential [49]. AOD is a quantitative measure of the integrated aerosol ex-

tinction in the atmospheric column; hence, it constitutes the most important aerosol opti-

cal property for estimating the aerosol direct radiative effects [50]. In the same manner, 

DOD is a proxy of the mineral dust particles’ load, in optical terms, throughout the atmos-

pheric column. The most accurate estimates of those optical properties are provided from 

ground-based remote sensing instruments (sun photometers), which are however sparse, 

and their geographical distribution is spatially inhomogeneous. This observational gap is 

complemented by satellite remote sensing along with the related retrieval algorithms, 

providing considerably accurate measurements with global coverage and high spatial and 

temporal resolution. Although they are still not as accurate as ground-based estimates of 

the aerosol optical properties, the accuracy of satellite-based aerosol products has been 

improved substantially in recent years [51,52]. A significant disadvantage of satellite 

products is that they are representative of relatively wide areas rather than specific loca-

tions, and thus they can be highly uncertain when they are used to study aerosols over 

complex environments [53,54]. MODIS instrument onboard Aqua (since May 2002) and 

Terra (since December 1999) satellites provide AOD and other valuable information for 

aerosols worldwide. Based on MODIS AOD product, a new DOD dataset was generated, 

the ModIs Dust Aerosol (MIDAS) dataset [55], enhancing the existing dust aerosol moni-

toring capabilities. Considering its global coverage at fine spatial and temporal resolution, 

over a long period (2003–2017), this dataset is suitable for dust climatological studies (e.g., 

[47,56,57]).  

Another tool for dust monitoring, on a regular basis and for long time periods, relies 

on atmospheric models simulating aerosols’ life cycle. Via the assimilation of quality-as-

sured observations, quite reliable numerical products are also available from reanalysis 

datasets [58–60]. For aerosol-related studies, one of the most exploited reanalysis datasets 

is the Copernicus Atmosphere Monitoring Service (CAMS) dataset [61] providing aerosol 

optical properties for the total load, as well as for aerosol species. However, compared to 

satellite products, its spatial resolution is relatively low, and regardless of the assimilation 

process of aerosol observations, the performance of their outputs depends on modeling 
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aspects (e.g., the balance between the different aerosol components constituting the aero-

sol column at any given location and time) [62]. 

The aim of this work is to contribute towards achieving the following scientific ob-

jectives: 

- Deriving a 15-year climatology of total and dust aerosols and cloud-free surface solar 

radiation in the Mediterranean Basin.  

- Quantifying the long-term impact of total and dust aerosols on the solar radiation/en-

ergy in the Mediterranean with respect to an aerosol-free atmosphere.  

- Investigating the advantages and limitations of existing model and satellite-based aer-

osol time series for solar-energy-related applications. 

After the description of the datasets and the methodology in Section 2, the AOD and 

DOD climatology is discussed in Section 3.1 along with the intercomparison between 

MIDAS and CAMS datasets. Section 3.2 presents the aerosol and dust effects on the sur-

face GHI and DNI based on both datasets. In Section 3.3, focus is given on the radiative 

effects for each DSSI component under extreme dust outbreaks. The interannual variabil-

ity and trends of the effects of aerosols and dust on GHI and DNI components are pre-

sented in Section 3.4, and the clear-sky climatology of GHI and DNI is given in Section 

3.5.  Finally, our concluding remarks are provided in Section 4. 

2. Data and Methodology 

In the present study, the aerosol and especially dust effects on DSSI in terms of GHI 

and DNI were investigated over the Mediterranean Basin. Initially, two different AOD 

and DOD datasets were explored, the newly developed satellite-based MIDAS and the 

model-derived CAMS reanalysis datasets. As a second step, the quantification of the long-

term effects of total aerosols and dust on different DSSI components with respect to aero-

sol-free conditions were derived, using both AOD and DOD datasets as inputs to radiative 

transfer model (RTM) simulations. For the simulations, additional aerosol optical proper-

ties and atmospheric parameters were used as inputs as well. An intercomparison of the 

results from the two datasets was performed in order to address the last two scientific 

objectives listed in Section 1. The description of the utilized datasets and the RTM simu-

lations are provided in Sections 2.1 and 2.2, respectively. 

2.1. Data 

We have used various aerosol and atmospheric-related parameters as inputs in the 

RTM. Table 1 presents an overview of the used datasets, and a more analytical description 

is provided in the corresponding subsections.  

Table 1. Datasets of total aerosol and dust optical properties and key atmospheric parameters for 

radiative transfer model (RTM) simulations of downwelling surface solar irradiance (DSSI). 

Parameter 
Description  

(Spatial–Temporal Resolution) 
Source Reference 

Aerosol optical 

properties 

Satellite-retrieved  

aerosol optical depth (AOD) 

(0.1° × 0.1°, 1 day) 

ModIs Dust Aerosol (MIDAS) [55] 

Modeled AOD 

(0.4° × 0.4°, 3 h) 

Copernicus Atmospheric Monitor-

ing Service (CAMS) reanalysis 
[61] 

Single scattering albedo (SSA) 

(1° × 1°, 1 month) 

Max-Planck Aerosol Climatology 

(MACv2) 
[63] 

Ångström exponent (AE) 

(1° × 1°, 1 month) 
MACv2 [63] 

Dust optical 

properties 

Satellite-based  

dust optical depth (DOD) 
MIDAS [55]  
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(0.1° × 0.1°, 1 day) 

Modeled DOD 

(0.4° × 0.4°, 3 h) 
CAMS reanalysis [61] 

Dust SSA (DU SSA) 

(1° × 1°, 12 monthly means) 
MACv2 [63] 

Water vapor 

Modeled total column water vapor 

(TCWV) 

(0.4° × 0.4°, 3 h) 

CAMS reanalysis [61] 

Ozone 

Satellite-retrieved  

total ozone column (TOC) 

 (1° × 1° / 1° × 1.25°, 1 day) 

Ozone Monitoring Instrument 

(OMI) TOMS-Like Level 3 prod-

uct/Earth Probe (EP) Total Ozone 

Mapping Spectrometer (TOMS) 

Level 3 version 8 product 

[64,65]  

2.1.1. AOD and DOD—ModIs Dust Aerosol (MIDAS) Dataset  

MIDAS [55] constitutes a global fine-resolution (0.1° × 0.1°) dataset providing colum-

nar dust optical depth (DOD) at 550nm, on a daily basis, over a 15-year period (2003–

2017). In brief, MIDAS DOD product has been developed through the synergy of quality 

assured MODIS-Aqua Level 2 AOD and the dust fraction (MDF) to the total aerosol load, 

in optical terms, acquired from the MERRA-2 reanalysis. Along with DODs, it also pro-

vides the associated grid-cell uncertainty estimated using reference AERONET retrievals 

[66] and LIVAS [67] products for AOD and MDF, respectively. A comprehensive evalua-

tion of the MIDAS DOD versus AERONET DOD-like and an intercomparison against 

MERRA-2 and LIVAS DODs justified its reliability and validity as well as its caveats 

which should be taken into account. For the estimation of the radiative effects attributed 

to the total aerosol load, we used the MODIS-Aqua AOD stored in the MIDAS files. Ac-

tually, the MIDAS AOD is the raw MODIS-Aqua AOD (Collection 6.1; [68]), produced by 

merging Dark Target and Deep Blue retrievals according to Sayer et al. [69], on which 

quality filters (see Section 2.1 in [55]) have been applied, and it has been reprojected on an 

equal latitude–longitude grid to that of DOD. 

2.1.2. AOD, DOD and Total Column Water Vapor (TCWV)—Copernicus Atmospheric 

Monitoring Service (CAMS) Reanalysis Dataset  

The CAMS reanalysis, available from 2003 onwards, is the global reanalysis dataset 

of atmospheric composition of the European Centre for Medium-Range Weather Fore-

casts (ECMWF), consisting of three-dimensional time-consistent atmospheric composition 

fields, including aerosols and chemical species [61]. It is based on ECMWF’s Integrated 

Forecast System (IFS), including an aerosol module described in Morcrette et al. [70]. Five 

species of tropospheric aerosols are included in the CAMS aerosol model, including dust. 

For dust sources, the parameterization of Ginoux et al. [71] is implemented. The satellite-

derived aerosol products that were assimilated in the CAMS reanalysis were the MODIS-

Aqua and MODIS-Terra AOD retrievals [58] and, in addition, the retrievals from the Ad-

vanced Along-Track Scanning Radiometer (AATSR) onboard Envisat from 2003 to March 

2012. More details regarding the updates in the meteorological part of IFS and in the aer-

osol and chemical modules, the data assimilation process and the emission datasets are 

given in Innes et al. [61] and the references therein. CAMS reanalysis products are availa-

ble from the Copernicus Atmosphere Data Store (ADS, https://ads.atmosphere.coperni-

cus.eu/#!/home (accessed on 25 January 2022)) on a 3-hourly basis. AOD and DOD at 

550nm and TCWV were obtained programmatically for the same period with the MIDAS 

dataset (2003–2017) on a 0.4° × 0.4°o lat/lon grid. 
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2.1.3. Additional Aerosol and Dust Optical Properties (SSA and AE)  

For the additional UV–visible–near-IR optical properties for all aerosols and dust, 

climatological values from the second version of the Max-Planck Aerosol Climatology 

(MACv2) [63] were utilized, which are available at a global scale with a 1° × 1° spatial 

resolution. The interannual variability of total aerosol optical properties is provided over 

the time period 2001–2016 in terms of monthly means. Monthly climatological values cor-

responding to the same period are provided for five aerosol species, including dust.  

In the current analysis, SSA at 550 nm was used for total aerosols and dust (DU SSA). 

AODs at 470 nm and 850 nm, for total aerosols, were obtained from MACv2 and were 

used to calculate the Ångström exponent (AE) (AE 470–850nm). For dust, a fixed climato-

logical value of 0.4 for AE 440–675 nm was used as proposed by Taylor et al. [72] for the 

region of study. 

2.1.4. Total Ozone Column (TOC)  

To obtain TOC data for the entire period, a new dataset was constructed by combin-

ing data from Ozone Monitoring Instrument (OMI) onboard NASA’s Aura satellite from 

1/10/2004 until 31/12/2017 and from Total Ozone Mapping Spectrometer (TOMS) onboard 

the Earth Probe (EP) satellite from 1/1/2003 to 30/9/2004. Τhe satellite-based TOC retrievals 

were collected from the daily global OMI TOMS-Like TOC Level 3 (OMTO3d) gridded on 

a 1° × 1° grid product [64] and from the EP TOMS Level 3 (TOMSEPL3) version 8 product 

[65], which provides daily data on a global grid of 1° × 1.25°.  

2.2. Methodology 

2.2.1. Spatial and temporal extent of the study 

The study was performed for the domain that is confined between 27° N–50° N and 

15° W–40° E, which includes the counties around the Mediterranean Sea, as well as part 

of Central Europe and the Middle East. Analysis was performed with a spatial resolution 

of 0.4° × 0.4° and for the period 2003–2017.  

2.2.2. Library for Radiative Transfer (libRadtran) Simulations  

The simulations of DSSI components for cloud-free conditions were performed using 

the uvspec model from the libRadtran package [73]. Using the radiative transfer solver 

sdisort [74], pseudospectral simulations were performed with a resolution of 1 nm for the 

spectrum range of 280–3000 nm, using for the molecular absorption the parameterization 

of LOWTRAN band model [75], as adopted from the SBDART code [76]. The Kurucz 1.0 

nm [77] extraterrestrial solar spectrum and the standard US atmospheric profile [78] were 

utilized, and the surface albedo was set to 0.2.  

2.2.3. Database (DB) for Radiative Properties  

For quantifying the impact of total aerosols and dust on the DSSI components (GHI 

and DNI), we have performed RTM simulations (see Section 2.2.4) using satellite (MIDAS) 

retrievals and reanalysis (CAMS) products of AOD and DOD as inputs, complemented 

by additional aerosol optical properties and atmospheric parameters acquired from the 

MACv2 climatology, spaceborne observations (OMI, TOMS) and reanalysis products 

(CAMS), which are described in detail in Section 2.1.  

The above datasets differ in spatial and temporal resolution. Initially, the spatial and 

temporal homogenization of datasets with missing values was performed, which was 

then followed by the geolocation and synchronization among all datasets in order to gen-

erate a complete database (DB) of all the input parameters needed for the RTM simula-

tions (SZA, AOD or DOD, SSA, AE, TCWV, TOC) on a 0.4° × 0.4° lon/lat grid, on an hourly 

basis, which was selected to be the frequency of RTM simulations in order to account for 

the sun elevation. Figure 1 provides a schematic overview of this process.  
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The MIDAS dataset was aggregated to the coarser spatial resolution of 0.4° × 0.4° in 

order to achieve a small number of missing values. The median value was selected as the 

aggregation method, as a nonparametric measure of central tendency, based on the find-

ings of Sayer and Knobelspiesse [79]. In order to homogenize the MIDAS dataset in time 

and space, the missing values were filled by monthly means. Seasonal means were uti-

lized when the monthly data availability was low (<20%). In cases with low seasonal avail-

ability, the spatial gaps were filled using bilinear interpolation. For the 1h RTM simula-

tions, daily MIDAS values were used and the AOD and DOD were assumed invariant in 

the day.  

 

Figure 1. Schematic overview of the database (DB) created for the RTM simulations, on a 0.4° × 0.4° 

lon/lat grid and 1h temporal resolution. 

The diurnal variability of CAMS datasets (AOD, DOD and TCWV) was taken into 

account and the 3h values were assumed invariant within each 3-h time interval. For TOC, 

a temporal fitting was performed filling the days missing with monthly mean values, and 

a spatial bilinear fit was performed in order to fill the gaps in space. Both OMI and TOMS 

datasets were bilinearly interpolated to a 0.4° × 0.4° grid. Again, TOC was assumed invar-

iant in the day. The 1° × 1° fields of MACv2 were also bilinearly interpolated to the 0.4° × 

0.4° grid and the monthly values of SSA and AE were used, assuming that they remain 

constant during each month.  

2.2.4. RTM Methodology  

The hourly values of clear-sky DSSI in terms of global and direct components were 

obtained relying on precalculated look-up tables (LUTs), in order to achieve realistic com-

putational times, as similarly done in Kosmopoulos et al. [80]. Spectral LUTs were con-

structed containing simulated surface spectral irradiances (global and direct) for a wide 

range of SZAs and atmospheric factors affecting DSSI (Figure 2a) under cloudless condi-

tions. The simulations for the creation of the LUT were performed using uvspec (Section 

2.2.2). All possible combinations of the input parameters of Figure 2a resulted in 74,520 

libRadtran simulations of the spectral LUTs. The output spectral irradiances were inte-

grated over the whole SW spectrum to obtain the total irradiances. In order to discretize 

further, we applied interpolation on the spectrally integrated values, and finer LUTs (Fig-

ure 2b) were derived, as they could result from over 200 million hypothetical RTM runs.  
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Figure 2. Schematic workflow of the RTM simulations. (a) The resolution of the input parameters 

used for simulating spectral global and direct irradiances using uvspec. (b) The final resolution of 

the fine look-up tables (LUTs) of clear-sky total global and direct irradiances after interpolating to 

all dimensions.  

Using the fine LUTs and inputs from DB described in Section 2.2.3, instantaneous 

values of total irradiances (global and direct) every 1h during daytime were extracted for 

each grid cell (0.4° × 0.4°) for 2003–2017. This procedure was repeated five times, as dif-

ferent experiments, described in Table 2, in order to quantify the total aerosol as well as 

the dust effect on different DSSI components, for the two different datasets (MIDAS, 

CAMS). 

Table 2. The different experiments for which DSSI values were extracted from the fine LUTs. 

Atmospheric Conditions   Dataset 

Aerosol included 
MIDAS AOD  

CAMS AOD 

Dust included MIDAS DOD 

Aerosol-free 
CAMS DOD 

AOD = 0 

Integrating the 1h instantaneous values of total irradiances over sunlight hours, the 

daily global horizontal irradiation (GHI) and direct normal irradiation (DNI) components 

(in MJ/m2) were calculated, and those values were post-corrected for the Earth–Sun dis-

tance, and for the surface elevation following the methodology described in Fountoulakis 

et al. [47]. Using LUT instead of simulating DSSI for the exact conditions of each time step 

induced some additional uncertainty in the results, which however is small. By comparing 

the daily integrals using both approaches for particular grid points, it was estimated that 

the additional (2-fold) uncertainty in the daily integrals is ~0.2 kW/m2, which for the do-

main of study corresponds to less than 1% of the simulated DSSI in spring, summer and 

autumn and to less than 10% at the northernmost latitudes of the domain in winter. The 

corresponding uncertainty in the monthly integrals is much smaller, less than 1% in all 

cases.   

Using the simulated daily irradiations, mean annual and seasonal integrals (INTs) of 

GHI and DNI, for cloudless conditions, were calculated for the five different experiments 

described in Table 2 using the following formula: 

((INTi_on − INTaer_free)/ INTaer_free) × 100% (1) 
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where i stands for aerosols and dust. The relative change (expressed in %) in DSSI due to 

aerosols and dust presence was calculated with respect to an aerosol-free atmosphere. 

Using the same formula, the daily relative changes were calculated as well. 

2.2.5. Extreme Dust Events  

The broader Mediterranean Basin is an area frequently affected by dust outbreaks 

[57,81], resulting in extremely high concentrations of mineral particles and maximized 

DODs. Thus, we aimed to quantify the impact of those extreme DOD values on GHI and 

DNI. To this end, the methodology proposed by Gkikas et al. [82] was applied to MIDAS 

DOD values in order to define the extreme dust episode days (eDEDs) by also adapting 

the objective and dynamic algorithm of Gkikas et al. [83] to MIDAS DODs. First, for every 

pixel, the mean DOD (DOD̅̅ ̅̅ ̅̅ ) and the associated standard deviation (σDOD) values were 

calculated, using the daily values of DOD over the time period 2003–2017. An extreme 

dust episode occurs on a specific day and at a specific location (pixel) when DOD values 

are higher than a critical value (threshold): 

DOD ≥ DOD̅̅ ̅̅ ̅̅  + 4σDOD (2) 

This algorithm is characterized as dynamic since the DOD threshold values are not 

constant for each pixel. Finally, in order to define a day as an eDED, at least 300 pixels 

should undergo an extreme dust episode, providing that the data availability for this day 

is more than 50%. From our analysis, 67 eDEDs were found for the whole study period 

2003–2017, or on average 4.5 eDEDs year−1. 

3. Results and Discussion 

3.1. Satellite-Derived and Modeled AODs and DODs—Climatology and Intercomparison 

One of the aims of this study is to investigate the benefits and the drawbacks of choos-

ing between satellite- and model-derived AOD and DOD datasets for estimating their ra-

diative effects. To this end, as described in Section 2, MIDAS and CAMS datasets were 

explored. For the MIDAS–CAMS comparison, the aggregated MIDAS datasets were used, 

before filling in the missing values (see Section 2.2.3). CAMS datasets, which have a diur-

nal variation (3 h time resolution), were synchronized with MIDAS datasets (MODIS-

Aqua overpass time) in order to achieve an exact collocation. In Figure 3, the MIDAS 

cloudless sky data availability (expressed in percentage) is illustrated. Three regions can 

be distinguished. North Africa, which, due to its scarce cloudiness, has the highest data 

availability, with more than 70% of daily satellite retrievals with respect to the whole pe-

riod. Over the Mediterranean Sea, data availability decreases down to 60%. Over Europe, 

the MIDAS data amount further decreases and is minimized (~20%) in mountainous re-

gions (i.e., Alps). For the temporal aggregation, only grid points with at least 20% data 

availability on annual and seasonal bases were used, to ensure the representativeness of 

the results. 
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Figure 3. MIDAS dataset data availability. 

The geographical distribution of the long-term annual averaged values of AOD (Fig-

ure 4a,b) and DOD (Figure 5a,b) were derived for both datasets. The corresponding sea-

sonal results are given in the Supplementary Materials (Figures S1–S4). Our analysis ex-

pands further CAMS DOD product evaluation [84] in terms of its spatial and temporal 

variability performance. The frequency histogram of the CAMS–MODIS biases and their 

mean annual geographical distribution are presented in panels c and d, respectively, for 

AOD (Figure 4) and DOD (Figure 5). By performing t-test for the differences shown in 

Figures 4d and 5d, the majority of differences were found to be statistically significant (not 

shown in the figures for clarity) on a 95% confidence level (p-value < 0.05). 

 

Figure 4. Geographical distribution of long-term average of annual mean AOD at 550 nm from 

MODIS (a) and CAMS (b). Frequency distribution of CAMS–MODIS AOD biases with their mean 

value (c) and geographical distribution of annual mean biases (d). Blank grid points are those that 

did not fulfill the criterion of at least 20% data availability on annual basis. 
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Figure 5. Geographical distribution of long-term average of annual mean DOD at 550 nm from 

MIDAS (a) and CAMS (b). Frequency distribution of CAMS–MIDAS DOD biases with their mean 

value (c) and geographical distribution of annual mean biases (d). Blank grid points are those that 

did not fulfill the criterion of at least 20% data availability on annual basis. 

3.1.1. Aerosol Optical Depth 

In general, the AOD spatial features are similarly reproduced for both datasets (Fig-

ure 4a,b), and the regional averages are almost equal (0.19 ± 0.06 for MODIS and 0.18 ± 

0.06 for CAMS, Table 3). Our findings are also in good agreement with those of previous 

studies focusing on the same region [30,33,85]. Between the two datasets, differences were 

found in the magnitude of the maximum AOD levels. The annual mean AOD values for 

each individual pixel range from 0.05 to 0.48 for MIDAS and from 0.05 to 0.37 for CAMS. 

For both datasets, the maximum and minimum AOD values were found over the same 

areas. Over North Africa and parts of the Middle East, maximum AOD values were de-

rived that were mainly attributed to desert dust. Large AOD values related to anthropo-

genic activity [86,87] were found over the megacity of Cairo, Egypt, and the Po Valley, 

Italy. Low AOD values (0.05–0.15) were found over most of the Iberian Peninsula and 

southern France, which is in agreement with Obregon et al. [88], who attributed the low 

AOD to the clean air masses that were transferred over these areas from the Atlantic 

Ocean due to the westerly air flow (Obregon et al. [88] and the references therein).  

Overall, the CAMS-simulated AODs are slightly underestimated (mean bias −0.006) 

with respect to MIDAS AOD (Figure 4c), which was found to be statistically significant 

on the 95% confidence level (p-value < 0.05, t-test for the differences). This is in agreement 

with the results of previous studies [84], where lower CAMS AODs relative to MODIS 

were reported over the NAMEE domain. The geographical distribution of the annual 

mean bias (Figure 4 d) revealed areas with annual mean bias that differed a lot from the 

average value for the whole region. The most significant negative differences were found 

over an extensive area of Northeast Africa and parts of the Middle East (with annual mean 

bias up to −0.14), which can be explained by the AOD overestimation of MODIS Dark 

Target and Deep Blue combined product over these areas [68]. There are also areas with 

much higher CAMS AOD values relative to MIDAS. Maximum positive differences (up 

to 0.1) were found over Northwest Africa, which can be explained by the CAMS model 

overestimation of the organic matter over that area [84]. This CAMS AOD overestimation 

is more pronounced in summer (Figure S5c). 
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Table 3. Regional averages of mean annual and seasonal AOD and DOD at 550nm from MIDAS 

and CAMS and CAMS–MIDAS bias. The maximum of seasonal values is denoted as bold, empha-

sizing the peak of the seasonal cycle. 

 AOD DOD 

 CAMS MIDAS 
Mean Bias 

(CAMS–MIDAS) 
CAMS MIDAS 

Mean Bias 

(CAMS–MIDAS) 
 Annual 

 0.18 ± 0.06 0.19 ± 0.06 −0.005 ± 0.025 0.06 ± 0.06 0.08 ± 0.07 −0.026 ± 0.021 

 Seasonal 

winter 0.11 ± 0.05 0.13 ± 0.06 −0.019 ± 0.021 0.03 ± 0.03 0.06 ± 0.05 −0.030 ± 0.025 

spring 0.21 ± 0.07 0.21 ± 0.07 −0.003 ± 0.027 0.07 ± 0.07 0.11 ± 0.08 −0.037 ± 0.024 

summer 0.23 ± 0.08 0.23 ± 0.07 0.003 ± 0.038 0.08 ± 0.08 0.10 ± 0.08 −0.019 ± 0.027 

autumn 0.15 ± 0.06 0.16 ± 0.07 −0.007 ± 0.028 0.05 ± 0.05 0.07 ± 0.06 −0.023 ± 0.022 

There is a clear seasonal cycle (Figures S1 and S2) of the AOD over the Mediterranean 

Basin. CAMS AOD reproduces the regional patterns of the MODIS AOD seasonal varia-

bility quite well, but again there were differences in the magnitude of maximum season-

ally averaged AODs between the two datasets. In summer, AODs are maximized (0.66 for 

MODIS and not exceeding 0.56 for CAMS) over North Africa, particularly in its western 

parts. Large AOD values were also found over southeast Europe in spring and summer, 

which are mainly due to emissions of anthropogenic aerosols such as sulfates [33], with a 

peak in spring over Po Valley with mean values of 0.37 for MODIS and 0.28 for CAMS. In 

Table 3, the regionally averaged seasonal mean AOD values are summarized. A distinct 

seasonal cycle was revealed in both datasets with maximum values during summer and 

minimum values during winter, which is the same as the seasonal cycle reported by Pa-

padimas et al. [30]. The seasonal variations of AOD are linked to the atmospheric circula-

tion and the meteorological conditions over the study area that are affecting the aerosol 

emission, removal and transport processes [82,89]. 

3.1.2. Dust Optical Depth 

There is a clear latitudinal gradient of DOD (Figure 5a,b). For both datasets, the larg-

est DOD values were found over North Africa and parts of the Middle East, where major 

dust sources (Sahara and Arabian Peninsula deserts) are located [15,17]. For the annually 

averaged MIDAS DOD, a maximum of 0.35 was found over a persistently dust-active re-

gion of salt lakes (local “chotts”) and dry lakes in the borders of Tunisia and northeast 

Algeria. Large values (0.32) were also found over the desert of central Algeria. Over the 

eastern Libyan Desert and Egypt, for most pixels, DOD ranges from 0.12 to 0.25. The same 

range of values was found over the dust sources of Mesopotamia and the Jordan River 

Basin in the Middle East. A CAMS DOD deficiency is reflected in the systematically lower 

corresponding values over the aforementioned sources (0.2, 0.26 and 0.05 to 0.15 respec-

tively). Regarding the regional averages (Table 3), there is a small difference between 

MIDAS and CAMS (0.08 ± 0.07 and 0.06 ± 0.06 respectively) in absolute values.   

A relatively high, statistically significant at the 95% confidence level, underestima-

tion (mean bias almost −0.03) of CAMS DODs against MIDAS (Figure 5c) was found. Av-

erage CAMS DOD is almost 40% lower compared to MIDAS DOD, which is in agreement 

with the underestimation of CAMS DOD (up to 46%) with respect to AERONET observa-

tions reported by Bennouna et al. [84] over the same area. According to the latter study, 

the higher CAMS DOD underestimation was found during wintertime, which was at-

tributed to overestimations in biomass-burning organic matter (OM). In summer, the 

DOD underestimation was attributed to the overestimation of secondary organics over 

heavily populated areas. The geographical distribution of annual mean bias (Figure 5d) 

revealed that MIDAS DOD is larger than CAMS DOD almost everywhere. The largest 

values of CAMS DOD underestimation (up to −0.15) were found over the dust sources of 
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the Saharan and Middle East deserts, not only for the annually averaged DOD but also 

for the seasonal DOD (Figure S6). 

The geographical distribution of DOD over the Mediterranean Basin was found to 

follow a seasonal cycle (Figures S3 and S4) with maxima in spring and summer, in agree-

ment with the findings of previous studies [33,36,39]. In winter, high DOD levels are con-

fined mainly over northeastern Africa, with DODs up to 0.25 and 0.13 for MIDAS and 

CAMS, respectively. Dust activity is enhanced in spring, with elevated DOD values (max-

imum values up to 0.42 for MIDAS and 0.27 for CAMS) over an extended area covering 

the central and eastern parts of North Africa and the part of the Middle East. In summer, 

elevated dust levels were found mainly over northwestern Africa, while the highest mean 

seasonal DOD values were found for this season. In summer, the smallest differences be-

tween the two datasets were found (DOD equal to 0.45 for MIDAS and 0.44 for CAMS). 

This seasonal cycle of dust activity and transport over the Mediterranean is in agreement 

with previous studies, which also investigated the atmospheric circulation patterns favor-

ing this cycle [41]. 

The differences that were found between the two different datasets (MIDAS, CAMS), 

especially regarding the maximum AOD/DOD levels, were investigated further. It was 

found that a great portion of MIDAS high AOD and DOD values are missing from the 

CAMS dataset. Table 4 summarizes the amount of data that are higher than 1, 1.5, 2 and 3 

in terms of AOD and DOD for both datasets. It also shows the percentage of the missing 

high values from CAMS datasets compared to MIDAS. For the MIDAS AOD dataset, 

0.05% of the values exceed 2, while the corresponding percentage for CAMS is only 

0.0015%. For DOD, over 90% of the missing high values have a lower threshold of DOD 

1.5, due to strong CAMS DOD underestimation. It is clear from the results that for very 

high aerosol burdens there are significant differences between the explored datasets, es-

pecially when considering the dust component. 

Finally, based on the MIDAS dataset, we estimated that the long-term dust contribu-

tion to total aerosols in optical terms ranges from 40% to 90%, over North Africa and the 

Middle East, making dust the most important aerosol component over these areas. 

Table 4. Summary statistics of AOD and DOD (from both MIDAS and CAMS datasets) values 

greater than specific threshold values 1, 1.5, 2 and 3. 

 AOD DOD 

 CAMS MIDAS 
Missing from CAMS 

Compared to MIDAS 
CAMS MIDAS 

Missing from CAMS 

Compared to MIDAS 

>1  0.19% 0.46% 57% 0.08% 0.31% 75% 

>1.5 0.02% 0.13% 85% 0.007% 0.09% 92% 

>2 0.0015% 0.05% 97% 0.0008% 0.04% 98% 

>3 0.000009% 0.014% ~100% 0 0.01% 100% 

3.2. Aerosol and Dust Effects on DSSI  

In this section, the quantification of total aerosol and dust radiative effects on GHI 

and DNI over the Mediterranean Basin is presented. Moreover, the effects on DSSI when 

different datasets (MIDAS or CAMS) of AOD/DOD are used were investigated. For this 

purpose, in total ~23 million data points were compared. The average number of data 

points (days) compared for each of the ~8000 pixels of the Mediterranean Basin was ~3000 

per pixel or ~200 per pixel per year. As mentioned, missing data are related to MIDAS 

gaps due to cloudy pixel scenes. 

The change in the mean annual integral of GHI due to the presence of total aerosols 

and dust is presented in Figures 6 and 7, respectively, estimated using MIDAS (panel a) 

and CAMS (panel b) datasets. The corresponding results for DNI are shown in Figures 8 

and 9. The corresponding seasonal results are given in the Supplementary Materials (Fig-

ures S7–S14). In all cases, the patterns of GHI and DNI changes are consistent with those 
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of AOD and DOD. The higher the AOD and DOD values are, the higher their radiative 

effect. Due to the interactions of the incoming solar radiation with the overlying aerosol 

(dust) layers, the GHI and DNI reaching the surface are reduced with respect to an aero-

sol-free atmosphere, thus explaining the existence of negative values throughout the do-

main. The day-to-day variations of these effects are presented in Figure 10. AOD GHI 

attenuation stands for the GHI reduction by total aerosols and DOD GHI attenuation 

means the GHI reduction by the dust component. The same nomenclature is used for the 

DNI component. 

3.2.1. Aerosol Effects on GHI 

There is a qualitative agreement in the geographical distribution of the annual AOD 

GHI attenuation between the two datasets (Figure 6), and their regional averages using 

the MIDAS dataset (5.2%, Table 5) are almost the same as those with CAMS (5.1%). The 

differences in the magnitude of annual mean AODs and especially for the maximum val-

ues were also inherited to their radiative effects. The long-term GHI reduction due to aer-

osols was found to range from 1% to 13% for MIDAS and from 2% to 10% for CAMS.  

In general, three subdomains (D) are highlighted for the annual AOD GHI attenua-

tion, based on aerosol load spatial patterns. The highest effects were found over North 

Africa and the Middle East (D1), where the annual AOD GHI attenuation varies from 4% 

to 13% based on the MIDAS dataset (4% to 10% for CAMS). Lower values were found for 

central and southeastern Europe and the Anatolian Peninsula (D2), ranging from 3% to 

8% (3% to 7%), with the largest values over the Po Valley. Over the Iberian Peninsula and 

southern France (D3), the lowest annual AOD GHI attenuation was found, ranging from 

1% to 6% (2% to 5%), with the exception of southeastern Spain (attenuation reaches 8% 

only for MIDAS dataset). The same low values of the total aerosol effect on the down-

welling surface fluxes of the global solar radiation were also found in previous studies 

[88,90] over the same area.  

 

Figure 6. Change (in %) of the mean annual integral of GHI due to the presence of aerosols under 

(a) MIDAS AOD and (b) CAMS AOD. Blank grid points are those that did not fulfill the criterion of 

at least 20% data availability on annual basis. 

Table 5. Change (in %) of the regional averaged mean annual and seasonal integrals of GHI due to 

total aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum of 

seasonal values is denoted as bold, emphasizing the peak of the seasonal cycle. 

 AOD DOD 

 CAMS MIDAS CAMS MIDAS 
 Annual 

 −5.1 (±1.5) −5.2 (±1.6) −1.7 (± 1.7) −2.4 (±1.8) 

 Seasonal 

winter −4.9 (±1.5) −5.5 (±1.7) −1.2 (± 1.2) −2.3 (±1.7) 

spring −5.3 (±1.7) −5.3 (±1.8) −1.9 (± 1.9) −2.9 (±2.0) 

summer −5.2 (±1.9) −5.0 (±1.7) −1.9 (± 2.1) −2.3 (±2.0) 

autumn −5.0 (±1.5) −5.1 (±1.6) −1.5 (± 1.5) −2.2 (±1.8) 
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There are pronounced seasonal variations (Figures S7 and S8) of the AOD GHI atten-

uation geographical distribution. The maximum MIDAS AOD GHI attenuation up to 14% 

(10% for CAMS) was found in spring over North Africa. For CAMS, the maximum reduc-

tion was found for summer over northwestern Africa and was 13%, which was similar to 

the corresponding attenuation for the MODIS dataset. In Table 5, the regional averages of 

the seasonal AOD GHI attenuation are summarized. The seasonal cycle of AOD GHI at-

tenuation for both datasets differs from the seasonal cycle of the corresponding AOD val-

ues. The most notable difference is that the peak of AOD GHI attenuation was derived in 

winter for the MIDAS dataset instead of summer, when the peak of MIDAS AOD was 

found. The unexpected peak of the GHI attenuation in winter was mainly due to signifi-

cant attenuation of the GHI over Egypt and eastern Libya, which was subsequently at-

tributed to minimum seasonal SSA values in winter over the area (Figure S15a). For the 

CAMS AOD dataset, a small shift of maximum GHI attenuation to spring instead of sum-

mer was found. 

3.2.2. Dust Effects on GHI 

Under the absence of nondust aerosol species, the spatial patterns of GHI attenuation, 

based on MIDAS and CAMS DODs (Figures 7, S9 and S10), show a clear south–north 

gradient regulated by the reduction in dust load amount from sources to distant down-

wind regions. The CAMS DOD underestimation is also depicted in the GHI attenuation 

which is lower than the MIDAS GHI attenuation. Maximum values of the annual DOD 

GHI attenuation were found over North Africa and parts of the Middle East, ranging from 

2% to 10% for MIDAS and from 2% to 8% for CAMS. This attenuation of GHI by dust 

accounts for ~45–90% of the overall attenuation by aerosols over this area on annual basis. 

Dust contribution becomes more significant (up to 95%) on a seasonal basis over the same 

areas. In summer, the seasonal mean reached 11% for MIDAS and 10.5% for CAMS, over 

northwestern Africa. Except for summer, the CAMS DOD GHI attenuation is significantly 

lower than the MIDAS DOD GHI attenuation for the rest of the year. 

Regarding the regionally averaged values (Table 5), the annual GHI attenuation due 

to MIDAS DOD (2.4%) is almost 30% larger than the attenuation estimated for CAMS 

DOD (1.7%). The seasonal cycle of GHI attenuation attributed to dust is the same as the 

seasonal cycle of DOD with maxima in spring and summer, with the spring peak being 

higher by 21% than the summer peak (for MIDAS), which could not be explained solely 

by the corresponding DOD differences between the two seasons (9%). The sharp MIDAS 

peak in spring can also be explained by the lower DU SSA values over North Africa and 

parts of the Middle East during spring (Figure S16b). 

 

Figure 7. Change (in %) of the mean annual integral of GHI due to the presence of dust under (a) 

MIDAS DOD and (b) CAMS DOD. Blank grid points are those that did not fulfill the criterion of at 

least 20% data availability on annual basis. 

3.2.3. Aerosol Effects on DNI 

The average of AOD DNI attenuation (Figure 8) ranged from 5% to 47% for MIDAS 

and from 10% to 39% for CAMS. The AOD differences between the CAMS and MIDAS 
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datasets were amplified in terms of DNI attenuation. The maximum of DNI attenuation 

was found for D1 for both datasets, with values ranging from 15% to 47% for MIDAS and 

to 39% for CAMS. In D1, areas such as Morocco, North Algeria, North Tunisia and the 

areas around the Red Sea, annual DNI attenuations were less than 20%, which makes 

these areas favorable for CSP (DNI-related) installations. For D2, an average DNI reduc-

tion between 15% and 25% was derived, similar for both datasets, except for Po Valley 

where CAMS DNI attenuation (26%) was 6% lower than the MIDAS DNI attenuation 

(32%). The lowest values were found for D3 ranging from 5% to 25% (except for south-

eastern Spain where it was 35%) for MIDAS and from 10% to 20% for CAMS. The seasonal 

AOD DNI attenuation values (Figures S11 and S12) reached higher values up to 53% for 

MIDAS and 49% for CAMS, which were found over Northwest Africa in summer. The 

seasonal cycle (Table 6) of DNI AOD attenuation followed the corresponding seasonal 

cycle of the AOD, for both datasets, with maximum in summer and minimum in winter.  

 

Figure 8. Change (in %) of the mean annual integral of DNI due to the presence of aerosols under 

(a) MIDAS AOD and (b) CAMS AOD. Blank grid points are those that did not fulfill the criterion of 

at least 20% data availability on annual basis. 

3.2.4. Dust effects on DNI 

The peak of DNI attenuation due to dust was found over North Africa and the Mid-

dle East, with values ranging from 9% to 37% for MIDAS and from 9% to 28% for CAMS 

(Figure 9). In summer, over northwestern Africa, the reductions reached values up to 40% 

and 38% for MIDAS and CAMS (Figures S13 and S14), respectively. The contribution of 

dust to the overall DNI attenuation by aerosols is ~45–90%. For the regionally averaged 

values (Table 6), a larger DNI attenuation due to MIDAS DOD (10.7%) was found relative 

to CAMS DOD attenuation (7.5%). The difference can be attributed to the strong underes-

timation of CAMS DOD, especially over northeastern Africa and the Middle East. 

 

Figure 9. Change (in %) of the mean annual integral of DNI due to the presence of dust under (a) 

MIDAS DOD and (b) CAMS DOD. Blank grid points are those that did not fulfill the criterion of at 

least 20% data availability on annual basis. 
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Table 6. Change (in %) of the regional averaged mean annual and seasonal integrals of DNI due to 

total aerosols (AOD) and dust (DOD) from both datasets of MIDAS and CAMS. The maximum sea-

sonal value is denoted as bold, emphasizing the peak of the seasonal cycle. 

 AOD DOD 

 CAMS MIDAS CAMS MIDAS 
 Annual 

 −22.2 (±5.6) −22.1(±5.6) −7.5 (±6.7) −10.7 (±7.2) 

 Seasonal 

winter −17.9 (±5.5) −19.6 (±6.0) −4.9 (±4.7) −9.0 (±7.3) 

spring −23.6 (±6.2) −23.2 (±6.7) −8.5 (±7.6) −12.7 (±7.9) 

summer −24.0 (±7.3) −23.3 (±6.5) −9.1 (±8.8) −11.2 (±8.2) 

autumn −20.5 (±5.8) −20.5 (±6.2) −6.4 (±6.1) −9.4 (±7.2) 

3.2.5. Daily Variability 

The variability of the daily GHI attenuation due to total aerosols for all pixels (Figure 

10a) is much larger than the variability in the annual and seasonal values. The underesti-

mation of CAMS AOD is reflected in the systematically lower values of the daily GHI 

attenuation. There is no value of GHI reduction due to CAMS AOD above 50%, which is 

related to the absence of CAMS AOD above 3 (see Section 3.1). It is noteworthy that there 

are days when aerosols attenuated GHI by ~75% (for the MIDAS AOD). The daily values 

of GHI reduction due to dust using the MIDAS DOD dataset are constantly larger than 

those when CAMS DOD is used (Figure 10b), with the only exception being the lower bin 

around zero. There are days when the MIDAS DOD GHI attenuation exceeded 60%, while 

the upper limit for CAMS was ~45%. The strong impact of the aerosol particles on the 

direct component of solar radiation reaching the Earth’s surface is depicted in the distri-

butions of the DNI attenuation due to both total aerosols (Figure 10c) and dust (Figure 

10d) with values up to 100% for the MIDAS dataset. 

 

Figure 10. Distribution of daily GHI change (%) due to the presence of aerosols (a) and dust (b) 

under MIDAS and CAMS AOD and DOD. The same for daily DNI change (%) in panels (c,d). 

The intercomparison between MIDAS and CAMS AOD and DOD effects on DSSI 

showed how the AOD and DOD differences between the two datasets were expressed in 

differences in their radiative effects. Underestimation of high AODs and strong DOD un-

derestimation from CAMS were clearly depicted in the attenuation of the DSSI. Thus, the 

MIDAS dataset is used and discussed in the subsequent analysis. The resulting radiative 

effects on the surface indicated the important role of total aerosols and especially dust 

over the Middle East and North Africa (MENA) region, where DSSI attenuation by clouds 

is comparable or even lower than aerosols.   
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3.3. Extreme Dust Events 

Figure 11a presents the geographical distribution of mean MIDAS DOD from the re-

sulting 67 eDEDs. The highest values up to 0.5 of mean DOD from the extremes were 

found over northwestern Africa, while significantly high mean values up to 0.43 and 0.35 

were found also over Egypt and the Middle East, respectively. The highest values of the 

associated impacts on GHI and DNI, up to 12% and 44%, respectively (Figure 11b,c), were 

found over northwestern Africa, specifically over southern Tunisia and central Algeria. 

Large values of eDED mean attenuation were also found over Libya, Egypt and the Mid-

dle East, with values ranging from 4% to 9% for GHI and 17% to 35% for DNI for the 

bigger part of these areas. Cyprus is the Mediterranean island that was affected the most 

by the resulting extreme dust events with mean values of GHI and DNI attenuation up to 

6.5% and 24%, respectively. For the southern European countries, lower values of mean 

eDED attenuation were derived, up to 4% for GHI and 19% for DNI, with the exception 

of very high values over southeastern Spain, up to 5% and 23%, respectively.   

It should be emphasized here that these results correspond to the long-term (2003–

2017) average of the eDEDs and their radiative effects over the region of interest (ROI). 

Individual dust events are associated with extremely high dust concentrations, resulting 

in GHI and DNI attenuations up to 50% and 90%, respectively [48]. 

 

Figure 11. Geographical distribution of mean MIDAS DOD at 550nm for extreme dust episode days 

(eDEDs) (a) and the corresponding GHI (b) and DNI (c) change (in %). 
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3.4. Interannual Variability and Trends 

Using the simulated clear-sky DSSI, we investigated the interannual variability of its 

changes that were attributed to total aerosols and the dust and nondust components. The 

nondust optical depth (nDOD), which is considered to be the optical depth of all other 

aerosol components besides dust, was derived by subtracting DOD from AOD. The main 

assumption to derive nDOD is that the dust particles are externally mixed with the rest of 

the aerosol chemical species. For the nDOD RTM simulations, the same additional optical 

properties as those of total aerosols were assumed. By comparison with the RTM results 

without aerosols, the corresponding annual GHI and DNI attenuations due to all other 

aerosol components except dust were derived (nDOD GHI and DNI attenuation hereaf-

ter). The interannual variability of the AOD (red line), DOD (blue line) and nDOD (green 

line) GHI and DNI attenuation is presented (Figure 12b,c) for three different domain av-

erages. The selection of the domains for the spatial averaging was based on the south-to-

north gradient of dust, and the geographical limits of those domains are illustrated in Fig-

ure 12a.  

The year-to-year variability of GHI attenuation by the different aerosol components 

is weaker (0.5% to 1%) compared to the corresponding variability of the DNI attenuation 

(2–4%). For the DSSI attenuation (both GHI and DNI) by total aerosols, a successive de-

cline was found after 2008, which is more prominent for D3. This reduction in the AOD 

DSSI attenuation is in line with the brightening effect over the Mediterranean reported in 

other studies [91,92]. The resulting decline in the DSSI attenuation by aerosol is attributed 

mainly to the dust component for D1 and D2, where the variability of annual DOD DSSI 

attenuation is also large and highly correlated with annual attenuation by total aerosols 

(correlation coefficients (cc) ranging from 0.85 to 0.92). For D3, which has the sharpest 

decrease in DSSI attenuation by total aerosols, this is attributed to both dust (cc = 0.84) and 

nondust components (cc = 0.87).  

The increase in GHI (DNI) in D2 and D3 represents the average of positive, statisti-

cally significant trends of the order of 1–2% (3–6%)/decade, mainly attributed to decreases 

in DOD, over the Mediterranean Sea and most of Europe, and negative, nonsignificant, 

trends over the Anatolian Peninsula. In D1, positive, significant trends in GHI (DNI) of 

the order of 1% (3–4%)/decade were found over Libya and northwestern Egypt, while 

negative significant trends of similar magnitude were found over many regions of the 

remaining D1 area. The overall result was a small positive trend during the whole period 

(2003–2017), which—as discussed earlier—mainly depicts the increase in 2008–2017. More 

information regarding the spatial distribution of the trends can be found in the Supple-

mentary Materials (Figure S17). 
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Figure 12. (a) The geographical limits of the domains used for the spatial averaging. Interannual 

variability of GHI (b) and DNI (c) annual integral change (in %) by total aerosols (AOD, red line), 

dust (DOD, blue line) and other aerosol components beside dust (nDOD, green line) regional aver-

aged for domains 1, 2 and 3 for the 15-year period (2003–2017). 

3.5. GHI and DNI Clear-Sky Climatology 

The availability of solar resources at the Earth’s surface is essential information for 

the different phases of a plant’s deployment and operation. Average annual solar irradia-

tion is a primary site selection criterion [44], and a low seasonal variability is preferable in 
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order to match the power demand. According to the results of previous sections, there are 

areas where the GHI and DNI attenuation due to aerosols can reach 13% and 50%, respec-

tively, which are mainly areas with high solar energy potential (e.g., North Africa). So, the 

clear-sky GHI and DNI mean annual integrals based on high-quality AOD retrievals are 

of great importance for such areas with scarce cloudiness. 

The clear-sky climatology of GHI and DNI was derived using the MODIS AOD as 

input in the RTM. Using the daily irradiations (see Section 2.2.4), annual and seasonal 

integrals of GHI and DNI were derived for every year, and their mean values were calcu-

lated for the entire period (2003–2017) and are presented in Figures 13, S18 and S19, while 

their spatial averages are summarized in Table 7. Given the fact that the cloud effects have 

not been taken into account, the description of the results is focused on the south part of 

the domain, over North Africa and the Middle East, which are areas with high solar en-

ergy potential, scarce cloudiness and high aerosol loads.   

The patterns of both GHI and DNI spatial variability are mainly determined by 

MODIS AOD (Section 3.1) and the surface altitude. For GHI, a latitudinal gradient (south-

to-north) is evident as well. Over North Africa and the Middle East, the cumulative annual 

GHI and DNI range from 7500 to 8800 MJ/m2 and from 7000 to 12000 MJ/m2, respectively 

(Figure 13). Maximum values are observed in the Atlas Mountains (Northwest Africa), in 

the western parts of Libya and the southeastern parts of the ROI. Regarding the spatial 

variability of the seasonal integrals, we focused on spring and summer, when the effect of 

clouds is minimal over the ROI. At this time of the year, the distribution of aerosols ex-

pands to the western parts of North Africa, and the spatial variability of DSSI components 

follows that pattern. While the maximum levels of DNI over the high-altitude areas are 

~3300 MJ/m2 in spring and ~3100 MJ/m2 in summer, very low levels of ~1800 MJ/m2 were 

found in the same seasons for aerosol-affected areas. These differences are less pro-

nounced for GHI (400 MJ/m2 difference in both seasons).  

 

Figure 13. Mean (2003–2017) annual integrals for clear-sky GHI (a) and DNI (b) using MODIS 

AOD. 

Table 7. Regional averages of mean annual and seasonal integrals of clear—sky GHI and DNI using 

ModIs AOD. 

 GHI (MJ/m2) DNI (MJ/m2) 
 Annual 

 7486 (±630) 9899 (±616) 

 Seasonal 

winter 1074 (±273)  1972 (±231)  

spring 2287 (±116)  2747 (±247)  

summer 2612 (±57)  2931 (±299)  

autumn 1512 (±219)  2249 (±143)  
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4. Summary and Conclusions 

The broader Mediterranean Basin hosts and receives various aerosol types, which are 

quite variable in spatial and temporal scales. The overarching goal of the present study is 

to provide an insight into the perturbation of the surface solar radiation, and the subse-

quent impacts on solar energy production, attributed to the presence of all aerosol types, 

but with special emphasis on dust. AOD and DOD from two different datasets (MIDAS 

and CAMS) were used as inputs to the libRadtran RTM (in terms of precalculated LUTs) 

along with other necessary aerosol and atmospheric parameters under clear-sky condi-

tions. Model outputs were the GHI and DNI, which are of particular interest for different 

solar power systems (PV and CSP, respectively). Our study domain encloses the broader 

Mediterranean Basin, and the study period spans from 2003 to 2017 (15 years).  

The intercomparison between MIDAS and CAMS datasets revealed that the latter 

slightly underestimates AOD, and this is mainly evident over areas hosting major aerosol 

sources, while it strongly underestimates DOD by up to 40% (−0.03) with respect to 

MIDAS, which is in agreement with the underestimation reported by Bennouna et al. [84] 

when compared with ground-based retrievals. The CAMS underestimation of high AODs 

resulted in weaker GHI and DNI attenuations on average by 1–4% and 4–11%, respec-

tively. Likewise, due to the pronounced CAMS DOD underestimation, weaker attenua-

tions were found (by 0.5–4% for GHI and 1–15% for DNI). These findings reveal that using 

CAMS DOD to describe the radiative effects of dust would give highly uncertain results, 

especially over areas that are significantly affected by dust, and highlight the importance 

of using reliable aerosol and dust optical properties to accurately simulate DSSI.  

Using the high-quality satellite-derived MIDAS AOD/DOD datasets, a 15-year clima-

tology of total aerosols and dust was established for the broader Mediterranean Basin. The 

largest AODs were found over dust sources or areas affected by dust transport, with max-

imum long-term averaged AOD up to 0.48 over Northwest Africa (up to 0.66 for summer 

season). Over the same area, the peak of MIDAS DOD values was derived as well, with a 

mean annual value up to 0.35 (up to 0.45 for summer). Dust was found to contribute to 

total aerosol loads, in optical terms, from 40% to 90% over North Africa and the Middle 

East, making dust the most important aerosol component over these areas. 

Aerosols attenuate GHI by 1–13% and DNI by 5–47%. The largest attenuation (4–13% 

for GHI and 15–47% for DNI) was found over North Africa and the Middle East. Over the 

same areas, the GHI and DNI reduction by dust ranged from 2–10% and 9–37%, respec-

tively, contributing by 45–90% to the total aerosol effects on DSSI. During the dry seasons 

of the year, when the cloud effects over these areas are comparable or even lower than the 

effects of aerosols, the maximum of aerosol and dust attenuation of the GHI (up to 14% 

and 11%, respectively) and DNI (up to 53% and 40%, respectively) was found, with the 

dust being responsible for up to 95% of the AOD DSSI attenuation. On a daily basis, the 

GHI reduction due to total and dust aerosol reached substantially higher values, up to 

~75% and ~60%, respectively. There were days when the DNI component was totally 

blocked (−100%) under high aerosol and dust loads. 

The investigation of the intra-annual variability of the effects of aerosols and dust on 

GHI revealed, apart from their seasonal variations, the significant role of SSA in calculat-

ing the radiative effects of aerosols. The combination of low SSA values with considerable 

AODs/DODs resulted in peak of regional averaged AOD GHI attenuation in winter, 

which is reversed compared to the seasonal cycle of MIDAS AOD (maximum in summer 

and minimum in winter). The same reasons explain the sharp peak of regional averaged 

DOD GHI attenuation in spring.  

The interannual variability of the DSSI attenuation by total aerosol, dust and total 

aerosol excluding dust was assessed for three subdomains covering the Mediterranean 

Basin. After 2008, a successive decline in aerosol effects on DSSI was found for all do-

mains, which was attributed mainly to the reduction in dust. 

Since it is well documented that the Mediterranean Basin is frequently affected by 

dust intrusions, an assessment of the GHI and DNI attenuation was conducted for extreme 
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dust events over the area. Using the MIDAS DOD dataset and by adopting the methodol-

ogy proposed by [82,83], 67 eDEDs (4.5 eDEDs year−1) were identified over the study area 

for the period 2003–2017. The average DOD during these events reached values up to 0.50 

(over North Africa) and the corresponding GHI and DNI attenuations were 12% and 44%, 

respectively. South Europe was also found to be affected by eDEDs, with the largest GHI 

and DNI attenuations taking place in southeastern Spain, reaching 5% and 25%, respec-

tively. 

Taking advantage of the 15 years of high-quality daily satellite retrievals of AOD 

from the MIDAS dataset, a clear-sky GHI and DNI climatology for the broader Mediter-

ranean Basin was derived. An added value of this new, clear-sky climatology is that the 

DSSI values were simulated using, apart from satellite-derived AOD, a climatology of ad-

ditional aerosol optical properties (SSA, AE), as well as model and satellite products for 

key atmospheric factors (TCWV and TOC). For the south part of the ROI, in summer when 

the levels of DSSI are maximum, the main attenuator of GHI and DNI is aerosols (e.g., 

[47]). Thus, special attention was paid to North Africa and the Middle East, where in sum-

mer, high spatial variability of GHI and DNI was found, of 14% and 42%, respectively. 

The basic limitations of the study are linked with the RTM inputs and their uncer-

tainties. The main parameter to consider is the optical depth (total aerosol or dust). The 

uncertainties (MODIS-AOD, MIDAS-DOD, CAMS) have been documented based on the 

corresponding literature. In addition, SSA and AE data were used as monthly values for 

a 1° × 1° grid through MACv2 climatology. Day-to-day variability of such parameters can 

affect the calculated DSSI on a daily basis. However, it has an almost negligible effect 

when using monthly GHI and DNI for describing the basic climatology of the region un-

der study, especially when optical depth data are relatively accurate. Finally, cloud con-

tamination for satellite-based data is a factor that can affect such DSSI results. However, 

basic comparison of such data with CAMS modeled data showed no significant systematic 

optical depth overestimation from the satellite-based data. The same results have been 

documented when MODIS and MIDAS optical depth comparisons with AERONET have 

been initiated. Finally, aerosol profiling could have a negligible impact on surface-based 

calculated irradiances [5]. 

In conclusion, this study aims to contribute towards a better understanding of the 

role of aerosols and especially of dust on surface solar radiation in terms of GHI and DNI 

over the Mediterranean Basin. The results of this analysis, apart from their importance 

from the perspective of climate science, provide valuable information in terms of manage-

ment and future planning of PV and CSP installations. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/rs14071535/s1, Figure S1: Geographical distribution of long-term 

average of seasonal mean AOD at 550 nm from MODIS. Blank grid points are those that did not 

fulfill the criterion of at least 20% data availability on annual basis. Figure S2: Geographical distri-

bution of long-term average of seasonal mean AOD at 550 nm from CAMS. Blank grid points are 

those that did not fulfill the criterion of at least 20% data availability on annual basis. Figure S3: 

Geographical distribution of long-term average of seasonal mean DOD at 550 nm from MIDAS. 

Blank grid points are those that did not fulfill the criterion of at least 20% data availability on annual 

basis. Figure S4: Geographical distribution of long-term average of seasonal mean DOD at 550 nm 

from CAMS. Blank grid points are those that did not fulfill the criterion of at least 20% data availa-

bility on annual basis. Figure S5: Geographical distribution of annual mean CAMS–MIDAS AOD 

biases. Blank grid points are those that did not fulfill the criterion of at least 20% data availability 

on annual basis. Figure S6: Geographical distribution of annual mean CAMS–MIDAS DOD biases. 

Blank grid points are those that did not fulfill the criterion of at least 20% data availability on annual 

basis. Figure S7: Change (in %) of the mean seasonal integral of GHI due to the presence of aerosols 

under MODIS AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data 

availability on annual basis. Figure S8: Change (in %) of the mean seasonal integral of GHI due to 

the presence of aerosols under CAMS AOD. Blank grid points are those that did not fulfill the crite-

rion of at least 20% data availability on annual basis. Figure S9: Change (in %) of the mean annual 

integral of GHI due to the presence of dust under MIDAS DOD. Blank grid points are those that did 
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not fulfill the criterion of at least 20% data availability on annual basis. Figure S10: Change (in %) of 

the mean annual integral of GHI due to the presence of dust under CAMS DOD. Blank grid points 

are those that did not fulfill the criterion of at least 20% data availability on annual basis. Figure S11: 

Change (in %) of the mean annual integral of DNI due to the presence of aerosols under MODIS 

AOD. Blank grid points are those that did not fulfill the criterion of at least 20% data availability on 

annual basis. Figure S12: Change (in %) of the mean annual integral of DNI due to the presence of 

aerosols under CAMS AOD. Blank grid points are those that did not fulfill the criterion of at least 

20% data availability on annual basis. Figure S13: Change (in %) of the mean annual integral of DNI 

due to the presence of dust under MIDAS DOD. Blank grid points are those that did not fulfill the 

criterion of at least 20% data availability on annual basis. Figure S14: Change (in %) of the mean 

annual integral of DNI due to the presence of dust under CAMS DOD. Blank grid points are those 

that did not fulfill the criterion of at least 20% data availability on annual basis. Figure S15: Geo-

graphical distribution of seasonal mean SSA (MACv2 [63]). Figure S16: Geographical distribution 

of seasonal mean DU SSA (MACv2 [63]). Figure S17: Trends in % per decade for GHI (panels a, b) 

and DNI (panels c,d) due to the changes in AOD (panels a,c) and DOD (panels b,d).Figure S18: Mean 

seasonal integrals for clear-sky GHI using MODIS AOD. Figure S19: Mean seasonal integrals for 

clear-sky DNI using MODIS AOD. 
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Abbreviations 

AATSR Advanced Along-Track Scanning Radiometer 

ADS Atmosphere Data Store 

AE Ångström exponent 

AERONET Aerosol Robotic Network 

AOD aerosol optical depth 

CAMS Copernicus Atmospheric Monitoring Service 

CSP concentrating solar power 

DB database 

DNI direct normal irradiation 

DOD dust optical depth 

DSSI downwelling surface solar irradiance 

DU SSA dust single scattering albedo 

ECMWF European Centre for Medium-Range Weather Forecasts 

eDED extreme dust episode day 

EP Earth Probe 

GHI global horizontal irradiation 
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IEA International Energy Agency 

IFS Integrated Forecast System 

INT integral 

IPCC AR5 Intergovernmental Panel on Climate Change 5th Assessment Report 

IR infrared 

LIVAS Lidar Climatology of Vertical Aerosol Structure 

LUT look-up table 

LW longwave 

MACv2 Max-Planck Aerosol Climatology version 2 

MDF MERRA-2 Dust Fraction 

MENA Middle East and North Africa 

MERRA-2 
Modern-Era Retrospective Analysis for Research and Applications version 

2 

MIDAS ModIs Dust Aerosol 

MODIS Moderate-Resolution Imaging Spectrometer 

NAMEE North Africa, Middle East and Europe 

nDOD nondust optical depth 

OMI Ozone Monitoring Instrument 

PV photovoltaic 

REari radiative effects due to aerosol–radiation interactions 

ROI region of interest 

RTM radiative transfer model 

SW shortwave 

TCWV total column of water vapor 

TOC total ozone column 

TOMS Total Ozone Mapping Spectrometer 

UV ultraviolet  

SSA single scattering albedo 

SZA solar zenith angle 
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