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Abstract: The fifth generation (5G) communication has the potential to achieve ubiquitous position-

ing when integrated with a global navigation satellite system (GNSS). The device-to-device (D2D) 

communication, serving as a key technology in the 5G network, provides the possibility of cooper-

ative positioning with high-density property. The mobile users (MUs) collaborate to jointly share 

the position and measurement information, which can make use of more references for positioning. 

In this paper, a GNSS/5G integrated three-dimensional positioning scheme based on D2D commu-

nication is proposed, where the time of arrival (TOA) and received signal strength (RSS) measure-

ments are jointly utilized in the 5G network. The density spatial clustering of application with noise 

(DBSCAN) is exploited to reduce the position uncertainty of the cooperative nodes, and the posi-

tions of the requesting nodes are obtained simultaneously. The particle filter (PF) algorithm is fur-

ther conducted to improve the position accuracy of the requesting nodes. Numerical results show 

that the position deviation of the cooperative nodes can be significantly decreased and that the pro-

posed algorithm performs better than the nonintegrated one. The DBSCAN brings an increase of 

about 50% in terms of the positioning accuracy compared with GNSS results, and the PF further 

increases the accuracy about 8%. It is also verified that the algorithm suits the fixed and dynamic 

condition well. 

Keywords: GNSS; device-to-device (D2D) communication; integrated positioning; clustering;  

particle filter (PF) 

 

1. Introduction 

Position information in mobile networks has become a key feature to enable various 

location-based services (LBSs) as well as to improve communication performance [1,2]. 

Nowadays, with the increasing demand of LBSs, precise and reliable positioning is a topic 

of high importance and interest, but it is still a challenging task. The global navigation 

satellite system (GNSS) is widely utilized for positioning since it is capable of providing 

a continuous and global-covered position, velocity and time (PVT). Particularly, with the 

construction and development of existing GNSS, such as the U.S. global positioning sys-

tem (GPS), the Russian GLONASS, the Chinese BeiDou navigation system (BDS) and the 

European Galileo, the performance of GNSS has been further enhanced in recent years [3–

6]. However, the accuracy of the existing GNSS can hardly satisfy the demand of some 

LBSs, such as the autonomous and unmanned vehicles in complex environments in the 

big cities with high buildings. Besides, the satellite signals may be blocked or weakened 

in urban environments and canyons, resulting in large positioning errors or even failed 

positioning. Indeed, GNSS is not enough for the positioning in these critical scenarios [7]. 

Therefore, many other types of positioning methods, including inertial navigation, cellu-

lar positioning, and so on, are integrated with GNSS to overcome the shortages of it [8,9]. 
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Actually, the fifth generation (5G) communication is featured with many new tech-

nologies, such as ultra-dense network, millimeter wave (mmWave) communication, edge 

computing and device-to-device (D2D) communication, which provide high-accuracy 

ranging and angle measurements with a high network density, resulting in more accurate 

positioning [10–12]. In practical terms, the combination of GNSS and 5G is important for 

seamless positioning in critical environments. Usually, 5G positioning is just a supple-

ment to GNSS, and especially because 5G positioning may be conducted when GNSS is 

unavailable. Besides, GNSS is integrated into many mobile terminals due to the demand 

for accurate positioning [13]. In this regard, it has attracted much attention of the research-

ers to combine GNSS and 5G for positioning [14,15]. Destino et al. in [16] proposed a novel 

positioning solution, combining mmWave and GNSS to improve the positioning accu-

racy, which is in need of less connected satellites. The authors in [10] integrated GNSS and 

5G for positioning by exploiting the satellites as the base stations (BSs) and exploring ap-

propriate positioning methods in different scenarios. 

In particular, D2D communication enables two mobile users (MUs) in proximity to 

communicate directly without being relayed by the BS, which is regarded as an effective 

way to increase the signal transmission rate and to improve resource efficiency and local 

service flexibility [17,18]. Accordingly, D2D communication can be expected to connect 

more MUs directly, as well as to obtain more accurate measurement information in posi-

tioning, especially with the densely-deployed MUs in the 5G network. In this regard, D2D 

communication is capable of implementing cooperative positioning. Cooperative posi-

tioning requires direct transmission and reception of the signals among the MUs, through 

which the position information, measurements and statistical data are jointly shared and 

processed [19,20]. Based on the exchanged information among the nodes, each node can 

obtain the relative position information to the others and transform it into an absolute one 

with the reference position information. Dammann et al. in [19] analyzed the Cramer–Rao 

lower bound (CRLB) of D2D cooperative positioning, setting a benchmark of the position-

ing performance in an urban scenario. 

Inspired by this, GNSS and D2D communication can be perfectly integrated in a co-

operative manner to provide the absolute and relative positions simultaneously for the 

MUs in the 5G network. It is obviously beneficial to improve the positioning accuracy and 

robustness by using different information from these two sources. 

Positioning based on D2D communication, referred to as D2D positioning, mainly 

depends on the distance estimation between the requesting nodes and the reference 

nodes, where the requesting nodes refer to the MUs requesting for their positions and the 

reference nodes refer to the BSs or the other MUs with known positions [21,22]. Different 

measurements can be exploited for the distance estimation, such as time of arrival (TOA) 

and received signal strength (RSS). The TOA method requires time synchronization be-

tween the nodes, which increases the complexity and cost, while the RSS method is more 

cost-effective because of the intuitive transmitting and receiving features of the nodes. It 

is also proven in [23] that the TOA method is more accurate at long range in distance 

estimation, and on the contrary, the RSS method is more accurate at short distances. As 

such, the TOA and RSS measurements are usually jointly exploited for positioning in the 

mobile network. A hybrid TOA/RSS method was proposed in [24] to estimate the posi-

tions and obtain the CRLB of the positioning. The authors in [25] presented a data fusion 

framework based on the relationship between the TOA/RSS measurements and the dis-

tances. Notice that the distances obtained from the TOA/RSS measurements are three-di-

mensional, while the above literature only consider two-dimensional distances between 

the users. 

Certainly, it is essential to integrate the measurements from GNSS and D2D commu-

nication. As one of the most important algorithms for data fusion, particle filter (PF) is 

widely used in the integration of GNSS and other navigation methods [26]. Mensing et al. 

in [27] combined GNSS and cellular measurements by several kinds of Kalman filters 



Remote Sens. 2022, 14, 1517 3 of 21 
 

 

(KFs), where the result of PF is represented as the lower bound because of its high accu-

racy. Yin et al. in [28] integrated GNSS and D2D measurements by using PF and proved 

that the integrated algorithm outperforms the nonintegrated ones. 

Note that there are two kinds of nodes in cooperative positioning [29]: (i) fixed nodes, 

such as the BSs in 5G network (the positions of the fixed nodes are accurate), and (ii) co-

operative nodes, such as the MUs (the position information of the cooperative nodes is 

usually inaccurate due to the instability of the positioning source signals and the influence 

of the signal transmission) [29]. According to the above literature, most of the positioning 

methods are based on the accurate position information of the known nodes, while it is 

not realistic. Therefore, it is nontrivial to consider the position accuracy of the cooperative 

nodes, which certainly influences the accuracy of the requesting nodes’ positions. The au-

thors in [29] proposed a D2D co-localization algorithm exploiting density-based spatial 

clustering of applications with noise (DBSCAN) to reduce the position errors of the coop-

erative nodes and show its effectiveness in the simulation results. 

In practice, more information results in heavier computation, whereas MUs only 

have limited computational capacity [9]. Due to the deployment of a large amount of ul-

tra-dense edge devices, such as small-cell BSs and smart devices, the idle computation 

capacity of them is sufficient to enable ubiquitous mobile computing, denoted as edge 

computing [30]. Indeed, it is suitable for ubiquitous positioning in the GNSS/5G integrated 

positioning scheme. Thus, it has the potential to provide high positioning accuracy and 

robustness for the MUs. 

Motivated by the above literature, we study the GNSS/5G integrated three-dimen-

sional positioning scheme based on D2D communication and consider the inaccurate po-

sition information of the cooperative nodes. The main contributions are summarized as 

follows: 

1. A GNSS/5G integrated three-dimensional positioning scheme is proposed, in which 

D2D communication is utilized to share the measurements and position information 

between the MUs. Moreover, the TOA/RSS measurements in the 5G network are 

combined to estimate the distances between the requesting nodes and the reference 

nodes. 

2. The three-dimensional distances between the requesting nodes and the reference 

nodes are considered to obtain their positions, and accordingly, a three-dimensional 

signal propagation model is exploited to characterize the path loss of the positioning 

signals in the RSS method. 

3. The combination algorithm of DBSCAN and PF is employed in the GNSS/5G inte-

grated three-dimensional positioning scheme. The inaccurate position information of 

the cooperative nodes is considered, and the DBSCAN algorithm, based on the GNSS 

and TOA/RSS measurements, is developed, which reduce the position deviation of 

the cooperative nodes and obtain relatively accurate positions of the requesting 

nodes. Furthermore, a PF algorithm integrating the TOA/RSS measurements with the 

above results as initial values is presented. 

The remainder of the paper is organized as follows. The system model and position-

ing model are described in Section 2. Section 2 also introduces DBSCAN and PF, and it 

further illustrates the GNSS/5G integrated three-dimensional positioning scheme with in-

accurate cooperative nodes. Section 3 presents numerical results to demonstrate the per-

formance of the proposed algorithm. We discuss the simulation results and elaborate on 

the future research direction in Section 4. Finally, Section 5 concludes the paper. 

2. Methods 

2.1. System Model 

We consider a GNSS/5G integrated three-dimensional positioning system, as de-

picted in Figure 1, consisting of some GNSS satellites, M  BSs and N  MUs. The latter 

are denoted as  = 1,2, ,M  and  = 1,2, , N , respectively. For convenience, Table 
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1 lists some important notations in this paper. We assume that the positions of the BSs are 

accurate. The MUs contain the requesting nodes that need positioning and the cooperative 

nodes with inaccurate known positions. Actually, the requesting nodes belong to cooper-

ative nodes in cooperative positioning, while here we only name the MUs who serve as 

the reference nodes as the cooperative nodes, just to distinguish them. The requesting 

nodes and the cooperative nodes are denoted as  1,2, , NR=  and 

 1,2, , NC= , respectively. To be specific, each MU not only receives the positioning 

signals from the GNSS satellites, but is also capable of communicating with other MUs 

besides the BSs, known as D2D communication. The signals from the BSs and other MUs 

can also be used for positioning purpose. We assume that each D2D pair occupies one of 

the orthogonal frequency bands, and thus, there is no interference between these signals. 

Table 1. Notation summary. 

Symbol Description 

 = 1,2, ,M  Set of M  BSs 

 = 1,2, , N  Set of N  MUs 

 1,2, , NR=  Set of NR  requesting nodes 

 1,2, , NC=  Set of NC  cooperative nodes 

( ), ,i i i ip x y z=  The position of node i  

ijd  The distance between node i  and j  

ˆ
ijd  The estimated distance between node i  and j  

0, jit , 
ijt  The departure and arrival time of the signal from node j  to i , respectively 

ijt  The traveling time of the signal from node j  to i  

c  Speed of light 
b

ijPL , m

ijPL  The path loss of the signal between the BS and the MU and MUs, respectively 

cf  The carrier frequency of the transmitted signal 
b

ijSF  Shadow fading of the signal between the BS and the MU 
b

ij , m

ij  Flat fading coefficient of the signal between the BS and the MU and MUs, respectively 

jist , 
ijsr  The transmitted and received signal from node j  to i , respectively 

( ),MinPts  The size of the neighborhood and the minimum data points in a cluster, respectively 

 1 2, , , nData dp dp dp=  Data set of n  points in DBSCAN 

( )iN dp
 neighborhood −  of idp  

i  The set of reference nodes of node i  

 1, , , ,
ii l aK pt pt pt=  The set of positions calculated for node i  

( )1:k kP X Z  The posterior probability density at time slot k  

( )kPX f  The f th particle at time slot k  

( )k f  The weight of the f th particle at time slot k  

pN  The number of the particles 

D2D communication enables two MUs in proximity to communicate directly without 

being relayed by a BS, which provides additional signal observations besides those from 

the BSs, and a meshed network structure rather than the traditional star shaped one can 

be obtained [18,19]. In this case, the requesting nodes can set up plenty of D2D links with 

other MUs, including the cooperative nodes and the other requesting nodes, to obtain 

pseudo ranges and share the position information and measurements. Actually, D2D po-

sitioning requires multi and frequent connection and a small amount of data, which is 
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contrary to D2D communication. Meanwhile, a control link consuming much fewer re-

source is implemented for D2D discovery, link evaluation and resource allocation. Thus, 

to save link and time resource, an MU only exchanges the necessary data with other MUs 

via the D2D control links for positioning purposes [28]. 

MU 2

MU 3

MU 4

MU 1

Cellular Link

D2D Link

MU

GNSS Satellite

Satellite Link

BS 3

BS 4

BS 1

BS 2 BS

 

Figure 1. System model of GNSS/5G three-dimensional integrated positioning. 

As shown in Figure 1, each MU is connected to the BSs and some other MUs in prox-

imity. If an MU is far from a BS, it may not be able to receive the signal from the BS. For 

example, the distance between BS 2 and MU 4 is too far to receive a qualified signal for 

MU 4 to position. Generally speaking, each MU needs four BSs for three-dimensional po-

sitioning without considering time synchronization in the wireless network. Here, the sig-

nals from the BSs and other close MUs can all be used for positioning. 

2.2. Positioning Model in 5G 

We assume that the BSs and the MUs are all equipped with GNSS chips, indicating 

that the time between them is synchronized. In the three-dimensional plane, there are two 

positioning methods for a requesting node: (i) the positioning signals from the GNSS sat-

ellites can be directly calculated to obtain the position, and (ii) the TOA and RSS measure-

ments of four reference nodes (the BSs and the cooperative nodes), which can be trans-

formed into the distances, are enough to be utilized for positioning if the MUs’ time offset 

is ignored. In practice, TOA-based positioning and RSS-based positioning are very popu-

lar due to their ready availability. To utilize the advantages of TOA and RSS measure-

ments and improve the positioning accuracy, we exploited both of them to estimate the 

distances between the requesting nodes and the reference nodes, referred to as the joint 

TOA/RSS method. 

In essence, the GNSS positioning and TOA- and RSS-based positioning supple-

mented with each other, which can be integrated to obtain a more accurate solution, and 

we illustrate the integrated method in the next subsection. Here, we mainly focus on the 

distance estimation based on TOA and RSS measurements. In the following, the distance-

based positioning is described firstly, and then, TOA and RSS measurements are analyzed 

in detail to estimate the distances between the nodes, respectively. 

2.2.1. Distance Based Positioning 

Without loss of generality, the BSs and the MUs are all seen as the nodes which can 

function as reference nodes; ( ), ,i i ix y z  and ( ), ,j j jx y z  are the positions of node i  and 

j , respectively. For a requesting node i  and a reference node j , the distance between 

them can be represented as 
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( ) ( ) ( )
2 2 2

ij i j i j i jd x x y y z z= − + − + −  (1) 

Intuitively, Figure 2a illustrates the two-dimensional positioning procedure based on 

trilateration when there are three reference nodes. The red star represents the true position 

of a requesting node. When the TOA or the RSS measurements between the requesting 

node and the reference nodes are known, the distances between them can be obtained. 

Regardless of the error in distance measurements, the three blue curves shown in Figure 

2a intersect in a red star. By analogy, four reference nodes are needed for a requesting 

node to decide its three-dimensional position and for four spheres to meet at one point. 

 
(a) (b) 

Figure 2. Two-dimensional positioning based on trilateration: (a) the positioning procedure when 

the positions of three reference nodes are accurate, and (b) the comparison between the positioning 

procedure with accurate and inaccurate reference nodes. 

2.2.2. TOA-Based Distance Estimation 

The distance between two nodes depends on the traveling time and the traveling 

speed of the signal transmitted from one node to the other. Here, we assume that a 

timestamp 
0, jit  is attached to the signal from node j  to node i  before node j  trans-

mits it, i.e., the departure time of the signal can be obtained. The arrival time at node i  is 

shown as 

0,

ij

ij ji ij

d
t t

c
= + +  (2) 

where 
ijd  is the true distance between node i  and j , and 

ij  is a zero-mean random 

variable with a variance of 2

t , which is caused by the measurement error. To be general, 

we assume that 2

t  for different nodes is the same and obeys the Gaussian distribution 

[23]. Besides, the signal travels at the speed of light, which is denoted as c . Denote 
ijt  

as the traveling time of the positioning signal between node i  and j  with error 
ij  

based on the above analysis. Then, we have 

0,

ij

ij ij ji ij

d
t t t

c
 = − = +  (3) 

2,
ij

ij t

d
t

c


 
  

 

 (4) 

According to the above analysis, the estimated distance between node i  and j  is 

expressed as 
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ˆ  

    

     

ij ij

ij

ij

ij ij

d c t

d
c

c

d c





= 

 
= + 

 

= +

 (5) 

Obviously, the estimated distance between node i  and j  consists of the true dis-

tance between the two nodes and an additional error from the measurement error. 

2.2.3. RSS-Based Distance Estimation 

In general, if the signal propagation model is determined, and the transmitted signal 

at one node and the received signal at the other node are known, the distance between 

these two nodes can be obtained. In the following, we firstly illustrate the three-dimen-

sional signal propagation model based on our system model, and then, the distance esti-

mation based on the RSS measurements is given. 

• Signal Propagation between the BS and the MU 

We apply the typical urban macro cell three-dimensional channel model proposed in 

the 3rd Generation Partnership Project (3GPP) for the signal propagation between the BS 

and the MU [31]. Generally, a small-scale fading effect mainly originates from the multi-

path effect, which can be ignored due to our requirements of the received signals. In this 

regard, we focus on the large-scale fading parameters. If the requesting node is denoted 

as node i , then the BS as j . The path loss of the signal between node i  and j  is repre-

sented as: 

   ( )  ( )dB log m log GHzb

ij ij cPL A d B C f= + +  (6) 

where cf  is the carrier frequency of the transmitted signal. Specifically, only the signal 

with line-of-signal (LoS) reception is considered to guarantee the quality of service (QoS), 

which means that the distance between the nodes capable of positioning is within a 

threshold. 

In addition to the large-scale fading, shadow fading also needs to be taken into ac-

count. It is a random process drawn in dB from a normal distribution with zero mean and 

a variance of 2

SF  [19], expressed as: 

  ( )2dB 0,b

ij SFSF =  (7) 

According to the above analysis, the large-scale fading and shadow fading can be 

integrated into the flat fading coefficient b

ij , reflecting the overall path loss of the signal: 

2010

b b
ij ijPL SF

b

ij

+
−

=  (8) 

• Signal Propagation between the MUs 

Contrary to the signal propagation between the BS and the MU, the free space path 

loss without shadow fading is considered for the propagation between the MUs. Then, we 

would have [19] 

   ( )  ( )dB 20log m 32.4 20log GHzm

ij ij cPL d f= + +  (9) 

for the free space path loss between node i  and j . Accordingly, the flat fading coeffi-

cient is shown as: 

2010

m
ijPL

m

ij
−

=  (10) 

• Distance Estimation 
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If node j  transmits a signal 
jist  to node i , the received signal at node i  is as fol-

lows: 

ij ij ji ijsr st n= +  (11) 

where b

ij ij =  or m

ij ij =  is the flat fading coefficient when node j  is a BS or an MU, 

respectively. 
ijn  is the additive white Gaussian noise, which can be expressed as: 

( )20,ij rn   (12) 

where 2

r  is the variance of the Gaussian distribution. Similarly, 2 2

,r r b =  or 2 2

,r r m =  

is the variance for the BS or the MU, respectively.  

Since both the transmitted signal 
jist  and the received signal 

ijsr  are obtained, we 

can calculate the flat fading coefficient, which can be further used to estimate the distance 

between the two nodes based on (6) or (9). Nevertheless, it has to be pointed out that the 

estimated distance is not an accurate one because of various noises. 

2.3. GNSS/5G Integrated Three-Dimensional Positioning Scheme 

In this subsection, we propose a GNSS/5G integrated three-dimensional positioning 

scheme. As Figure 2b indicates, an area bounded by three intersecting circles is repre-

sented by a shade of gray in the two-dimensional positioning, when the positions of the 

reference nodes are inaccurate. Similarly, a stereo region will be formed in the three-di-

mensional positioning. As earlier mentioned, the positions of the cooperative nodes are 

not accurate enough to act as the reference nodes, and then, the positioning results of the 

requesting nodes will be affected. If we choose four reference nodes to position a request-

ing node each time, there will be a lot of position results with some errors. DBSCAN can 

keep the high-density data points and remove the outliers in the sample data set. Then, 

the outlying results with large errors can be identified when a large number of calculated 

positions of a node are available. Thus, according to the GNSS and TOA/RSS measure-

ments, we firstly exploit DBSCAN to obtain relatively accurate positions of the requesting 

nodes. Meanwhile, we can also reduce the position deviation of the cooperative nodes. 

Then, the results from the DBSCAN algorithm are input as the initial state of the MUs in 

PF, which further integrate with the TOA/RSS measurements.  

2.3.1. GNSS/5G Integrated Three-Dimensional Positioning Based on DBSCAN 

Firstly, we describe DBSCAN briefly. Then, the GNSS/5G integrated three-dimen-

sional positioning algorithm exploiting the joint TOA/RSS method is proposed. 

• DBSCAN 

Clustering classifies the data set into different groups according to a standard of as-

sociation. As a result, the data points in the same cluster are similar, while the data points 

in different clusters are not. The input of the clustering is a sample data set and a standard 

of similarity between two points, and the output is some partitions of the sample data set 

without intersection [32]. 

DBSCAN is a density-based clustering, which assumes that the clusters can be deter-

mined by the density of the data set [33]. To be specific, the clusters are the collections of 

data points with high density separated by the regions of low data point density. That is, 

the density of the data points within a cluster is considerably higher than those outside of 

the cluster. 

We denoted ( ),MinPts  as the neighborhood parameters to depict the closeness of 

the data point distribution, which reflects the size of the neighborhood and the minimum 

data points in a cluster, respectively. Here, for an arbitrary data point idp , 

neighborhood −  is defined as: 
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( ) ( ) ,i j i jN dp dp Data dist dp dp =    (13) 

where ( )1 2, , , nData dp dp dp=  is the data set, and ( )dist   represents the distance be-

tween two data points. ( )iN dp
 denotes the data points at a distance from idp  shorter 

than  . If the neighborhood −  of data point 
idp  exceeds MinPts , i.e., 

( )iN dp MinPts  , idp  is called a core object.  

According to [34], some definitions can be given intuitively in Figure 3. The yellow 

dashed lines and the blue solid points represent the neighborhood −  and the data 

points, respectively. Assume that 
3dp  is a core object, and then, 

2dp  and 
1dp  are directly 

density-reachable and density-reachable from 3dp , respectively, as shown in Figure 3. In 

addition, 1dp  and 6dp  are density-connected. The key idea of DBSCAN is that, for a 

given size of neighborhood  , each formed cluster contains as many as density-con-

nected data points, the amount of which is at least MinPts  [32]. 

1dp

2dp
3dp

4dp

6dp

5dp

 

Figure 3. The basic definitions of DBSCAN. 

• GNSS/5G Integrated Three-Dimensional Positioning Algorithm Based on DBSCAN 

At first, we exploit the GNSS measurements to calculate the initial positions for the 

requesting nodes. As we all know, the GNSS positioning is in the accuracy of several me-

ters in the kinematic situation. In addition, the cooperative nodes only know their inaccu-

rate positions. In other words, the known position of each MU in the network is not accu-

rate. However, more accurate positions of the cooperative nodes further used in the fol-

lowing algorithm can improve the position accuracy of the requesting nodes. Hence, we 

also take into account the prior information of the cooperative nodes in the clustering pro-

cess to obtain more accurate positions of them, i.e., the cooperative nodes are also re-

garded as the requesting nodes, and then, the BSs and other MUs are seen as the reference 

nodes. According to this, the positions of the requesting nodes and the cooperative nodes, 

i.e., the positions of the MUs, are all in need of revision in the DBSCAN algorithm.  

For each MU, there are M  BSs and 1N −  other MUs potential for positioning. Ac-

tually, not all of these potential nodes can finally be the reference nodes. According to the 

analysis in Section 2.2, the distance between the reference nodes and the requesting node 

should be short enough to guarantee the QoS, otherwise they cannot be taken into account 

as the reference nodes. Here, the requesting nodes and the cooperative nodes share the 

potential reference nodes in the same set of the MUs in addition to the BSs. Besides, as the 

cooperative nodes and the requesting nodes are ordinary MUs in the network, the posi-

tioning method and the signal propagation model for them are the same.  

Without loss of generality, we firstly focus on MU i  to illustrate the generation of 

the sample data set before implementing the clustering process. We denote ( ), ,i i i ip x y z=  

as the initial position of MU i , which is inaccurate. The set of the initial positions of all 

the MUs in the network is  1, , , ,i Np p p= . Assume that the nodes, including the 

BSs and other MUs from which the distance to MU i  is within MaxD , are the reference 
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nodes of MU i , i.e.,  ,i ijj j i d MaxD=    . Then, 
i

 represents the num-

ber of the reference nodes. As any four reference nodes in 
i
 can determine the only 

position of MU i , there are 
4

i
ia C=  positions obtained, which further form the data 

points in the clustering. These positions are shown as: 

 1, , , ,
ii l apt pt pt=  (14) 

where 
lpt  is the position calculated through the l th combination of the reference nodes. 

The data points in the clustering are composed of the calculated positions of N  MUs in 

the network, and accordingly, the data points are shown as  1, , , ,i N= . 

Here, we exploit both TOA and RSS measurements to calculate the distance between 

two nodes, which is probably different. Consequently, the obtained positionsare different. 

We firstly implement two independent clustering process using TOA and RSS measure-

ments, respectively, and then they are integrated through a weighting method. It is obvi-

ous that i  and i  for MU i  are different in these two methods. Hence, as for MU i , 

we denote  , ,,t i t ijj j i d MaxD=     and  
,, ,1 , ,, , , ,

t it i t t l t apt pt pt=  for the 

TOA measurements, and we denote   , ,,r i r ijj j i d MaxD=     and 

 
,, ,1 , ,, , , ,

r ir i r r l r apt pt pt=  for the RSS measurements. 
,

4

,
t i

t ia C=  and 
,

4

,
r i

r ia C=  are 

the numbers of calculated positions for MU i  based on the TOA and RSS measurements, 

respectively. As a result, the set of the data points in the clustering are 

 ,1 , ,, , , ,t

t t i t N=  and  ,1 , ,, , , ,r

r r i r N=  for the two kinds of measure-

ments, and the numbers of the data points are denoted as 
tDataNum  and 

rDataNum , re-

spectively. 

Then, the DBSCAN algorithm is implemented based on the TOA and RSS measure-

ments separately. We take the TOA measurements, for example, and the clustering pro-

cess based on the RSS measurements is the same. We summarize the DBSCAN based on 

the TOA measurements in Algorithm 1 as DATM. For further explanation, there are two 

main steps. Firstly, the positions calculated by the TOA measurements are regarded as the 

data points in the clustering, and we find the core objects according to ( ),MinPts , as 

lines 2 to 7 show. Then, the clusters are formed according to the density of the data points, 

in which each cluster gather around the position of an MU, as line 8 to 19 indicate.  

The DBSCAN algorithm based on the RSS measurements is similar to DATM. After 

obtaining the clustering results based on both of the measurements, the results are 

weighted according to their variance. We also take the clustering result based on the TOA 

measurements, for example, and the weighting process is as follows. As mentioned in 

DATM, ( ), , , ,, ,t h t h t h t hp x y z=  is the mean value of the h th cluster, which indicate the posi-

tion of an MU. We assumed that there are hb  data points in the h th cluster denoted as 

 , ,1 , ,, , , ,
ht h t t g t bpc pc pc= , where ( ), , , ,, ,t g t g t g t gpc xc yc zc= . Then, the variance of the 

east, north and up coordinate in the h th cluster is shown respectively as 

( )
2

, , ,

1

hb

t h t h t g

g

vx x xc
=

= −  (15) 

( )
2

, , ,

1

hb

t h t h t g

g

vy y yc
=

= −  (16) 
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( )
2

, , ,

1

hb

t h t h t g

g

vz z zc
=

= −  (17) 

Accordingly, we can obtain 
,r hvx , 

,r hvy  and 
,r hvz  for the h th cluster based on the 

RSS measurements. Since the distribution in the east, north and up coordinate may be 

different, we integrate the clustering results in different coordinates, respectively. Then, 

we define the position based on the joint TOA/RSS method as ( ), , , ,, ,tr h tr h tr h tr hp x y z= , 

where 
,tr hx , 

,tr hy  and 
,tr hz  are respectively represented as [35] 

, ,

, , ,

, , , ,

1 1

1 1 1 1

t h r h

tr h t h r h

t h r h t h r h

vx vx
x x x

vx vx vx vx

= +

+ +

 (18) 

, ,

, , ,

, , , ,

1 1

1 1 1 1

t h r h

tr h t h r h

t h r h t h r h

vy vy
y y y

vy vy vy vy

= +

+ +

 (19) 

, ,

, , ,

, , , ,

1 1

1 1 1 1

t h r h

tr h t h r h

t h r h t h r h

vz vz
z z z

vz vz vz vz

= +

+ +

 (20) 

Here, we obtain the positions based on the joint TOA/RSS method after the DBSCAN 

algorithm, represented as  ,1 ,2 ,, , ,tr tr tr tr up p p= . 

Algorithm 1: DBSCAN Algorithm Based on The TOA Measurements (DATM) 

Input:  ,1 , ,, , , ,t

t t i t N= , ( ),MinPts  

1: Initialization: Let =  be the set of core objects, 0u =  be the number of clusters 

and 
t =  be the sample data set unvisited 

2: for all 
tr  do 

3: determine the neighborhood −  of data point rdp  as 

( ) ( ) ,t

r s r sN dp dp dist dp dp =    defined in (13) 

4:   if ( )rN dp MinPts   then 

5:    rdp  is added to the set of the core objects:  rdp=  

6:   end 

7: end 

8: while =  do 

9:    set the current unvisited sample data set as old =  , select a core object o  

and 

denote a queue as Q o= , then  \ o =   

10：   while Q   do 

11:        extract the first data point q  in Q  

12：      if ( )N q MinPts   then 
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13:         ( )N q =   and add the data points in   to Q , \ =    

14:       end 

15:     end 

16:     1u u= +  and the formed cluster is 
, \t u oldC =    

17:     
,\ t uC=  

18: end 

19: Output the clustering result  ,1 ,2 ,, , ,t

t t t uC C C=  and calculate the mean value of 

each cluster in 
t
 denoted as  ,1 ,2 ,, , ,t

t t t up p p=  

2.3.2. GNSS/5G Integrated Three-Dimensional Positioning Based on PF 

PF is appropriate for the heterogeneous positioning methods with various noise, 

which forms a non-linear problem. Hence, based on the positions obtained from the 

DBSCAN algorithm, we further exploit PF to improve the accuracy of the positions of the 

requesting nodes. We firstly describe the concept of PF, and then, the GNSS/5G integrated 

three-dimensional positioning algorithm based on PF is proposed. 

• PF 

PF is a probability-based estimator, which originates from the sequential Monte 

Carlo estimation method [36]. The main idea of PF is that the probability density is de-

scribed in terms of the random samples, known as the particles, together with their corre-

sponding normalized weights. PF is well suited to the nonlinear problems with respect to 

state-transition models and observation models, since the sample-based method can de-

scribe the general probability density [37]. 

The purpose of filtering is to recursively estimate the posterior probability density 

( )1:k kP X Z  at time slot k , which is approximated by a set of particles and the corre-

sponding normalized weights in the form 

( ) ( ) ( )( )1:

1

pN

k k k k k

f

P X Z f X PX f 
=

 −  (21) 

where kX  is the state, and 1:kZ  is the observation. ( )kPX f  is the f th particle, and 

( )k f  is the corresponding normalized weight. ( )  is the Dirac delta function. 
pN  is 

the total number of particles. Here, the sequential importance sampling (SIS) is exploited. 

Indeed, it is difficult to sample the posterior probability density ( )1:k kP X Z . According 

to the SIS, a known distribution ( )1:k kq X Z  called importance distribution is introduced 

for sampling which approximates ( )1:k kP X Z . Besides, the SIS can realize the recursive 

estimation of the weights. Then, based on the sequential Bayes theory, we have [38] 

( )
( ) ( )

( )
( )1

1: 1: 1: 1 1: 1

1: 1

k k k k

k k k k

k k

P Z X P X X
P X Z P X Z

P Z Z

−

− −

−

=  (22) 

and the importance distribution is shown as 

( ) ( ) ( )1: 1: 1: 1 1: 1: 1 1: 1,k k k k k k kq X Z q X X Z q X Z− − −=  (23) 

Thus, the weights of the particles are obtained: 

( )
( )
( )

( ) ( )
( )

( )
1; 1: 1

1

1: 1: 1: 1 1:,

k k kk k k

k k

k k k k k

P Z X P X XP X Z
f f

q X Z q X X Z
 

−

−

−

=   (24) 
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For simplicity, ( ) ( )1: 1 1: 1,k k k k kq X X Z P X X− −=  is chosen in the SIS. Thus, (24) is writ-

ten as: 

( ) ( ) ( )1k k k kf P Z X f  −  (25) 

Nevertheless, the variation among the weights will increase with the time, which is 

the particle degeneracy phenomenon. After several recursions, the weights of most parti-

cles tend to be 0 while the remaining tend to be 1. It means that most of the sample points 

have to be discarded. To avoid this phenomenon, we adopt resampling to sample the high 

weight particles repeatedly and delete the low weight particles. In essence, the resampling 

maps the original particles into the updated particles distributed uniformly. In other 

words, the weight of each updated particle is equal, i.e., 
1

pN
. Therefore, the state estima-

tion after the resampling is 

( )
1

1ˆ
pN

k k

fp

X PX f
N =

=   (26) 

• GNSS/5G Integrated Three-Dimensional Positioning Algorithm Based on PF 

Here, we consider the requesting nodes in . The BS in  and the cooperative 

nodes in  are the potential reference nodes. In practice, the reference nodes are not 

all visible to the requesting nodes as mentioned above. Without loss of generality, we con-

centrate on MU i  in . According to the distance constraint, the visible reference nodes 

constitute a set denoted as 
i
. We denote  ,t r =  as the TOA and RSS measurements, 

where t  represents the TOA measurements, and r  represents the other. k  is the time 

when the DBSCAN algorithm based on the joint TOA/RSS method outputs. We assume 

that at time k , the requesting nodes not only know their own positions from the DBSCAN 

results, but also the positions of the BSs and the cooperative nodes. In addition, the GNSS 

and TOA/RSS measurements are available at time k . 

PF is implemented for each MU in . Here, for MU i , in addition to the BSs that 

can be used for positioning, denoted as tr , the reference nodes based on the TOA and 

RSS measurements form 
,t i

 and 
,r i

, respectively. The objective is to find the state of 

MU i  denoted as i

kX , which maximizes the posterior distribution, formulated as fol-

lows: 

( )
2

1:max         
ii i i

k k kbel X P X i =   
 

 (27) 

Where 
2

, ,

i

t i r i tr i= , and we denote 
, ,

i

t i r i tr= . Then, 
2ii  in-

cludes ii  and all the ij s where ij . 
2

1:

ii

k  represents the collected information be-

fore time k . ii

k
 contains 

,

,

itr i

D kZ , the TOA and RSS measurements between MU i  and 

all the j s in i . 
ii

k  contains the estimated state of all the j s in i  at time 1k − , 

denoted as 
1

ˆ j

kX −
. Then, based on the initial position obtained from the DBSCAN output, 

i

kX  in (27) is the integrated position of MU i . Besides, (27) can be further expressed in 

(28) based on the Bayesian formula: 

2 2 2

2 2 2 2

1: 1:

,

, 1 1 1 1: 1
ˆ

i i i i

i i i i i i i

i i i

k k k k k

tr i i i

D k k k k k k k k

P X P X X

P Z X X P X X P X X− − − −

   =    
   

           
     




 (28) 
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From Equation (28), it is obvious that the first two items are the likelihood function 

and the prediction function, which represent the weights of the particles and the im-

portance distribution, respectively. Then, the GNSS/5G integrated three-dimensional po-

sitioning algorithm based on PF is illustrated in Algorithm 2 as GITPAPF. Firstly, as 

shown in line 1, we initialize the particles based on the DBSCAN output and the important 

distribution. After that, in each time slot, we use PF to estimate the state of i

kX , as line 2 

to 9 indicate. For each requesting node in , GITPAPF is conducted to obtain the inte-

grated position result. 

Notice that the size of 
2i  determines the size of 

2i

kX , and a large number of 

particles have to be sampled and calculated to obtain the integrated positions of the re-

questing nodes in . Hence, the edge computing is exploited to overcome the problem 

of limited computing resources in the MUs, which can also shorten the delay of position-

ing. 

Algorithm 2: GNSS/5G Integrated Three-Dimensional Positioning Algorithm Based on 

Particle Filter (GITPAPF) 

Input: the initial distribution ( )
2

0

i

p X  

1: Initialization: generate the initial state of the particles ( ) ( )
2

0    1, 2, ,
i

pPX f f N=  

according to ( )
2

0

i

P X  

2: for all 1,2,3,k =  do 

3:   let 
2 2 2 2

1 1

i i i i

k k k kq X X P X X− −

   =   
   

 be the importance distribution 

4:   sample the particles at time slot k  according to ( )
2 2 2

1

i i i

k k kPX f q X X −

 
 
 

 

5:   calculate the weights of the particles at time slot k : 

( )
2 2

,

, 1
ˆ,

i i i itr i

k D k k kf P Z X X −

   
 

 

6:   normalize the weights: ( ) ( ) ( )
2 2 2

1

1

p
i i i

N

k k k

f

f f f  

−

=

 
=  

  
  

7:  resampling the particles and the weight of each of them is 
1

pN
 

8:  calculate the estimated state at time slot k  as ( )
1

1ˆ
pN

i i

k k

fp

X PX f
N =

=   and output the 

result 

9: end 

2.3.3. GNSS/5G Integrated Three-Dimensional Positioning Algorithm 

Based on the above analysis, the GNSS/5G integrated three-dimensional positioning 

algorithm is summarized in Algorithm 3 as GITPA. Specifically, there are three steps. 

Firstly, based on the GNSS and TOA/RSS measurements, we obtain the positions of all the 

MUs according to DATM, including the requesting nodes and the cooperative nodes, as 

shown in lines 1 and 2. Then, the clustering results based on the TOA and RSS measure-

ments are weighted, as lines 3 to 7 indicate. In final, GITPAPF is conducted to further 

improve the accuracy of the requesting nodes, as line 8 indicates. 
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Algorithm 3: GNSS/5G Integrated Three-Dimensional Positioning Algorithm (GITPA) 

Input:  

1: generate the data points for DATM based on  and the TOA/RSS measurements 

2: conduct DATM according to the TOA and RSS measurements respectively, and each 

pair of the closest clusters based on both of the measurements are given the same 

number 

3: for all 1,2, ,h u=  do 

4:   calculate 
,t hvx , 

,r hvx , 
,t hvy , 

,r hvy , 
,t hvz  and 

,r hvz  according to (15), (16) and 

(17), respectively 

5:    obtain ( ), , , ,, ,tr h tr h tr h tr hp x y z=  according to (18), (19) and (20) 

6: end 

7: let  ,1 ,2 ,, , ,tr tr tr tr up p p=  

8: project tr  into 
2

0

ii  and conduct GITPAPF for each MU in  

3. Results 

In this section, we carry out several numerical simulations to evaluate the proposed 

algorithm. The simulation setup is as follows. Consider an urban cellular mobile radio 

environment with four BSs and 13 MUs, and the latter is composed of five requesting 

nodes and eight cooperative nodes. Meanwhile, GNSS satellites are available to provide 

the measurements for the MUs. We assume a default height of the BSs, denoted as 

25mBSh = , and the height of the MUs satisfies 1.5m 22.5mMUh  . Hence, according to 

[31], the signal propagation model parameters for the propagation between the BS and 

the MUs can be obtained, i.e., 22A = , 28B = , 20C =  and 2 =4SF dB . In general, as the 

transmitting distance between two D2D users is below 100 m, to guarantee the QoS be-

tween the requesting nodes and the reference nodes to obtain reliable range measure-

ments, we set the maximum distance between them as 50 m; 2 1010t
−=  is set for the TOA 

measurements [39], and 2 14

, 4 10r b −=   and 2 -14

, =10r m are set for the RSS measurements 

[19]. In the DBSCAN process, the neighborhood parameters are 0.5 =  and 10MinPts =

. In fact, to achieve time synchronization in GNSS/5G integrated positioning, a one-way 

system proposed in [15] is exploited to provide a unified time system, and the ionospheric 

and tropospheric effect in GNSS can be significantly corrected according to the ephemeris 

of the satellites. 

Firstly, Figure 4 gives an intuitional impression of the effect of the DBSCAN, which 

shows the distribution of the data points before and after the DBSCAN process. Actually, 

those data points represent the calculated positions of the MUs based on the TOA meas-

urements. As the result based on the RSS measurements is similar to Figure 4, it was omit-

ted due to limited space. There are 13 MUs in the simulation, including five requesting 

nodes and eight cooperative nodes. An amount of 100 particles are used in the PF process. 

In Figure 4a, the calculated positions of each MU are represented by a single color, and 

we can see that some data points concentrate on a center and others are scattered. After 

the DBSCAN process, as Figure 4b shows, those scattered data points are all removed as 

outliers and the clusters are formed, where the cyan circles represent the data points, i.e., 

the calculated positions of the MUs, the red triangles represent the cluster centers, the 

magenta crosses represent the true positions of the requesting nodes, and the black 

squares represent the true positions of the cooperative nodes. It is obvious that after re-

moving the outliers in the DBSCAN, the distance between the cluster centers and the true 

positions of the MUs is really short, which means the error of the results is small. It proves 

that the position uncertainty of the cooperative nodes can be significantly reduced, and 

the more accurate positions of the requesting nodes are obtained. Besides, there may be 
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some error in the TOA and RSS measurements, according to which the positions that are 

calculated are also removed in the clustering. 

 
 

(a) (b) 

Figure 4. Distribution of the data points before (a) and after (b) the DBSCAN process based on the 

TOA measurements. 

To evaluate the effect of DBSCAN and PF in our proposed algorithm, we compare 

GITPA with the following three situations: 

1. Without DBSCAN: As we know, the position information of the cooperative nodes is 

inaccurate. Specifically, here we use the inaccurate position information of the coop-

erative nodes with the GNSS and TOA/RSS measurements to calculate the positions 

of the requesting nodes by GITPAPF. In other words, we want to see how the inac-

curate position information of the cooperative nodes influence the position results of 

the requesting nodes. 

2. Without PF: Here, we only keep the clustering process based on DATM with the joint 

TOA/RSS method and output the mean value of the clusters as the final results for 

the positions of the requesting nodes. That is, we omit the PF process in this algo-

rithm, and the performance of PF in the proposed algorithm can be demonstrated. 

3. GNSS: The GNSS measurements are directly calculated to obtain the positions of the 

requesting nodes without any integration with the measurements from the 5G net-

work. 

From Figure 5, it is clear that the proposed algorithm, which synthesizes the 

DBSCAN and PF, achieves the best performance towards the root-mean-square errors 

(RMSEs) compared to other algorithms. Compared to the GNSS positioning, the lowest 

improvement of the proposed algorithm in RMSE is nearly 20%, appearing in MU 2, and 

the highest is approximately 85%, appearing in MU 1. Besides the GNSS results, which 

contain no additional processing and act as one kind of measurement source in our pro-

posed algorithm, the algorithm without DBSCAN performs the worst, and the algorithm 

without PF achieves better than that. It explains that the inaccurate position information 

of the cooperative nodes can cause large errors in the positions of the requesting nodes. 

Thus, if the known positions of the reference nodes for the requesting nodes are inaccu-

rate, it is hard to obtain accurate positions of the requesting nodes. In this regard, the 

improvement of the PF in that case is limited. 
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Figure 5. Performance comparison between the proposed algorithm and other situations for the 

requesting nodes. 

To analyze the effect of the TOA and RSS measurements in our proposed algorithm, 

we compare GITPA with three other situations: 

1. With TOA only: We only use TOA measurements to estimate the distances between 

the requesting nodes and the reference nodes, including the BSs and the cooperative 

nodes, which are further exploited in DBSCAN and PF processes in our proposed 

algorithm. 

2. With RSS only: Similarly, the RSS measurements are solely exploited in the proposed 

algorithm. 

3. GNSS: As mentioned above, the GNSS positioning results are directly added for com-

parison to illustrate the effect of TOA and RSS measurements more comprehensively. 

Figure 6 illustrates the performance comparison between the proposed algorithm 

and the above three algorithms for the five requesting nodes. It is obvious that the pro-

posed algorithm that utilizes both TOA and RSS measurements obtains the lowest RMSEs 

for all the requesting nodes, and the GNSS positioning obtains the highest. From Figure 

6, we can see that there is no clear difference between the algorithms based on the TOA 

and RSS measurements separately, and these two algorithms achieve a little worse than 

the proposed algorithm. This is because the distance between a requesting node and its 

reference nodes may be long or short, and the TOA and RSS measurements affect the 

range estimation in an average way. Note that when there is limited measurement infor-

mation or computational resources, it is also feasible to use only TOA or RSS measure-

ments. 

 

Figure 6. Performance comparison between the algorithms based on different measurements for the 

requesting nodes. 
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To analyze the performance of the proposed algorithm when the requesting node is 

moving, we plot Figure 7 to see the positioning results where the requesting node moves 

at a fixed linear velocity and angular velocity. As is shown in Figure 7, the blue chain 

dotted line represents the trajectory of the requesting node, the red solid line represents 

the positions calculated by our proposed algorithm and the black dashed line represents 

the positions from the GNSS measurements. It is clear that the red solid line nearly coin-

cides with the blue chain dotted line, meaning that the error in the results of the proposed 

algorithm for a moving requesting node is small, and it proves that the proposed algo-

rithm is also effective for the moving requesting nodes. 

Figure 8 shows the RMSEs with different numbers of the particles used in the PF 

process. We can see that the RMSE decreases as the number of the particles increases. As 

we know, more particles can result in better performance of the PF. It is also obvious that 

the improvement is slight as we increase the number of the particles under circumstance 

of conducting the DBSCAN process in advance. Moreover, it is clear that the improvement 

of RMSE is really small when the number of the particles exceeds 100. Thus, to guarantee 

the performance, as well as to save the computational resources, we choose 100 particles 

in our numerical simulation. 

 

Figure 7. Positioning results of a moving MU. 

 

Figure 8. RMSEs versus the number of particles. 

4. Discussion 

The proliferation of various LBSs requires more precise and reliable positioning, 

whereas the emergence of 5G provides new visions for positioning. Its disruptive technol-

ogies are expected to achieve high-accuracy positioning, such as D2D communication, ul-

tra-dense network, edge computing and mmWave communication. Thus, the combina-

tion of GNSS and 5G to provide accurate positioning has attracted much attention from 
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researchers. Especially, D2D communication allows two MUs in proximity to communi-

cate directly without being relayed by the BS, which makes it possible for a requesting 

user to connect other MUs and obtain more measurements for positioning. Actually, un-

like the BSs, many MUs know their positions while the information is not accurate. We 

exploited the DBSCAN algorithm to reduce the uncertainty of their position information, 

and the positions of the requesting nodes were also obtained based on the GNSS and 

TOA/RSS measurements in the 5G network. After that, the PF algorithm was utilized to 

further improve the positioning accuracy of the requesting nodes. 

There are some conclusions based on the numerical simulation results as follows: 

1. It is clear in Figure 4 that, after the clustering, the data points that represent the posi-

tions of the MUs with high density gather in clusters, while the abnormal data points 

are deleted. In this case, the cooperative nodes can obtain more accurate position in-

formation, as well as the requesting nodes. 

2. We can see in Figure 5 that, in the circumstance of inaccurate cooperative nodes’ po-

sitions, we can hardly achieve accurate positioning for the requesting nodes with the 

PF algorithm only. Nevertheless, the positioning accuracy can be further improved 

by the PF algorithm after the DBSCAN process. 

3. The joint TOA/RSS method was used in our scheme since these two kinds of meas-

urements can complement each other with different advantages. Figure 6 verifies that 

the joint TOA/RSS method can achieve the best performance compared with the al-

gorithms with only one kind of measurement. 

4. Figure 7 illustrates the positioning performance of the proposed algorithm when the 

requesting node is on the move, and it proves that the algorithm also suits the dy-

namic condition well. 

5. In terms of PF, it is found in Figure 8 that more particles result in lower RMSEs for 

positioning, which is consistent with the property of the PF algorithm. 

Certainly, there are still some problems in need of investigation. Although we ex-

ploited edge computing to relieve the computation burden of the MUs and the network, 

there are still some key aspects to be solved, such as the computation task model and task 

scheduling, and how to integrate edge computing and positioning in a physical level is of 

great importance. Moreover, as discussed above, mmWave communication in 5G enables 

high separation of the multipath component with very large signal bandwidth, and then, 

only the dominant path exists in the channel estimation process. Besides, it adopts direc-

tional beamforming, with which the angle-related measurements can be accurately ex-

tracted. Hence, it is promising to provide high accuracy positioning if it is combined with 

D2D communication. For further study, we wish to focus on a deep combination of the 

GNSS/5G integrated positioning with the edge computing, as well as mmWave commu-

nication to achieve better positioning performance. 

5. Conclusions 

In this paper, we studied the GNSS/5G integrated three-dimensional positioning 

based on D2D communication. The TOA and RSS measurements were combined based 

on the signal propagation models in the 5G network to estimate the distances between the 

requesting nodes and the reference nodes, including the BSs and the cooperative nodes. 

To tackle the problem of inaccurate position information of the cooperative nodes, we 

proposed a DBSCAN algorithm based on the GNSS measurements and the joint TOA/RSS 

method. Hence, we obtained integrated positions of the requesting nodes and more accu-

rate positions of the cooperative nodes. Then, a PF algorithm based on TOA/RSS meas-

urements was proposed to further integrate the above results. Simulation results demon-

strated that our proposed algorithm brings substantial performance improvement to-

wards the RMSEs of the requesting nodes, whether they are fixed or on the move. More-

over, the proposed algorithm not only performed better than the other algorithms when 
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the DBSCAN or PF algorithm is separately exploited, but it was also better than the algo-

rithms using only the TOA or RSS measurements.  
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