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Abstract: Aerosol optical depth (AOD) data derived from satellite products have been widely used
to estimate fine particulate matter (PM2.5) concentrations. However, existing approaches to esti-
mate PM2.5 concentrations are invariably limited by the availability of AOD data, which can be
missing over large areas due to satellite measurements being obstructed by, for example, clouds,
snow cover or high concentrations of air pollution. In this study, we addressed this shortcoming
by developing a novel method for determining PM2.5 concentrations with high spatial coverage
by integrating AOD-based estimations and smartphone photograph-based estimations. We first
developed a multiple-input fuzzy neural network (MIFNN) model to measure PM2.5 concentrations
from smartphone photographs. We then designed an ensemble learning model (AutoELM) to deter-
mine PM2.5 concentrations based on the Collection-6 Multi-Angle Implementation of Atmospheric
Correction AOD product. The R2 values of the MIFNN model and AutoELM model are 0.85 and
0.80, respectively, which are superior to those of other state-of-the-art models. Subsequently, we used
crowdsourced smartphone photographs obtained from social media to validate the transferability of
the MIFNN model, which we then applied to generate smartphone photograph-based estimates of
PM2.5 concentrations. These estimates were fused with AOD-based estimates to generate a new PM2.5

distribution product with broader coverage than existing products, equating to an average increase
of 12% in map coverage of PM2.5 concentrations, which grows to an impressive 25% increase in map
coverage in densely populated areas. Our findings indicate that the robust estimation accuracy of
the ensemble learning model is due to its detection of nonlinear correlations and high-order inter-
actions. Furthermore, our findings demonstrate that the synergy of smartphone photograph-based
estimations and AOD-based estimations generates significantly greater spatial coverage of PM2.5

distribution than AOD-based estimations alone, especially in densely populated areas where more
smartphone photographs are available.

Keywords: PM2.5; AOD; MAIAC; air pollution; ensemble learning; fuzzy neural network

1. Introduction

Over the past few decades, urban environmental pollution, especially air pollution, has
become a major problem in many countries around the world [1,2]. Pollution comprising
fine particulate matter (PM2.5), consisting of solid or liquid particles suspended in the air
that have aerodynamic diameters of 2.5 micrometers or less, has a substantially greater
adverse effect on human health than other types of pollution, as it remains suspended in
the atmosphere for a long time and can pass through the throat or nasal cavity to penetrate
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deep into the lungs, bloodstream, or brain [3,4], which can elevate the incidence of many a
disease, including lung cancer [5], cerebrovascular diseases [6], cardiovascular diseases [7]
and respiratory-related diseases [8]. The China National Environmental Monitoring Cen-
tre (CNEMC) launched a national network to monitor air pollution, including PM2.5, in
2012, but its ground-based monitoring stations are generally located in densely populated
megacities and have an effective monitoring range of only 3 km [9]. Thus, in areas that far
from ground-based monitors, accurate air-quality information cannot be obtained from
these stations and nor can their data be used to conduct exposure assessments.

The rapid growth of satellite remote-sensing technologies in the past 20 years has led
to the discovery of the strong correlation between PM2.5 concentrations and aerosol optical
depth (AOD), a satellite product defined as the integration of aerosol extinction, which can
represent optical properties. Consequently, various satellite-derived AOD products have
been widely applied, such as those generated by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) [10–15], the Multi-angle Imaging Spectro-Radiometer (MISR) [10,16],
the Visible Infrared Imaging Radiometer Suite (VIIRS) [17,18], and the Multi-Angle Imple-
mentation of Atmospheric Correction (MAIAC) [19,20]. In these studies, the AOD products
have typically been integrated with ancillary variables, such as meteorological data and
geographical data, to improve model performance [14,15]. MODIS AOD data are the most
commonly used, and the strong correlation of these data with PM2.5 concentrations has
been proven in many studies [13–15].

Given the association between AOD data and ground-level PM2.5 concentrations, a
variety of models have been developed, including the chemical transport model [16], a semi-
empirical model [12], the linear mixed effect model [11], the land-use regression model [21],
the geographically weighted regression (GWR) model [22], and the geographically and
temporally weighted regression (GTWR) model [13,14]. These models can generate results
with R2 values ranging from 0.54 to 0.80. More recently, researchers have begun to develop
machine learning models, owing to their superiority to other models for solving compli-
cated nonlinear problems. In addition, an ensemble model can outperform any of its base
models, and reduce the spread or dispersion of estimates by integrating the features of base
models. For instance, a space-time random forest model based on an ensemble regression
model and the interaction of spatiotemporal information was developed to estimate daily
PM2.5 concentrations across China, with an overall R2 of 0.85 [15]. In another example, an
interpretable convolutional neural network (CNN) was designed and trained using MODIS
AOD products to estimate PM2.5 concentrations over the United States, with a temporally-
separated CV R2 of 0.83 and a spatially-separated CV R2 of 0.69, respectively [23]. Similarly,
given the advantages of ensemble models, a stacking model was developed by integrating
boost networks and neural networks (NNs), which outperformed its three base models by
an average of 8% [24].

However, these methods are invariably restricted by the availability of AOD data,
which are often unavailable for large areas due to misclassifications caused by external fac-
tors such as clouds, snow cover, or severe air pollution. This problem cannot be effectively
solved by fusing multiple sets of AOD data, as they may all be affected by these external
factors. One promising approach to solve this problem is complementing AOD data with
air quality data derived from smartphone photographs, as the growing popularity and de-
velopment of smartphone cameras makes obtaining high-quality smartphone photographs
simple and convenient. Several image analysis-based methods for the estimation of PM2.5
concentrations from photographs have been developed in the past few years, including
image feature-based methods and NN-based methods. Image feature-based methods scru-
tinize the relationship between image features and airborne PM2.5. First, PM2.5-related
features are extracted by analyzing image characteristics, such as transmission [25–27],
image entropy [25], image contrast [25,26]; and sky color [25], and then the relationship
between extracted features and PM2.5 concentrations is determined by the use of a model,
such as a linear regression model [26], a support-vector regression [25], a generic model [27],
or an NN [28]. NN-based methods exploit the flexibility of NNs for solving computer
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vision problems, and have been successfully applied to extreme weather forecasting [29],
traffic sign detection [30], and atmospheric particle identification or classification [31]. First,
studies focused on classifying photographs into several groups in terms of air pollution
concentrations [32]. Later, Bo et al. [33] used a CNN to estimate PM2.5 indices from pho-
tographs by combining photographic information with two weather features: humidity and
wind speed. Subsequently, many CNN-based methods and optimizations were developed
to estimate PM2.5 concentrations from photographs, such as by utilizing high-level features
extracted by CNN models [34], ensemble learning [35], a gradient boosting machine [36],
feature fuzzification [37], and information abundance measurements [28]. However, the
high sensitivity of some photographic features to various factors means that they cannot be
used as haze-relevant features; for example, sky color is strongly affected by weather. In
addition, many methods can only estimate the PM2.5 concentrations at a fixed location, as
their robustness has not been validated on datasets from other locations.

We solved the above problems by developing a method for determining PM2.5 concen-
trations with wider spatial coverage by integrating AOD-based estimations with smart-
phone photograph-based estimations. First, we developed a fuzzy neural network with
multiple inputs (smartphone photographs and image features), denoted MIFNN, to esti-
mate the PM2.5 concentration from a single smartphone photograph taken in any location,
rather than only in a single location. Next, we constructed an ensemble learning model,
AutoELM, from multiple base models: the random forest model, the CatBoost model [38],
the extreme gradient boosting (XGBoost) model [39], the light gradient boosting machine
(LightGBM) [40], and some NNs. AutoELM was then applied to generate the daily PM2.5
distribution in Beijing from MODIS 1 km MAIAC AOD data (the primary predictor) com-
bined with meteorological and geographical field data. Subsequently, fusion of the results
from the MIFNN model and the AutoELM afforded a new PM2.5 distribution product
with higher spatial coverage than its precursors. Several commonly used metrics were
applied to evaluate the performance of the model or to quantify the correlation between
estimated values and actual values, including the root-mean-square error (RMSE), the
Pearson correlation coefficient (r), and the coefficient of determination (R-squared) (R2).

2. Study Area and Data
2.1. Study Area

We used Beijing (39–41◦N, 115–118◦E) as the study area. A recent report from the
Center for Strategic and International Studies [41] states that the average PM2.5 concentra-
tion in Beijing in 2020 was slightly less than 38.7 µg/m3 and the Air Quality Index (AQI)
was nearly 109, making the PM2.5 concentration seven times higher than the air quality
guideline recommended by the World Health Organization (WHO). Figure 1 depicts the
spatial distribution of the 35 ground-level monitoring stations in Beijing, which provide
hourly measurements of PM2.5 concentrations.

Figure 1. Study area and spatial distribution of ground-level monitoring stations.
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2.2. Data and Processing

The datasets that we used in this study contain photographs with corresponding
PM2.5 concentrations or geographical locations, hourly ground-level PM2.5 concentrations,
satellite AOD products, and ancillary data that affect the distribution of PM2.5, including
meteorological and geographical variables.

2.2.1. Smartphone Photographic Data

We obtained smartphone photographic data from public datasets, by manual collec-
tion, and from social media. The two public datasets were shared by [33]: a Shanghai
dataset of photographs taken at a fixed location (Oriental Pearl Tower), every 15 min
between 10:00 a.m. and 3:00 p.m. of days from May to December of 2014; and a Beijing
dataset of photographs of various scenes (including buildings, lakes, roads, and moun-
tains), taken at random hours of days from January to December of 2016. We discarded
all smartphone photographs taken at nighttime or that were distorted (such as by rain or
snow) , which yielded a dataset of 2646 smartphone photographs. We captured an addi-
tional 1376 photographs with our smartphones during daytime (ranging from 10:00 a.m.
to 4:30 p.m.) in different places from January to December of 2020, where we also mea-
sure the PM2.5 concentrations with portable air quality sensors (Nature Clean AM-300;
http://www.aiqiworld.com/topic_1049.html, accessed on 14 February 2022). We down-
loaded smartphone photographs posted on social media from three crowdsourcing web-
sites, including the Institute of Public and Environmental Affairs (a non-profit organization
that develops pollution databases), Moji Weather (a social application that generates real-
time weather data), and Weibo (a Chinese microblogging website), and we discarded
those without geographical location data to obtain a social media photograph dataset of
geographically identifiable smartphone photographs.

We collectively denote the above datasets (the refined public dataset and the dataset
collected by us) the public photographs and collected photographs (PPCP) dataset, and
we used this dataset to train and validate the MIFNN model. We used the social media
photographs (SMP) dataset to validate the transferability of the MIFNN model and, in
combination with AOD-based estimations, to generate a more accurate and geographically
broader estimate of PM2.5 concentrations than that obtainable from AOD-based estimations
alone (see Section 3 for more details).

2.2.2. Ground-Based PM2.5 Concentration Data

Ground-based PM2.5 concentration data from 1 January 2021 to 31 December 2021
were acquired from Beijing Municipal Ecological and Environmental Monitoring Center
(http://www.bjmemc.com.cn/, accessed on 14 February 2022), which publishes hourly
air-pollutant concentrations from the 35 ground-based monitoring stations presented in
Figure 1.

2.2.3. Satellite AOD

We employed MODIS daily 1 km MAIAC AOD products at Level 2 (MCD19A2 V6
data), which retrieve AOD data by combining data from the Terra and Aqua satellites [42].
The 550-µm (Optical_Depth_055) AOD products from 1 January 2021 to 31 December
2021 were downloaded from NASA (https://search.earthdata.nasa.gov/, accessed on
14 February 2022).

2.2.4. Ancillary Data

Meteorological variables: We used data of five meteorological variables: wind speed
(WS), temperature (TEMP), pressure (PS), boundary layer height (BLH), and relative hu-
midity (RH). The WS, TEMP, PS, and BLH data were downloaded from the European
Centre for Medium-Range Weather Forecasts ERA5 dataset (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5, accessed on 14 February 2022), which offers
hourly estimates of a vast number of atmospheric, oceanic, and terrestrial variables, and

http://www.aiqiworld.com/topic_1049.html
http://www.bjmemc.com.cn/
https://search.earthdata.nasa.gov/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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the relative humidity data were calculated from dewpoint temperatures and temperatures
in the ERA5 dataset.

Geographical variables: We used elevation and the normalized difference vegetation
index (NDVI) as geographical variables. Elevation was represented by a digital elevation
model (DEM) obtained from Shuttle Radar Topography Mission data, which has a resolu-
tion of 30 m (https://www.usgs.gov/, accessed on 14 February 2022). The NDVI dataset
was acquired from the MOD13A2 Version 6 product (https://lpdaac.usgs.gov/products/
mod13a2v006/, accessed on 14 February 2022), which provides vegetation index values
with a 1 km spatial resolution every 16 days.

2.2.5. Data Processing

We manually excluded smartphone photographs of indoor scenes from the SMP
dataset (as the MIFNN model is designed only for photographs of outside scenes), and
photographs taken on rainy or snowy days. The remaining smartphone photographs in
the SMP dataset were used to improve the coverage of the estimates of PM2.5 distribution
generated from satellite AOD data.

Table 1 lists all of the independent variables used in the model development. As the
objective of this study was to determine the distribution of PM2.5 at a 1 km spatial resolution,
the datasets were first resampled to a 1 km spatial resolution (181 rows × 233 columns)
using bilinear interpolation. Given that MODIS only provides AOD data collected at
approximately 10:30 a.m. and 1:30 p.m. local time, the hourly ERA5 meteorological data
and in situ PM2.5 concentrations covering these times were averaged, and these averages
were used as the daily values. Finally, we incorporated these processed independent
variables with ground-level PM2.5 concentrations to give 4874 matched samples covering a
period of 202 days.

Table 1. List of data used in this study.

Variable Unit Spatial Scale Temporal Resolution

PPCP Count Lat × Lng N/A
SMP Count Lat × Lng N/A
AOD N/A 1 km Daily
WS m· s−1 0.1◦ × 0.1◦ Hourly

TEMP C 0.1◦ × 0.1◦ Hourly
PS Pa 0.1◦ × 0.1◦ Hourly
RH % 0.1◦ × 0.1◦ Hourly

BLH m 0.25◦ × 0.25◦ Hourly
DEM m 30 m N/A
NDVI N/A 1 km 16-day

3. Methodology

In this study, we developed a method for combining smartphone photographic data
with satellite AOD data to generate estimates of PM2.5 concentrations across a broader
geographic range than can be generated from satellite AOD data alone. Hence, we first
developed a CNN model (the MIFNN model) that we used to estimate the PM2.5 concentra-
tion from a single smartphone photograph, and then used an ensemble learning model (the
AutoELM model) to generate a distribution of PM2.5 concentrations from satellite AOD
products combined with meteorological and geographical data. Subsequently, we validated
the transferability of the MIFNN model and then generated estimated PM2.5 concentrations
by fusing the smartphone photograph-based estimations with AOD-based estimations.
Crucially, these estimated PM2.5 concentrations span a broader geographical area than can
be obtained by using AOD-based estimations alone. A brief flowchart of our method is
given in Figure 2.

https://www.usgs.gov/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
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Figure 2. A brief flowchart of our method.

3.1. Smartphone Photograph-Based Estimation of PM2.5 Concentrations via an NN

We developed the MIFNN model to learn haze-relevant features from smartphone
photographs, such that it can estimate PM2.5 concentrations from a single smartphone
photograph. The MIFNN model uses two feature-extraction methods to achieve this:
physics-based feature extraction and CNN-based feature extraction. In addition, it uses
fuzzy logic to increase the reliability of sample data. The structure of the MIFNN model is
shown in the upper part of Figure 2.

3.1.1. Physics-Based Feature Extraction

Based on the findings of previous studies [25–27,43], we selected the three most
important image features that affect PM2.5 concentrations: transmission, image entropy,
and image contrast.

A. Transmission

Image-based methods examine the relationship between relevant image features and
PM in the air. PM scatters light in various ways, such as by Mie scattering and Rayleigh
scattering, which have a variety of effects on an optical image [44]. In particular, light
scattering in hazy environments can degrade visibility, which results in images captured in
such environments being blurry. The formation of a hazy image can be described with a
haze model and also by an optical model, as shown below [45,46]:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) is the observed image, J(x) is scene radiance, and A is the global atmospheric
light. The first term of Equation (1) describes the scene radiance and its degradation in
the atmosphere, and the second term represents airlight, which is the light scattered by
atmospheric molecules and PM [47]. t(x) is transmission, an important meteorological
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parameter that indicates the portion of light that passes through the atmosphere without
being scattered, and is expressed by the Beer–Lambert law, as follows [48]:

t(x) = exp(−βd(x)) (2)

where β is the atmospheric attenuation coefficient and d(x) is the scene depth, which
describes the distance between the scene and the camera. As PM2.5 is considered to be a
primary contributor to light extinction [49], t(x) and d(x) are two important image features
that can be used for estimating air quality. Moreover, Liu et al. [26] determined that there is
an exponential relationship between t(x) map and PM2.5 concentrations.

In 2010, He et al. [50] proposed dark channel prior theory, which is based on a haze
model and the assumption that in most of a haze-free image’s non-sky blocks, at least one
color channel has some pixels with very low intensities. The dark channel of an image J
can thus be expressed as:

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))) (3)

where Jc is a color channel of image J and Ω(x) is a small block centered at pixel x.
He et al. [50] observed that if J is a haze-free image, the dark channel value Jdark(x) of a
given pixel x is low and often zero. Thus, by applying dark channel theory to Equation (1),
He et al. developed the following simple method for estimating transmission t̃(x):

t̃(x) = 1−min
c

( min
y∈Ω(x)

(
Ic(y)

Ac )) (4)

where Ac is the atmospheric light. He et al. [50] first selected the brightest 0.1 percent of
pixels from the dark channel of the image, and then selected the most intense of these pixels
in the image as the value of Ac.

B. Image Entropy

Image entropy is commonly used to describe the degree of randomness in an image,
which quantifies the amount of information contained in the image. Thus, the higher the
image entropy, the more information is contained in the image and therefore the better
the image quality. It follows that compared with a photograph captured when the PM2.5
concentration is low in an area, a photograph captured when the PM2.5 concentration is
high in an area contains much less information, which means it has a lower image entropy.
Image entropy is usually defined as follows:

E =
N

∑
i=1

P(i) log2 P(i) (5)

where N represents the maximum intensity of the image, and P(i) indicates that intensity
i occurs with probability P(i). The choice of the base for log depends on the specific
application, and in this study we set it as 2.

To determine the value of image entropy, we first calculated the saturation map from
the default RBG color space using Equations (6) and (7):{

Cmax = max (R, G, B)
Cmin = min (R, G, B)

(6)

S =

{
Cmax−Cmin

Cmax
, if Cmax 6= 0

0, if Cmax = 0
(7)

where R, G, and B indicate the values of the red channel, green channel, and blue channel,
respectively. Then, Equation (5) was applied to calculate the image entropy from S.
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C. Image Contrast

Image contrast is defined as the magnitude of difference in the contrast in an image.
Malm et al. [51] stated that human perception of visual air quality is related to image
contrast. In addition, the relationship between image contrast and PM2.5 concentration can
be represented by Equation (1), i.e., when the PM2.5 concentration increases, the airlight
(the second term of Equation (1)) increases, due to light being scattered by PM2.5 , and as the
airlight contains no information on the image, this results in a decrease in image contrast.

We represented the image contrast as the RMS_contrast, which is defined as the
standard deviation of the intensities and can be expressed as follows:

RMS_contrast =

√√√√ 1
MN

N−1

∑
j=0

M−1

∑
j=0

(Iij − Ī)2 (8)

where the image size is M by N, and Iij is the intensity of the i-th j-th pixel. Ī denotes
the average intensity of all pixels in the image. The intensities of all pixels should be
normalized to a vale ranging from 0 to 1 before computing the image contrast.

These three image features were first extracted from the PPCP dataset and then
reshaped to (N, 1), where N is the sample size. Subsequently, they were fed into a multilayer
perceptron (MLP), which contained two hidden layers with 64 and 32 neurons, respectively.
A rectified linear unit (ReLU) was used as the activation function.

3.1.2. Cnn-Based Feature Learning

We used an Inception v3 CNN model pre-trained with the ImageNet dataset [52] to
train the image data input. Inception v3 reduces computational overhead (i.e., the number
of model parameters and the cost of memory or other resources) by applying three types
of convolutions: factorized convolutions, to improve the computational efficiency; small
convolutions (instead of large convolutions), to reduce the number of parameters involved
in the model; and asymmetric convolutions, in which a 3× 3 convolutional layer is replaced
by a 1× 3 convolutional layer followed by another 1× 3 convolutional layer.

Specifically, we resized the smartphone photographs into a size of 299 × 299, to
serve as the input data, and then used a base model that lacked a top layer but had
three hidden layers, consisting of 128, 64, and 32 neurons, respectively. In addition, to
improve the nonlinear representation and avoid over-fitting problems, we applied three
training techniques in the hidden layers: dropout layer, ReLU activation function, and
batch normalization .

3.1.3. Fuzzy Neural Network

As effective feature fusion is critical for the accurate estimation of PM2.5 concentra-
tions, we concatenated the outputs from the Inception v3 CNN model and the MLP model,
and then processed these concatenated outputs in a fuzzy neural network. Fuzzy neu-
ral networks are hybrid models that combine the strengths of rule-based fuzzy systems
and NNs, and have been applied in image analysis to improve the reliability of sample
data [37,53,54].

A fuzzy neural network is composed of the membership layer, the rule layer, and the
defuzzification layer. We deployed the Gaussian function as the membership function in
the membership layer, which transforms the input data into fuzzy data.

uij = exp(−
ai − cij

2w2
ij

) (9)

where ai is the i-th input; and cij and wij are the center and width of the j-th membership
function, respectively, and are the two weights that are trained in the membership layer.
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The rule layer consists of neurons with fuzzy logic rules and connects the membership
layer and defuzzification layer. The number of neurons in the rule layer was determined
by a trial-and-error approach.

The defuzzification layer transforms the output into continuous values, which can be
interpreted as a rule set. The fuzzy value of an inputted feature can be expressed as follows:

dj =
rj

∑m
j=1 rj

(10)

where rj is the output of the j-th neuron of the rule layer, and m is the number of member-
ship functions.

Finally, we connected the outputs of the defuzzification layer and the output layer
(i.e., PM2.5 concentrations) using a linear weighted summation.

3.1.4. Training

The MIFNN model was trained using transfer learning and fine-tuning techniques,
which aimed to leverage the features learned from solving one problem to solve a new
problem. We followed the most commonly used incarnation of transfer learning.

1. The base model of Inception v3 was applied, without the top layer, and the model
was frozen to avoid corrupting any information contained in the pre-training process.

2. Three hidden layers were added, and the output was concatenated to the output of the
MLP model. These concatenated outputs were processed in a fuzzy neural network,
and then correlated to the corresponding PM2.5 concentrations. All of these layers
were set as trainable with an adaptive learning rate, to enable predictions to be made
based on the new dataset.

3. To achieve meaningful improvements, a fine-tuning step was applied: the entire
MIFNN model was unfrozen and then re-trained on the PPCP dataset at a very low
learning rate.

During training of the MIFNN model, the PPCP dataset was randomly divided into
two datasets: a training dataset (80%) and a validation dataset (20%).

3.2. Satellite-Based Estimation of the Distribution of PM2.5

We used three kinds of eight independent variables in the model development, in-
cluding satellite AOD, meteorological data, and geographical data (see Section 2 for more
details). The automatically stacking ensemble-learning package AutoGluon was applied to
address the relationship between PM2.5 concentrations and these independent variables.

3.2.1. Correlation and Collinearity Diagnosis

To enhance the AOD–PM2.5 relationship, we employed five meteorological variables
(WS, TEMP, PS, RH, BLH) and two geographical variables (DEM, NDVI) in model develop-
ment (Table 1). All of these ancillary variables have significantly positive or negative effects
on PM2.5 concentrations (p less than 0.01). In addition, we calculated the variance inflation
factors (VIFs) of these variables and performed a collinearity analysis. These variables’
VIFs were all less than 10 (Table 2), indicating that these variables could be used in the next
step of model fitting.

Table 2. The Multi-angle Imaging Spectro-Radiometer analysis of independent variables.

Variable AOD WS TEMP PS RH BLH DEM NDVI

Tolerance 0.70 0.61 0.31 0.19 0.34 0.22 0.22 0.59
VIF 1.43 1.63 3.22 5.20 2.95 4.49 4.58 1.70
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3.2.2. Development of Ensemble Learning Model

We applied the stacking ensemble learning package AutoGluon, which was developed
by Amazon, to train the satellite-based estimation model [55]. The basic architecture of
the multi-layer stack ensemble in AutoGluon is shown in Figure 3. In the model fitting
step, the training data are first fed to multiple base models with different algorithms
and structures, and the outputs of these base models are then concatenated with the
training data via a meta-learning model. Then, multiple stacker models are trained on the
outputs of the concatenation layers, such that these models share the same structures and
hyperparameters as the base models. Finally, a meta-learning model is implemented to
introduce these stacker models into a new ensemble model, thus optimizing its predictive
accuracy. In addition, to mitigate model over-fitting and to further improve the predictive
accuracy, AutoGluon repeats a k -fold cross-validation when fitting the model. In practice,
we employed a five-fold cross-validation approach, in which the samples were randomly
divided into five subsets of the same size. This process was conducted five times, with
four subsets used for model training and one subset used for model validation in each
replicated run.

Figure 3. Multi-layer stack ensemble in AutoGluon.

AutoGluon enables automatic ensemble learning and leverages the hyperparameters
tuned with state-of-the-art models by setting only a few parameters, such as the training
data, time limits, and the bagging and multi-layer stack strategy. In this study, we used
the random forest model, the CatBoost model, the XGBoost model, the LightGBM, and
some NNs as the base models, and the weighted ensemble as the meta-learning model.
In addition, we set the ’best_quality’ mode in ’auto_stack’ as True, which means that the
model looks for the best accuracy without limiting the time, and we used a bagging strategy
by automatically setting the number of bagging folds and the number of stacking levels.

3.2.3. Model Evaluation

A 10-fold cross-validation approach was used to evaluate the PM2.5 concentrations
estimated by the ensemble learning model. This involved the random selection of 90% of
the samples for use as training data, with the remaining 10% of the samples being used for
testing. This procedure was conducted 10 times to cover the entire dataset. Additionally, the
training data were validated using the fivefold cross-validation incorporated in AutoGluon,
as aforementioned in Section 3.2.2.
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3.3. Validation of Transferability of MIFNN Model

As the MIFNN model was trained on the PPCP dataset, it must be validated before
being applied to another dataset, i.e., the SMP dataset. Furthermore, we first needed to
retrieve the corresponding PM2.5 concentrations for all smartphone photographs in the
SMP dataset; these data were obtained from the ground-based monitoring station closest to
where each photograph was taken.

Given the accuracy of the PM2.5 concentrations measured by these ground-based
monitoring stations, we regarded the smartphone photographs taken within 3 km of a
given ground-based monitoring station as having the PM2.5 concentration measured at that
monitoring station in the most recent hour. In practice, we first established a 3 km buffer
around each ground-based monitoring station, and then selected the photographs taken
within this buffer zone and within 30 min of the PM2.5 concentration release time as the
validation data, using the PM2.5 concentration published by the closest monitoring station
as the corresponding PM2.5 concentration. Figure 4 shows the result of validation data
selection; all of these selected photographic data were used to validate the transferability of
the MIFNN model to the SMP dataset.

Figure 4. Three-kilometer buffers around monitoring stations and the locations at which smartphone
photographs were taken.

4. Results
4.1. Evaluation of the MIFNN Model by Application to the PPCP Dataset
4.1.1. Ppcp Dataset

The PPCP dataset was created for training and validating the MIFNN model, and
comprised two public smartphone photograph datasets shared by previous studies and
one dataset that we generated. The latter dataset consisted of photographs taken with our
smartphones in a range of locations and the corresponding PM2.5 concentrations, which
we measured with a portable air-quality sensor. The PPCP dataset contained smartphone
photographs of various scenes, such as buildings, lakes, roads, and mountains, but we
excluded smartphone photographs taken on rainy or snowy days or at night, because
the MIFNN model was designed to estimate the PM2.5 concentration in a smartphone
photograph taken in clear weather during the daytime. In this study, the daytime photo-
graph refers to a photograph that has high illumination intensity, where the illumination is
contributed by the sunlight. This manual selection and exclusion process ultimately yielded
a set of 4022 smartphone photographs with image resolutions ranging from 584 × 389 to
3124 × 4150 pixels. A histogram of the PM2.5 concentrations of these smartphone pho-
tographs is plotted in Figure 5.
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Figure 5. Histogram of PM2.5 concentrations of the PPCP dataset.

4.1.2. Performance of the MIFNN Model

As mentioned, during the model training and validation, the PPCP dataset was
randomly divided into two parts: 80% of the dataset was used as the training data and the
remaining 20% was used as the validation data. Additionally, image data augmentation
was applied to scale up the training data; this involved rotating a photograph randomly
between 0◦ and 360◦, flipping a photograph vertically or horizontally, or cropping or
expanding a photograph to 4/5 or 5/4 of its original size, respectively.

Figure 6 illustrates the regression result for the entire validation dataset of 804 images.
Figure 7 shows some example smartphone photographs with corresponding PM2.5 con-
centrations measured at ground-based monitoring stations and the PM2.5 concentrations
estimated by the MIFNN model. It can be seen that the estimated PM2.5 concentrations
correlate well with the PM2.5 concentrations measured at ground-based monitoring stations,
with an RMSE of 40.78 µg/m3 and an R2 of 0.85.

Figure 6. Correlation between PM2.5 concentrations measured at ground-based monitoring stations
and PM2.5 concentrations estimated by the MIFNN model. The red dashed line is the 1:1 line.
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Figure 7. Examples of smartphone photographs with corresponding PM2.5 concentrations measured
at ground-based monitoring stations and PM2.5 concentrations estimated by the MIFNN model.

To validate the effectiveness of using both physics-based features and CNN-based
features in the MIFNN model, we also evaluated the performance of an NN model based
only on physics features (a PFNN model) and that of an NN based only on CNN features
(a CFNN model) applied to the PPCP dataset. Table 3 shows the experimental results, which
reveal that the MIFNN model outperformed the PFNN and CFNN models. Specifically,
the R2 of the MIFNN model was 0.53 and 0.24 greater than those of the PFNN and CFNN
models, respectively, and the RMSE of the MIFNN model was 29.56 and 17.23 less than
those of the PFNN and CFNN models, respectively. This comparison demonstrates that
including multiple inputs, i.e., both photographic data and photographic feature data, can
improve the accuracy of model estimations of PM2.5 concentrations.

Table 3. Performance comparison of PFNN, CFNN, and MIFNN models.

Model RMSE R2

PFNN 70.34 0.32
CFNN 57.95 0.61

MIFNN 40.78 0.85

4.2. Evaluation of the AutoELM Model
4.2.1. Descriptive Statistics

Table 4 illustrates the summary statistics of the data that were collected in Beijing
from 1 January 2021 to 31 December 2021, and which we used to fit the AutoELM model.
To match these data with the MODIS AOD product, which only provides observations at
approximately 10:30 a.m. and 1:30 p.m. local time, these hourly data from Beijing were
averaged. Then, by comparing the averaged data with the MODIS AOD product, we
obtained 4874 matches (see Section 2.2.5 for more details). Over the entire study area, the
mean PM2.5 concentration was 31.94 µg/m3, which is well above the latest WHO annual
average PM2.5 guideline (≤5 µg/m3). In addition, the PM2.5 concentration varies greatly
throughout the year, with a maximum of 330.6 µg/m3, a minimum of 1 µg/m3, and a
standard deviation of 38.97 µg/m3.

4.2.2. Model Performance and Estimates of PM2.5 Concentrations

Figure 8a,b shows the AutoELM performance, in terms of a comparison of PM2.5
concentrations measured at ground-based monitoring stations in Beijing during the stipu-
lated period in 2021 and PM2.5 concentrations estimated during model training and model
testing. In model training, the R2 was 0.99 and the RMSE was 2.73 µg/m3, which suggest
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that the AutoELM generates good training approximations. In model testing, the R2 was
0.80, indicating that the AutoELM can explain 80% of the variation in PM2.5 concentra-
tions. Compared with the results of model training, the results of model testing suggest
that the AutoELM somewhat overfit the data, as its R2 was 0.19 lower and its RMSE was
16.53 µg/m3 higher. For comparison, we also estimated PM2.5 concentrations using an
ordinary least squares (OLS) regression model and a GWR model, using the same 10-fold
cross-validation approach. Figure 8c,d depicts the results of the OLS regression and the
GWR. It can be seen that they achieved much worse accuracy than the AutoELM, as the
R2 of the OLS regression was 0.54 (0.26 less than that of the AutoELM) and the R2 of the
GWR was 0.61 (0.19 less than that of the AutoELM). This demonstrates that although the
AutoELM overfits data during model training, its estimation capability is far superior to
those of two traditional regression models. This is attributable to the AutoELM containing
algorithms that detect nonlinear correlations and high-order interactions.

Table 4. Descriptive statistics of the data used in the AutoELM modeling.

Statistic PM2.5 AOD WS TEMP PS RH BLH DEM NDVI

Min 1.00 0.01 0.01 −6.88 92,745.69 0.09 231.54 18.00 0.02
Max 330.60 3.27 5.96 35.76 103,806.84 0.91 4006.09 493.00 0.85

Mean 31.94 0.37 1.61 17.30 99,741.07 0.37 1306.29 87.37 0.34
Median 18.20 0.22 1.31 17.15 100,001.89 0.34 1127.57 55.00 0.33
Std. Dev 38.97 0.38 1.22 9.35 1848.79 0.18 782.54 101.57 0.15

Figure 8. Density scatter plots of PM2.5 concentrations measured at ground-based monitoring stations
and PM2.5 concentrations estimated by various methods. The data in (a–d) are the testing data and
training data for AutoELM, and the CV results of OLS regression and GWR, respectively. The red
dashed lines represent the 1:1 line.

Figure 9 presents the annual mean PM2.5 concentrations in Beijing estimated by the
AutoELM at a 1 km spatial resolution. There is strong spatial heterogeneity in the distribu-
tion of PM2.5 concentrations: high concentrations in densely populated urban areas and
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low concentrations in mountainous areas. In particular, the central urban areas and the
southeastern suburban areas are the most polluted, with annual mean PM2.5 concentrations
generally ranging from 32 to 40 µg/m3, but reaching higher than 40 µg/m3 in some areas
of central Beijing, which are densely populated and have little vegetation. In contrast, the
northern and western areas of Beijing are the least polluted, as they are mainly mountainous
with lush vegetative cover and a sparse population; thus, their annual PM2.5 concentrations
range from 27 to 32 µg/m3, decreasing to 27 µg/m3 in remote mountainous areas. Thus,
these differences in PM2.5 concentrations between the northwestern and southeastern areas
of Beijing are mainly due to variations in population density, vegetation cover, and topog-
raphy. In addition to these internal factors, PM2.5 concentrations may also be influenced by
external factors, such as the air pollution transported from Hebei province, which often
affects the southern part of Beijing. Moreover, the solid black lines in Figure 9 represent the
major roads in Beijing, which correspond well with the distribution of PM2.5; thus, PM2.5
concentrations are higher in urban areas with dense road networks than in mountainous
areas with few or no road networks. These estimation results also show that the PM2.5
concentrations estimated from a combination of AOD and ancillary data are higher than
those measured by ground-level PM2.5 monitoring stations. This is probably attributable to
the fact that these monitoring stations are situated in remote or low traffic areas, such as
scenic spots, mountains, or new towns, where PM2.5 concentrations are less than those in
the urban surrounding areas.

Figure 9. Annual mean estimated PM2.5 concentrations. The black lines are major roads in Beijing.

4.3. Synergy of AOD-Based and Smartphone Photograph-Based Estimates of PM2.5 Concentration
4.3.1. Transferability Validation

Following the methodology introduced in Section 3.3, we first created a 3 km buffer
zone around PM2.5 monitoring stations (Figure 4), and then used the smartphone pho-
tographs taken within these buffer zones to verify the transferability of the MIFNN model
to the new dataset (i.e., the SMP dataset). Figure 10 shows the estimates generated by the
MIFNN model: the RMSE and R2 were 7.51 µg/m3 and 0.80, respectively, after validation
with the PM2.5 concentrations measured at ground-level monitoring stations. The PM2.5
concentrations estimated by the MIFNN model when it was applied to the SMP dataset
ranged from 3 to 58 µg/m3, which is much narrower than the range of PM2.5 concentrations
estimated by the MIFNN model when it was applied to the PPCP dataset (1 µg/m3 to
770 µg/m3). Consequently, the RMSE of the MIFNN model applied to the SMP dataset
was 7.51 µg/m3, much less than the RMSE of the MIFNN model applied to the PPCP
dataset (40.78 µg/m3). Thus, despite the R2 of the SMP dataset being lower than that of the
training dataset (the PPCP dataset), the R2 of 0.8 of the MIFNN model indicates that this
model can explain 80% of the variation. This validates the reliability of the MIFNN model
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for estimating PM2.5 concentrations from the SMP dataset, which was downloaded from
the Internet.

Figure 10. Correlation between PM2.5 concentrations measured by ground-based monitoring stations
and those estimated by the MIFNN model. The red dashed line is the 1:1 line.

4.3.2. Fusion of Methods for the Estimation of PM2.5 Concentrations

Figure 11 shows the distribution of all smartphone photographs taken in Beijing in
November 2021 and downloaded from social media (these photographs are clustered
mainly in the central area of the city), and their corresponding PM2.5 concentrations es-
timated by the MIFNN model. As the primary contributor to satellite-based PM2.5 con-
centration estimations is AOD data, the estimation result is frequently subject to missing
values in AOD products, due to occlusion of satellite visibility by features such as pollution
and clouds. For November 2021, the average ratio of days with AOD values to total days
in Beijing is 0.60, with a minimum of 0.04 and a maximum of 0.79. This suggests that
methods with AOD data as the primary predictor can only provide estimates of PM2.5
concentrations for this many days in Beijing in November 2021. However, after the fusion
of AOD-based estimates with smartphone photograph-based estimates, the average ratio of
days increases to 0.67 (an improvement of 12%), with a minimum of 0.04 and a maximum
of 1.00. Figure 12 shows a comparison of the ratios before and after the introduction of
smartphone photograph-based estimates for densely populated regions of Beijing. As can
be seen, the mean ratio increases from 0.62 to 0.78, which is an improvement of 25%. We
can infer from these comparisons that the combination of smartphone photograph-based
estimates and AOD-based estimates can significantly increase the geographical coverage
of estimations of PM2.5 concentrations, especially in densely populated areas (from which
more smartphone photographs can be collected than from less densely populated areas).
Moreover, it is more important to obtain estimates of PM2.5 concentrations in densely
populated areas than in less densely populated areas, as the former contain more people
who can potentially suffer adverse effects from exposure to PM2.5.
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Figure 11. Locations of smartphone photographs in Beijing obtained from social media in November
2021, with corresponding PM2.5 concentrations estimated by the MIFNN model.

Figure 12. Ratios of days with estimates of PM2.5 concentrations to total days in densely populated
regions, before (left) and after (right) the introduction of smartphone photograph-based estimates of
PM2.5 concentrations.

5. Discussion
5.1. Comparison with Previous Photograph-Based Methods for the Estimation
of PM2.5 Concentrations

As mentioned, photograph-based methods for the estimation of PM2.5 concentrations
can be divided into two categories: image feature-based methods and NN-based methods.
For comparison, we selected two state-of-the-art methods to estimate PM2.5 concentrations
from the PPCP dataset; one method uses a model based on an image feature analysis
algorithm [25], and the other method uses a model based on deep learning [35]. We
implemented both methods according to the procedures described in their respective
papers. Table 5 shows the results of these two methods and those generated by our
MIFNN model.

Clearly, the MIFNN model exhibits better estimation performance than those of the
two methods from the literature, as evidenced by their respective RMSEs and R2 values.
Specifically, compared with the results generated by the method of Liu et al. [25] and the
method of Rijal et al. [35], the RMSE of the results generated by the MIFNN model is 41.2%
and 27.6% lower, respectively, and the R2 of the results of the MIFNN model is 37.1% and
102.3% higher, respectively.

Liu et al. [25] extracted seven image features via image analysis and used a support-
vector regression model to study their correlations with PM2.5 concentrations. We did
not consider weather conditions when applying this model. Liu et al. [25] found that
this model performed well (an R2 of 0.57) when they applied it to a Shanghai dataset,
because these photographs were taken at a fixed point, and the R2 for this model decreased
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with an increasing number of photographs taken at different scenes; this accounts for its
generating results with an R2 of only 0.42 when we applied it to the PPCP dataset. In
contrast, Rijal et al. [35] estimated PM2.5 concentrations based on an ensemble learning
model that uses three CNNs as base models: VGG 16, Inception V3, and ResNet50. The
accuracy of this model is approximately the same as that of our CFNN model (Table 3),
with an R2 of 0.62, as they both take RGB channels of photographs as inputs and adopt
a deep learning approach. Overall, these comparative experimental results suggest that
deep learning-based methods are superior to image-feature-based methods when diverse
outdoor scenes are included in a photographic dataset, and that incorporating both image
data and image feature data into a model can improve its ability to accurately estimate
PM2.5 concentrations, relative to that of a model incorporating only one type of data.

Table 5. Performance comparison of two selected models with that of the MIFNN model.

Model RMSE R2

Rijal et al. [35] 56.34 0.62
Liu et al. [25] 65.87 0.42

MIFNN 40.78 0.85

5.2. Comparison with Previous AOD-Based Methods for the Estimation of PM2.5 Concentrations

We first compared the performance of the MIFNN model with that of the GTWR
model of [56], who also used Beijing as their study area to estimate ground-level PM2.5
concentrations using satellite-derived AOD, meteorological, and land-use variables as
predictors. The GTWR model generates results with a CV R2 of 0.69, which is significantly
better than the performance of an OLS regression model and a GWR model (which generate
results with an R2 of 0.54 and 0.61, respectively), because the GTWR model can account for
spatiotemporal variability when learning the relationship. However, as our MIFNN model
incorporates deep learning models to learn nonlinear correlations, it affords results with an
even higher R2 (0.80).

In other previous studies, models have generated results with CV R2 values ranging
from 0.71 to 0.84 [14,15,23], with these models having a similar predictive accuracy to
the AutoELM. However, these studies used satellite AOD as their main predictor, which
means that these models cannot provide estimates when AOD values are missing; i.e.,
these models are heavily affected by clouds and land cover. We solved this problem in
this study by using smartphone photograph-based estimates of PM2.5 concentrations. As
mentioned in Section 4.3.2, relative to models that use only AOD values, our MIFNN model
increases the geographical area for which estimates of PM2.5 concentrations can be made
by an average of 12%, which increases to 25% in densely populated areas.

5.3. Potential Limitations and Scope for Model Improvement

Despite these encouraging results, some aspects of our methods could be further
improved. First, the MIFNN model can only be applied to smartphone photographs
captured during the daytime in good weather, and photographs taken at nighttime or in
rainy or snowy weather must be excluded. Thus, a model that is not limited by time or
weather conditions should be developed. Second, there are few smartphone photographs
on social media that have been taken in sparsely populated areas, and thus in future
studies we will explore more websites to download additional smartphone photographs
for generating finer-scale maps of estimated PM2.5 concentrations. Finally, we will explore
more ancillary variables that affect in situ PM2.5 concentrations in future models, as this
should improve the correlations between AOD and PM2.5 concentrations. These could
include variables such as population, road networks, and emissions data.
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6. Conclusions

In this study, we developed a novel method for estimating ground-level PM2.5 concen-
trations with high spatial coverage by integrating smartphone photograph-based estima-
tions and satellite-based estimations. A fuzzy neural network with multiple inputs and
an ensemble learning model stacking the random forest model, the CatBoost model, the
XGBoost model, the LightGBM, and NNs were designed to estimate PM2.5 concentrations
from smartphone photographs and satellite AOD data, respectively. Then, we fused the
estimates generated by these two models to form a new PM2.5 distribution product with
broader coverage than those that consider only AOD data. This achieved an average
increase in the map coverage ratio (for estimates of PM2.5 concentrations) of 12% for the
entire study area, rising to 25% in densely populated areas. Our novel method is an efficient
and low-cost approach for acquiring real-time air quality data. Furthermore, it showcases
the suitability of fusing smartphone photograph-based estimations and satellite-based esti-
mations for solving low-coverage problems in large-area estimates of PM2.5 concentrations,
which result from missing values in satellite AOD data.
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