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Abstract: Advanced aerial images have led to the development of improved human–object interaction
recognition (HOI) methods for usage in surveillance, security, and public monitoring systems. Despite
the ever-increasing rate of research being conducted in the field of HOI, the existing challenges of
occlusion, scale variation, fast motion, and illumination variation continue to attract more researchers.
In particular, accurate identification of human body parts, the involved objects, and robust features
is the key to effective HOI recognition systems. However, identifying different human body parts
and extracting their features is a tedious and rather ineffective task. Based on the assumption that
only a few body parts are usually involved in a particular interaction, this article proposes a novel
parts-based model for recognizing complex human–object interactions in videos and images captured
using ground and aerial cameras. Gamma correction and non-local means denoising techniques have
been used for pre-processing the video frames and Felzenszwalb’s algorithm has been utilized for
image segmentation. After segmentation, twelve human body parts have been detected and five of
them have been shortlisted based on their involvement in the interactions. Four kinds of features
have been extracted and concatenated into a large feature vector, which has been optimized using the
t-distributed stochastic neighbor embedding (t-SNE) technique. Finally, the interactions have been
classified using a fully convolutional network (FCN). The proposed system has been validated on the
ground and aerial videos of the VIRAT Video, YouTube Aerial, and SYSU 3D HOI datasets, achieving
average accuracies of 82.55%, 86.63%, and 91.68% on these datasets, respectively.

Keywords: aerial imagery; fully convolutional network; human–object interaction classification;
parts-based model; remote sensing

1. Introduction

Remote sensing refers to the process of acquiring information about an object without
having any physical contact with that object. One commonly used remote sensing technique
is aerial imagery, which includes images captured using aerial devices including satellites,
airplanes, and drones. Remote sensing aerial imagery has gained popularity because
additional information can be obtained using images taken from high altitudes. There-
fore, unmanned aerial vehicles (UAV) and drone-based cameras are commonly used for
surveillance and monitoring purposes [1]. In many public and private areas, it has become
important to continuously monitor and identify human interactions. Human interactions
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can be of two types, namely human–human interactions (HHI) [2] and human–object
interactions (HOI) [3]. While HHI includes the mutual activities performed by two people,
HOI refers to the activity performed by a human in relation to an object. Recognizing com-
plex human–object interactions is usually a critical step in many surveillance [4,5], health
monitoring [6,7], assisted living [8,9], rehabilitation [10,11], and e-learning [12] systems.

The growing interest of researchers in this field has led to the creation of large-scale,
challenging, and publicly available HOI datasets. A lot of progress has been made by
researchers and many existing HOI recognition systems show promising results. However,
certain challenges pertain, making these systems less effective in real-world scenarios.
These challenges include scale variations, self-occlusion, illumination discrepancy, cluttered
backgrounds, and different viewpoints. In the case of remote sensing aerial imagery, there
are additional problems such as fast camera motion, low image resolution, and the small
size of targets.

This article, therefore, proposes an efficient system for HOI recognition in remote
sensing aerial images. The system consists of six stages, which are explained as follows.
During the first stage, the input images are pre-processed. The second stage includes image
segmentation. The third stage offers the detection and selection of key human body parts.
In the fourth stage, features are extracted using full human silhouettes and their key body
parts. The fifth stage optimizes the obtained feature vector in order to make the proposed
system computationally effective. Finally, the interactions are classified in the sixth stage.
The main contributions of this research paper include the following:

• Combining Felzenszwalb’s super-pixel segmentation method with a region-merging
algorithm to extract human and object silhouettes from images;

• Introducing an automated parts-based model that identifies twelve human body parts
and selects the top five body parts depending upon their involvement in the performed
interactions;

• Using remote sensing aerial imagery to extract two types of full-body features includ-
ing oriented rotated brief (ORB) features and texton maps; moreover, two types of
key-point-based features including the Radon transform and 8-chain Freeman code
have been extracted;

• Applying a fully convolutional network for the classification of human–object interac-
tions in the ground and aerial imagery.

The rest of this research paper is organized as follows: Section 2 provides an overview
of some related research works. Section 3 explains the proposed methodology. Section 4
describes the datasets and settings used for experimentation. It also includes the results of
various experiments that have been performed for the validation of the proposed system
and compares the results with those of other state-of-the-art systems. Finally, Section 5
presents the discussion, conclusions, and future work.

2. Related Work

Many systems have been developed in the past for the task of human–object interaction
recognition. Some researchers have utilized entire images for feature extraction, while
others have explored an instance-based approach involving the localization of the target
human and object in an image, followed by extracting human and object features. Moreover,
it has been observed that deep learning is a popular choice among researchers who have
developed HOI recognition systems in the recent past. Table 1 contains a detailed overview
of the related work.
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Table 1. Related work.

Authors Main Contribution Algorithm Evaluation
Metric Datasets

B. Wan et al. [13] used global spatial configuration to focus
on the action-related parts of humans

PMFNet (a multi-branch
deep neural network)

mAP (mean
average

precision)

V-COCO (verbs-common
objects in context) and
HICO-DET (humans

interacting with common
objects-detection)

W. Yan et al. [14] a digital glove called ‘WiseGlove’ was
used to record hand movements

multitask 2D CNN
(convolutional neural

network)

recognition
accuracy collected using WiseGlove

T. Wang et al. [15] proposed the use of interaction points for
recognizing human–object interactions Hourglass-104 mAP V-COCO and HICO-DET

G. Gkioxari et al.
[16]

proposed the detection of humans on the
basis of their appearances and that of
objects through their action-specific

density

ResNet-50-FPN (residual
neural network-50-feature

pyramid network)
mAP V-COCO and HICO-DET

Y.L. Li et al. [17] a 3D pose-based system and a new
benchmark named ambiguous-HOI

R-CNN
(regions with

convolutional neural
network)

mAP HICO-DET and Ambiguous
HOI

Y. Jin et al. [18]
performed human–object interaction
(HOI) recognition without localizing
objects or identifying human poses

a pre-trained image
encoder and LSE-Sign loss

function
mAP HICO

R. Girdhar et al. [19]

argued that focusing on humans and
their body parts is not always useful and

using the background and context can
also be helpful

an attentional pooling
module that can be

replaced for a pooling
operation in any standard

CNN

mAP HICO, MPII, and HMDB51
(human motion database)

G. Gkioxari et al.
[20]

made use of multiple cues in an image
that revealed the interaction being

performed

R*CNN (a variant of
R-CNN) mAP

PASCAL VOC (visual object
classes) and MPII

(Max-Planck Institute for
Informatics)

L. Shen et al. [21]
a zero-shot learning approach to

accurately identify the relationship
between verb and object

Faster R-CNN mAP HICO-DET

B. Yao et al. [22]

used two types of contextual data,
including co-occurrence context models
and the co-occurrence statistics between

objects and human poses

CRF (Conditional Random
Field)

recognition
accuracy

PPMI (people playing
musical instruments) and

Sports dataset

M. Meng et al. [23]

a depth sensor-based system that
calculated inter-joint and joint–object

distances and then extracted pose
invariant features

Random Forest recognition
accuracy

ORGBD (online red, green,
blue, depth) Action dataset

S. Qi et al. [24] used a graph-based approach for HOI
recognition

GPNN (Graph Parsing
Neural Network) F1 score

HICO-DET, V-COCO, and
CAD-120 (Cornel activity

dataset)

H. Fang et al. [25]
a pairwise body-part attention model,

which focused on crucial parts and their
correlations for HOI recognition

visual geometry group
(VGG) convolutional
layers until the Conv5

layer for the extraction of
full human features

mAP HICO

A. Mallya et al. [26]
fused features from a person bounding
box and the whole image to recognize

HOIs

NCCA (Normalized
Canonical Correlation

Analysis)

recognition
accuracy HICO and MPII

3. Proposed Methodology

Remote sensing datasets have been used as input to the proposed system. Image
frames have been extracted from the ground and aerial video sequences and then pre-
processed using intensity adjustment and noise removal techniques. Then, the desired
human and object silhouettes have been segmented efficiently. Twelve key body points
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have been identified for each human silhouette and then five key body parts have been
selected based on their involvement in the interaction. Two kinds of features have been
extracted using full-body silhouettes and two kinds of features have been obtained using
the five key points. All features have been concatenated into one feature vector and then
dimensionality reduction has been applied. Finally, a fully convolutional neural network
has been utilized for labeling the interaction. Figure 1 shows the overall architecture of the
proposed HOI recognition system.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 26 
 

 

been utilized for labeling the interaction. Figure 1 shows the overall architecture of the 
proposed HOI recognition system.  

 

 
Figure 1. The architecture of the proposed HOI system. 

3.1. Image Pre-Processing  
The first step of the proposed system is to pre-process the images. This is important 

especially in the case of remote sensing aerial imagery because videos collected through 
UAV and drone-based cameras usually have lower resolutions, noise, and illumination 
variation. Hence, all input images have been normalized first. In other words, the intensity 
values of all images have been adjusted using gamma correction and then noise has been 
removed from the images using the non-local means filtering technique. Figure 2 shows 
the results of these two operations on an aerial image.  

   
(a) (b) (c) 

Figure 2. Pre-processing results on the VIRAT dataset, including (a) original image, (b) intensity-
adjusted image, and (c) smooth image. 

3.1.1. Intensity Value Adjustment 
Intensity value adjustment has been used to improve the contrast of the image and 

to make it clearer. The proposed system uses gamma correction for this purpose. This 
technique controls the overall brightness of an image. Several images in the used datasets 
look either bleached out or too dark. Gamma correction, also known as the Power Law 
transform, improves the quality of such images. The output gamma-corrected image 𝑂 

Figure 1. The architecture of the proposed HOI system.

3.1. Image Pre-Processing

The first step of the proposed system is to pre-process the images. This is important
especially in the case of remote sensing aerial imagery because videos collected through
UAV and drone-based cameras usually have lower resolutions, noise, and illumination
variation. Hence, all input images have been normalized first. In other words, the intensity
values of all images have been adjusted using gamma correction and then noise has been
removed from the images using the non-local means filtering technique. Figure 2 shows
the results of these two operations on an aerial image.
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3.1.1. Intensity Value Adjustment

Intensity value adjustment has been used to improve the contrast of the image and
to make it clearer. The proposed system uses gamma correction for this purpose. This
technique controls the overall brightness of an image. Several images in the used datasets
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look either bleached out or too dark. Gamma correction, also known as the Power Law
transform, improves the quality of such images. The output gamma-corrected image O
has been obtained by adjusting the intensity values i of pixels x of an input image I using
Equation (1):

O(x) = I(xi)
1
G (1)

where G is the gamma value that can shift the image towards the darker end of the spectrum
if it is set less than 1. However, if the gamma value is greater than 1, the image will appear
lighter. A gamma value of 1 will not affect the input image.

3.1.2. Noise Removal

The technique of non-local means filtering has been used to remove noise from the
images. It differs from a local means filter in such a way that instead of replacing the
value of a pixel with the average of the values of its surrounding pixels, a non-local means
filter replaces the value of a pixel with the weighted average of all the pixels in the image.
Moreover, the weights of the image pixels are calculated on the basis of their similarity with
the target pixel. A pixel in the denoised image u(p) at point p after applying the non-local
means denoising technique on a pixel at point q in the original image v(q) has been defined
by Equation (2).

u(p) =
1

C(p)

∫
v(q) f (p, q)dq (2)

where f (p, q) is the weight and C(p) is a normalization factor defined by Equation (3).

C(p) =
∫

f (p, q)dq (3)

3.2. Silhouette Segmentation

Image segmentation refers to the process of dividing an image into regions, also
called super-pixels. After pre-processing the images, the proposed method applies image
segmentation to extract the desired silhouettes. Felzenszwalb’s algorithm [27] has been
utilized for super-pixel segmentation. This method uses a graph-based representation
of the image to decide where to place a boundary between two regions. An important
characteristic of this method is that it ignores detail in high-variability regions to preserve
detail in low-variability image regions.

As shown in Figure 3, Felzenszwalb’s algorithm divides the given image into multiple
regions. To extract the desired silhouette, a region merging technique, which is quite similar
to the one proposed by Xu et al. [28], has been employed. Using this technique, similar and
adjacent regions have been merged based on their similarity until three large regions have
been obtained. In other words, multiple small regions are recursively merged to form three
larger regions: the human, the object, and the background. For this merging, four types of
features have been extracted from each region, namely mean, covariance, scale-invariant
feature transform (SIFT), and speeded-up robust features (SURF). Any two adjacent regions
have been merged if the similarity between the values of these features of the two regions
is above a certain threshold. The similarity Si,j has been computed using Equation (4).

Si,j ←∑n
i=1,j=1[S

mean
i,j + Scovariance

i,j + Ssi f t
i,j + Ssur f

i,j ]× Di,j (4)

where i and j are any two regions and Di,j represents the adjacency relation between them. If

these two regions are adjacent, the value of Di,j is 1; otherwise, it is 0. Smean
i,j , Scovariance

i,j , Ssi f t
i,j ,

and Ssur f
i,j are the similarities between the mean, covariance, SIFT, and SURF features of the

two regions. Algorithm 1 explains this region-merging process in detail.
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Algorithm 1: Segmentation and Region Merging

Input: Image X = [x1, . . . xn]
Output: Cluster centers of merged regions C = [c1, c2, c3]
Repeat
Regions← Felzenszwalb’s algorithm (X)
%Extract features%
For i in len(Regions):
Mean[i]←Get_Mean(Regions[i])
Covar[i]←Get_Covariance(Regions[i])
SIFT[i]←Get_SIFT_descriptors(Regions[i])
SURF[i]←Get_SURF_descriptors(Regions[i])
End
%Compute Similarity%
For i,j in len(Regions):
Smean

i,j ← sim(Mean[i], Mean[j])

Scovariance
i,j ← sim(Covar[i], Covar[j])

Ssi f t
i,j ← sim(SIFT[i], SIFT[j])

Ssur f
i,j ← sim(SURF[i], SURF[j])

Si,j ← ∑n
i=1,j=1[S

mean
i,j + Scovariance

i,j + Ssi f t
i,j + Ssur f

i,j ]× Di,j

End
If Si,j >= threshold:
NewRegion = MergeRegions(Region[i],Region[j])
End
Until all images have been segmented
Return C = [c1,c2,c3]

3.3. Automated Parts-Based Model

After extracting the full-body silhouette, five key body points have been identified
using an approach similar to the one suggested by Dargazany et al. [29]. The segmented
silhouette has been converted into a binary silhouette and then its contour has been
obtained. Further, a convex hull has been drawn around the contour. Points on the convex
hull that were also part of the original contour have been obtained. Only five such points
have been chosen since having more than one point on the same body part is useless. In
cases where multiple points were detected on the same body part, only one is selected
through a point elimination technique based on Euclidean distance. Furthermore, a sixth
point has been obtained by finding the centroid of the contour. The formula for computing
the centroid C of a contour is given by Equation (5).

C(x, y) =
M10

M00
,

M01

M00
(5)



Remote Sens. 2022, 14, 1492 7 of 25

where M00, M10, and M01 are image moments. The image moments are statistical param-
eters of an image, which are used to measure the distribution and intensities of different
pixels. The image moments Mi,j of an image I(x, y) can be calculated using Equation (6):

Mi,j = ∑x ∑y xiyi I(x, y) (6)

Using the obtained six points, six additional key points have been obtained. The
midpoint of two key points has been found and a point on the contour lying closest to the
obtained midpoint has been stored as an additional key point. For example, the right elbow
lies between the head and the right hand. Hence, the midpoint of the right hand and the
head is computed using Equation (7):

(xm, ym) =

( xj + xk

2
,

yj + yk

2

)
(7)

Then, the Euclidean distances between this midpoint and all other points lying on the
human contour are calculated and the point having the minimum distance is selected as
the right elbow point. Similarly, the hip joints are found by calculating the midpoints of the
head and the feet. Likewise, the knee joints are identified by finding the midpoints of the
torso and the feet. Each step of the process is shown in Figure 4.
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Figure 4. Steps of human body points detection over the YouTube Aerial dataset, including
(a) original image, (b) binary silhouette, (c) silhouette contour, (d) convex hull, (e) six key points, and
(f) twelve key points.

Twelve key points have been identified using the binary human silhouettes. However,
all twelve parts do not contribute to the overall interaction. Therefore, it is time-consuming
and ineffective to extract features for all these parts. Instead, only five key points have been
selected that are involved in a particular interaction. To compute the involvement score
of each body part, the cosine similarity metric has been used, as shown in Equation (8).
The cosine similarity metric finds the normalized dot product of the two inputs. In other
words, the cosine similarity judges orientation and not magnitude. If any two vectors have
the same orientation, they will have a cosine similarity of 1. On the other hand, if they
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have different orientations, i.e., the angle between any two vectors is 90◦, they will have a
similarity of 0.

Sim(A, B) =
A · B
||A||||B|| (8)

where A is the centroid of the detected object and B is any of the twelve key points. In this
way, the cosine similarity score of each body part has been computed and then the five
body parts with the highest scores have been selected. Figure 5 shows the twelve initially
detected points and then the five points that were selected based on cosine similarity.
Table 2 shows the actual values of the similarity scores of the twelve body parts of the
silhouette shown in Figure 5.
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Table 2. Cosine similarity scores of different body parts.

Part Similarity Score

HD 0.770
RE 0.882
LE 0.850
RH 0.996
LH 0.982
TR 0.947
RP 0.995
LP 0.991
RK 0.990
LK 0.993
RF 0.998
LF 0.997

HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, TR = torso, RP = right hip,
LP = left hip, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.

The proposed automated parts-based model consists of these two stages of body-
part detection and body-part selection. Each step of the process is described in detail in
Algorithm 2.

3.4. Multi-Scale Feature Extraction

This section describes the extraction process of multi-scale features used in the pro-
posed system. Four types of multi-scale features have been extracted, including ORB
descriptors and texton maps for full-body silhouettes, and Radon transforms and 8-chain
Freeman codes for key body parts. Algorithm 3 shows an overview of the multi-scale
feature extraction step.
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Algorithm 2: Automated Parts-Based Model

Input: HSS: segmented human silhouette
Output: 12 body parts including head, left elbow, right elbow, left hand, right hand, torso, left hip,
right hip, left knee, right knee, left foot, right foot: key_body_points (p1, p2, p3 . . . p12) and
selected parts: key_body_parts (p1, p2, p3, p4, p5).
Repeat
KeyBodyPoints← []
% detecting 5 key points from convex hull%
For i = 1 to N do

contour← Getcontour (HSS)
Convex hull← DrawConvexhull (contour)
For point on Convex hull do

If point in contour do
KeyBodyPoints.append (point)

End
End

%detecting 6th key point from contour center%
Center← GetContourcenter (contour)
KeyBodyPoints.append (Center)

%detecting 6 additional key points%
LE← FindMidpoint (KeyBodyPoints [0], KeyBodyPoints [1])
lelbow← Findclosestpointoncontour (LE)
RE← FindMidpoint (KeyBodyPoints [2], KeyBodyPoints [1])
relbow← Findclosestpointoncontour (RE)
LH← FindMidpoint (KeyBodyPoints [3], KeyBodyPoints [1])

lhip← Findclosestpointoncontour (LH)
RH← FindMidpoint (KeyBodyPoints [4], KeyBodyPoints [1])
rhip← Findclosestpointoncontour (RH)
LK← FindMidpoint (KeyBodyPoints [3], KeyBodyPoints [5])
lknee← Findclosestpointoncontour (LK)
RK← FindMidpoint (KeyBodyPoints [4], KeyBodyPoints [5])
rknee← Findclosestpointoncontour (RK)
KeyBodyPoints.append (lelbow, relbow, lhip, rhip, lknee, rknee)

End
return key_body_points (p1, p2, p3 . . . p12)
Scores← []
For point in key_body_points do

Score← CosineSimilarity(point, object)
Scores.append (score)

End
key_body_parts← Get_top_5_points (Scores)
Return key_body_parts (p1, p2, p3, p4, p5)

3.4.1. ORB Features

Oriented FAST and rotated BRIEF (ORB) [30] is a fast robust local feature detector. It
is based on the features from the accelerated segment test (FAST) key point detector and is
a modified version of the visual descriptor called Binary Robust Independent Elementary
Features (BRIEF). ORB is scale- and rotation-invariant. It basically rotates BRIEF according
to the orientation of key points detected using FAST. In other words, it uses the orientation
of an image patch θ, computed using Equation (9), to find its rotated version.

θ = atan(m01, m10) (9)

where m01 and m10 are image moments. While the key point orientation θ remains consis-
tent across different views, the correct set of points is used to compute its feature descriptor.
Two full-body silhouettes and the key feature points detected by ORB are shown in Figure 6.
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Algorithm 3: Multi-Scale Feature Extraction

Input: N: full body silhouettes and five key body points
Output: combined feature vector (f 1, f 2, f 3 . . . fn)
% initiating feature vector for remote sensing HOI classification %
FeatureVector← []
F_vectorsize← GetVectorsize ()
% loop on extracted human silhouettes %
J← len(silhouettes)
For i = 1:J
% extracting ORB and Texton features %

ORB← GetORBdescriptor (silhouette[i]))
Texton← GetTextonMap (silhouette[i]))
FeatureVector.append (ORB, Texton)

% loop on five key points %
For i = 1:5

% extracting Chain Code and Radon features %
Code← GetChainCode(i, i + 1)
Radon← GetRadonTransform (silhouette, i)

FeatureVector.append (Code, Radon)
End

End
Feature-vector← Normalize (FeatureVector)
return feature vector (f 1, f 2, f 3 . . . fn)
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3.4.2. Texton Maps

Textons can be defined as the fundamental micro-structures in images [31]. As ex-
plained by Julesz et al. [32], we can understand textons as atoms whose protons, neutrons,
and electrons are image bases. These textons can therefore be used to represent many
different pixel relationships in an image. This is often needed when performing image
texture analysis. Texton maps are obtained by convolving the images with filters. Three
types of filter banks are commonly used, including the Leung Malik (LM) filter bank, the
Schmid (S) bank, and the maximum response (MR) bank.

This paper uses the LM filter bank [33] for obtaining the texton maps of the given full-
body silhouettes. The LM filter bank provides 48 filters, including 2 Gaussian derivative
filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian (LOG) filters, and 4 Gaussian
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filters. At each pixel, a response vector of size equal to the number of filters in the filter
bank is formed by storing the response from each filter, as shown in Equation (10).

Ti = I(xi) ∗ LM = [FR1, FR2, FR3 . . . FRn] (10)

where I(xi) is the original image and LM is the filter bank. After convolution, the resulting
filter response vectors Ti will contain the filter responses FRi obtained by convolving the
input image pixels with each filter in the filter bank. These response vectors are divided
into k clusters using the k-means clustering algorithm, where each cluster represents a
texture class. Figure 7 shows two silhouettes and their texton maps.
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3.4.3. Radon Transform

The Radon transform is a mapping from the Cartesian rectangular coordinates (x, y)
to the polar coordinates (ρ, θ). The resulting projection is the sum of the intensities of the
pixels in each direction, i.e., a line integral. The Radon transform R(ρ, θ) of an image f (x, y)
can be obtained using Equation (11):

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(ρ− xcosθ − ysinθ)dxdy (11)

where θ is the angle between x and y, computed using Equation (12).

θ = tan−1(
x
y
) (12)

Similarly, ρ is the distance between x and y, computed using Equation (13).

ρ = xcosθ + ysinθ (13)

The proposed system extracts an image window of size 30 × 30 around each key
point and obtains its Radon transform. Figure 8 shows two such windows and their Radon
transforms. In Figure 8a, a 30 × 30 window has been drawn around the right-hand joint
and its Radon transform has been obtained. Similarly, in Figure 8b, a 30 × 30 window has
been drawn around the left-foot joint and its Radon transform has been obtained.
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around the right hand (left) and its Radon transform (right) and (b) a window around the left foot
(left) and its Radon transform (right).

3.4.4. Eight-Chain Freeman Codes

Freeman chain codes are commonly used as shape descriptors since they can represent
the boundary of a given shape using the coordinates of the starting point and the direction
code of the boundary point. It is often used to represent the boundary of the curve and area
in the fields of image processing, computer graphics, and pattern recognition. In simple
words, it is a coded representation of boundaries where the direction of the boundary is
used as the basis for coding.

Commonly used chain codes are divided into four- or eight-connected chain codes
according to the number of adjacent directions of central pixels. There are four adjacent
points of four-connected chain codes, which are above, below, left, and right of the center
point, respectively. The eight-connected chain code adds four diagonal directions to the
four-connected chain code. Since there are eight adjacent points around any pixel, the
eight-connected chain code exactly matches the actual situation of the pixel, which can
accurately describe the central pixel and its information about adjacent points. Therefore,
the use of eight-connected chain codes is relatively larger.

The proposed method extracts Freeman chain codes for straight lines between every
two key body points. Figure 9a shows the eight code values and the directions they
represent. Figure 9b shows the visualization of the chain code for a straight line between
the two human feet. Similarly, Figure 9c visualizes the code for a straight line between the
right hand and the right foot.
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3.5. Dimensionality Reduction: t-SNE

After extracting the four types of features from all the images, they have been con-
catenated and added as descriptors of each interaction class. However, this results in
a very high-dimensional feature vector. The size of the ORB descriptor is 200 × 32 or
1 × 6400 and that of the texton feature is 1 × 54. The size of each Radon transform feature
is 254 × 180 or 1 × 45,720 and that of each chain code is 1 × 20. However, since Radon
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transforms and chain codes are obtained for at least five key points per input silhouette,
these feature sizes are multiplied by 5. Therefore, the combined feature vector is of the size
1 × 235,154 for each input image. Hence, dimensionality reduction becomes an important
requirement at this stage. There are two ways of doing this: keeping the features with
maximum variance and eliminating redundant features or transforming the original set of
features into a smaller set of new features with almost the same variance as the original
ones. The t-distributed Stochastic Neighbor Embedding (t-SNE) technique [34] employed in
this research is a non-linear dimensionality reduction method that uses the latter approach
as it transforms the 235,154 columns containing different feature values into 3 new columns.
As the name indicates, this method is based on random probability and focuses only on
retaining the variance of the neighboring points. The number of neighboring points, also
known as perplexity, was set to 75 and the number of iterations was set to 5000 during the
experiments performed in this study.

The t-SNE is a powerful technique that preserves both the local and global structure
of the data. In other words, after applying dimensionality reduction through t-SNE, the
obtained low-dimensional map contains as much of the significant structure as in the
original high-dimensional data. The t-SNE technique works by constructing a probability
distribution over pairs of high-dimensional objects. Similar objects are given high prob-
ability while dissimilar points are given low probability. The density of all points (xj) is
measured under this Gaussian distribution and is renormalized for all points. This results
in a set of probabilities (Pij) for all points, which can be represented by Equation (14).

pj|i =
exp
(
−
∣∣∣∣xi − xj

∣∣∣∣2/2σ2
i

)
∑ exp

(
−||xi − xk||2/2σ2

i

) (14)

The next step of the process is to define a similar probability distribution over the
points in the low-dimensional map. However, a Student t-distribution with one degree of
freedom, which is also known as the Cauchy distribution, is used this time instead of a
Gaussian distribution. This gives a second set of probabilities (Qij) in the low-dimensional
space, which can be represented by Equation (15).

qij =
(1 +

∣∣∣∣yi − yj
∣∣∣∣2)−1

∑ (1 + ||yk − yl ||2)
−1 (15)

After obtaining the two sets of probabilities, their distributions are measured using
Kullback–Liebler divergence (KL), as shown in Equation (16). If the value of the KL
divergence is low, it means that the two distributions are close to one another. In other
words, if the two distributions are identical, the value of KL divergence will be 0.

KL(P

∣∣∣∣∣
∣∣∣∣∣Q) = ∑ pijlog

pij

qij
(16)

Lastly, the KL cost function is minimized using gradient descent. After optimization, a
t-SNE map is obtained that reflects the similarities between the high-dimensional inputs.
Figure 10 shows the t-SNE plots for the three datasets used in this research.

3.6. Fully Convolutional Network

This section discusses the use of a fully convolutional network (FCN) with a softmax
layer for the classification of HOI interactions. Unlike a convolutional neural network
(CNN), FCN does not need a fixed input size because, in an FCN model, the fully con-
nected layers of a CNN model are replaced by convolution layers. This is useful since the
requirement of fixed input size needs input images to be resized, which can cause a loss of
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resolution. This becomes an issue when the target human or object constitutes only a small
section of the image, as in the case of aerial images.

Moreover, image classification networks are usually trained on square images. There-
fore, if the input image is not square, it is common to extract either a square region from the
center or to resize the width and height of the image to make it a square. In the first case,
important features that are not in the center of the image may be missed. In the second
case, the image will be distorted because the performed scaling operation is non-uniform.
Figure 11 shows the basic architecture of an FCN model.
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The FCN model used in the proposed system consisted of two 2D convolution layers
with 64 filters and the RELU activation function. Each convolution layer was followed by a
dropout layer of 0.2 and a batch normalization layer. These two layers ensure regularization,
which prevents overfitting and reduces the convergence time. Moreover, activation layers
are used to incorporate non-linearity. Then, a global max-pooling layer was used. Finally,
for computing the classification score, a softmax layer was added to this FCN model.

4. Experimental Results

This section describes the three publicly available datasets that have been used to
validate the proposed system. The description is followed by the implementation details
and the results of different experiments performed on the three datasets. FCN has been
used and the proposed system has been evaluated using the Leave One Subject Out (LOSO)
cross-validation technique. In this technique, each subject is used once as the test set. It is a
special type of k-fold cross-validation, in which the number of folds is equal to the number
of instances in the dataset. The proposed FCN model has been developed in Python 3.8
using Jupyter Notebook. Python’s deep learning library, Keras, has been used as it provides
the different layers for convolution, batch normalization, flattening, max-pooling, and
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softmax. Moreover, the Adam optimizer and categorical cross-entropy loss have been used.
The proposed model has been trained for 50 epochs. All the processing and experiments
were performed on a Windows 10 operating system having 16-GB RAM, and a processor of
core-i7-7500U CPU @ 2.70 GHz. Finally, the performance of the proposed system is also
compared with the accuracies of other state-of-the-art systems tested on these datasets.

4.1. Dataset Description

Two remote sensing datasets called VIRAT Video [35] and YouTube Aerial [36] and
one RGBD dataset called SYSU 3D HOI [37] have been used for experimentation. Table 3
provides a brief summary of all three datasets, while detailed descriptions and some sample
frames of each dataset are given in the following subsections.

Table 3. A summary of the datasets used for experimentation.

Dataset No. of Videos No. of Classes Aerial Imagery Modality

VIRAT Video 1482 9 Yes RGB
YouTube Aerial 400 8 Yes RGB
SYSU 3D HOI 480 12 No RGB + D

4.1.1. VIRAT Video Dataset

The video and image retrieval and analysis tool (VIRAT) Video dataset is a large-scale
surveillance video dataset designed for event recognition algorithms but has been used
for testing human–vehicle interaction recognition systems as well [38]. It contains videos
collected from both stationary ground cameras and moving aerial vehicles. The videos
contain both human–human and human–object interactions. The nine HOI interactions
include loading an object, unloading an object, opening a trunk, closing a trunk, getting into a
vehicle, getting out of a vehicle, carrying an object, entering a facility, and exiting a facility. This is
a challenging dataset since the aerial videos have very fast camera motion and have been
captured from large heights. Some sample frames are shown in Figure 12.
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4.1.2. YouTube Aerial Dataset

The YouTube Aerial dataset contains various drone videos available on YouTube,
corresponding to eight actions of the UCF101 dataset [39]. These eight HOI interactions
include band marching, biking, cliff-diving, golf-swing, horse-riding, kayaking, skateboarding, and
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surfing. This is a challenging dataset since the aerial videos contain fast camera motion and
have been captured from variable heights. There are 50 videos of each interaction. Some
sample frames are shown in Figure 13.
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Figure 13. A few samples of the YouTube Aerial dataset, including (a) horse-back riding, (b) kayaking,
(c) cliff-diving, (d) band marching, (e) skateboarding, (f) surfing, (g) cycling, and (h) golf.

4.1.3. SYSU 3D HOI Dataset

The Sun Yat-sen University (SYSU) 3D HOI dataset provides RGB, depth, and skeleton
data. It has been recorded using a Kinect sensor. It contains twelve human–object interac-
tions performed by 40 participants. These interactions include sweeping, mopping, taking
from wallet, taking out wallet, moving chair, sitting in chair, packing backpacks, wearing backpacks,
playing on phone, calling phone, pouring, and drinking. There are 480 videos of durations
ranging from 1.9 to 21 s. Some sample frames are shown in Figure 14.
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Figure 14. A few samples of the SYSU 3D HOI dataset, including (a) drinking, (b) pouring, (c) taking
out wallet, (d) playing on phone, (e) wearing backpack, (f) packing backpack, (g) sitting in chair, and
(h) mopping.
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4.2. Experiment I: Interaction Classification Accuracies

The interaction classification accuracies have been expressed in terms of confusion
matrices in Figures 15–17. It can be seen that the system achieves average accuracies of
82.55%, 86.63%, and 91.68% over the VIRAT Video, YouTube Aerial, and SYSU 3D HOI
datasets, respectively.
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packing backpacks, WB = wearing backpacks, PP = playing on phone, CP = calling phone, PG =
pouring, DG = drinking.
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4.3. Experiment II: Accuracy and Loss Plots

The accuracy and loss plots of the training and validation sets from the VIRAT Video,
Youtube Aerial, and SYSU 3D HOI datasets are shown in Figures 18–20, respectively. It can
be seen that the model’s accuracy increases and loss decreases with increasing epochs.
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4.4. Experiment II: Part-Based Model Detection

Accurate detection of human body parts leads to better classification results. Hence,
the class-wise accuracies of the twelve body parts detected using the proposed key-point
detection algorithm have also been discussed. First, the Euclidean distance D between
the ground truth value and the detected value of each key body part is computed using
Equation (17).

Di =
√
(DVix −GTix)

2 +
(
DViy −GTiy

)2 (17)

where DV is the detected value and GT is the ground truth value of a body part i. Based
on its distance from the ground truth value, the accuracy of the detected body part is
computed using Equation (18).

Acci =
100
n

[
∑K

n=1

{
1 i f Di ≤ Th

0 i f Di > Th

]
(18)

where Th is the threshold value, which was set to 15, and n represents the total sample
frames of each interaction class. Tables 4–6 show the average body part detection accuracies
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achieved by the proposed system over the VIRAT Video, YouTube Aerial, and SYSU 3D
HOI datasets, respectively.

Table 4. Results of body part detection over the VIRAT Video dataset.

Part LAO ULO OTK CTK GIV GOV CAO ENF EXF AVG

HD 93.21 90.34 83.03 84.21 88.02 89.01 94.32 88.05 86.45 88.52
RE 92.23 93.03 83.34 90.11 84.45 83.08 92.35 79.21 79.35 86.35
LE 86.29 85.09 87.12 85.34 82.62 84.12 93.62 77.02 79.23 84.49
RH 91.45 90.51 91.63 89.04 86.45 87.02 90.56 76.81 78.93 86.93
LH 88.32 90.12 88.06 89.86 76.23 79.12 92.03 82.32 83.13 85.47
TR 89.34 87.16 85.21 86.57 85.23 82.75 91.14 78.66 78.88 84.99
RP 93.62 92.72 88.02 87.24 79.13 82.06 93.35 73.73 76.03 85.10
LP 89.32 87.15 86.09 85.13 84.27 83.03 90.42 75.72 75.02 84.02
RK 90.09 91.39 85.03 86.12 82.16 84.37 93.24 71.45 72.48 84.04
LK 88.43 87.23 86.09 88.25 85.09 82.45 90.76 80.03 82.54 85.65
RF 87.03 85.26 87.16 88.23 84.77 86.31 91.09 79.12 78.25 85.25
LF 89.26 88.15 89.29 87.46 79.03 82.04 93.03 81.32 80.52 85.57

Average part detection rate = 85.53%
HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, TR = torso, RP = right hip,
LP = left hip, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.

Table 5. Results of body part detection over the YouTube Aerial dataset.

Part HR KK CD BM SK SF CL GF AVG

HD 90.21 89.34 85.03 88.56 92.02 93.01 91.12 94.06 90.42
RE 86.23 89.03 83.34 70.11 82.45 81.08 82.35 86.21 82.60
LE 85.29 88.09 82.12 71.34 84.62 84.12 82.20 87.02 83.10
RH 89.45 90.51 87.63 78.04 92.45 92.02 90.56 86.81 88.43
LH 90.32 91.12 85.06 79.86 91.23 91.12 89.03 84.32 87.76
TR 92.34 92.16 84.21 79.57 90.23 92.75 87.14 91.66 88.76
RP 77.62 78.12 80.02 79.24 84.13 82.06 85.35 83.73 81.28
LP 78.32 76.15 79.09 80.13 84.27 83.03 82.42 85.72 81.14
RK 98.09 74.39 84.03 78.12 83.16 86.37 90.24 89.45 85.48
LK 86.43 76.23 82.09 79.25 85.09 87.45 92.76 90.03 84.92
RF 91.03 90.26 89.16 89.23 90.77 90.31 87.09 89.12 89.62
LF 92.26 92.15 88.9 86.46 91.03 92.04 88.03 90.32 90.15

Average part detection rate = 86.14%
HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, TR = torso, RP = right hip, LP = left
hip, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.

Table 6. Results of body part detection over the SYSU 3D HOI dataset.

Part SP MP TF TO MC SC PB WB PP CP PG DG AVG

HD 95.2 94.3 92.3 92.6 98.0 96.0 93.1 94.1 93.5 95.2 92.3 94.3 94.2
RE 91.2 90.0 94.3 90.1 92.5 91.1 92.4 90.2 92.4 92.2 90.0 90.3 91.4
LE 90.3 93.1 92.1 91.3 94.6 94.1 92.2 87.0 91.2 90.3 91.1 92.1 91.6
RH 93.5 92.5 91.6 88.0 96.5 97.0 91.6 87.8 92.9 93.5 94.5 94.6 92.8
LH 94.3 93.1 92.1 89.9 96.2 97.1 92.0 89.3 93.1 94.3 93.1 95.1 93.3
TR 90.3 89.2 92.2 93.6 95.2 92.8 97.1 97.7 92.9 92.3 93.2 92.2 93.2
RP 90.6 91.1 90.0 94.2 91.1 88.1 95.4 93.7 91.0 92.6 95.1 94.0 92.3
LP 89.3 92.2 92.1 92.1 92.3 89.0 92.4 95.7 92.0 94.3 96.2 93.1 92.6
RK 93.1 92.4 94.0 96.1 95.2 94.4 93.2 92.5 91.5 94.1 92.4 94.0 93.6
LK 92.4 94.2 96.1 94.3 95.1 94.5 92.8 91.0 92.5 92.4 94.2 92.1 93.5
RF 91.0 91.3 93.2 93.2 94.8 93.3 95.1 94.1 94.3 94.0 95.3 97.2 93.9
LF 92.3 92.2 94.9 92.5 93.0 92.0 94.0 93.3 94.5 95.3 96.2 96.9 93.9

Average detection accuracy rate = 93.02%
HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, TR = torso, RP = right hip,
LP = left hip, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.
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4.5. Experiment III: Comparison with Other Classifiers

In this section, accuracy metrics including precision, recall, and F1 measure have been
computed using Equations (19)–(21), respectively.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 score =
2(Precision× Recall)
(Precision + Recall)

(21)

The performances of the artificial neural network (ANN) and CNN have been com-
pared with that of the FCN in terms of the above-mentioned accuracy metrics and time
complexities. The structures and details of these ANN and CNN models have been de-
scribed in detail in [40,41], respectively. The optimized feature vectors of all three datasets
have been fed into ANN, CNN, and FCN models. Table 7 shows the results over the VIRAT
Video dataset, Table 8 shows the results over the YouTube Aerial dataset, and Table 9 shows
the results over the SYSU 3D HOI dataset. Table 10 shows the running times of all three
models over the three datasets. The mean running times have been obtained over five
instances with a 95% confidence interval. The results show that the FCN achieves better
scores than the other two classifiers and is faster as well.

Table 7. Comparison with well-known classifiers in terms of precision, recall, and F1 measure over
VIRAT Video dataset.

Classes ANN CNN FCN

Precision Recall F1 Precision Recall F1 Precision Recall F1

LAO 0.78 0.79 0.78 0.80 0.81 0.80 0.84 0.83 0.83
ULO 0.77 0.77 0.77 0.81 0.80 0.80 0.80 0.82 0.81
OTK 0.78 0.78 0.78 0.82 0.82 0.82 0.83 0.84 0.83
CTK 0.79 0.80 0.79 0.83 0.81 0.82 0.81 0.85 0.83
GIV 0.76 0.78 0.77 0.80 0.80 0.80 0.82 0.81 0.81
GOV 0.77 0.78 0.77 0.81 0.80 0.80 0.80 0.82 0.81
CAO 0.80 0.79 0.79 0.80 0.81 0.80 0.83 0.84 0.83
ENF 0.77 0.76 0.76 0.78 0.78 0.78 0.78 0.80 0.79
EXF 0.74 0.75 0.74 0.79 0.79 0.79 0.82 0.82 0.82

Mean 0.77 0.78 0.78 0.80 0.80 0.80 0.81 0.83 0.82

Table 8. Comparison with well-known classifiers in terms of precision, recall, and F1 measure over
YouTube Aerial dataset.

Classes ANN CNN FCN

Precision Recall F1 Precision Recall F1 Precision Recall F1

HR 0.77 0.78 0.77 0.80 0.81 0.80 0.83 0.83 0.83
KK 0.77 0.78 0.77 0.80 0.80 0.80 0.82 0.83 0.82
CD 0.79 0.80 0.79 0.83 0.85 0.84 0.86 0.87 0.86
BM 0.88 0.89 0.88 0.84 0.85 0.84 0.90 0.91 0.90
SK 0.80 0.81 0.80 0.82 0.82 0.82 0.85 0.85 0.85
SF 0.80 0.80 0.80 0.82 0.82 0.82 0.87 0.87 0.87
CL 0.82 0.83 0.82 0.86 0.88 0.87 0.90 0.90 0.90
GF 0.80 0.82 0.81 0.83 0.83 0.83 0.87 0.87 0.87

Mean 0.80 0.81 0.81 0.83 0.83 0.83 0.86 0.87 0.86
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Table 9. Comparison with well-known classifiers in terms of precision, recall, and F1 measure over
SYSU HOI 3D dataset.

Classes ANN CNN FCN

Precision Recall F1 Precision Recall F1 Precision Recall F1

SP 0.81 0.82 0.81 0.82 0.83 0.82 0.92 0.92 0.92
MP 0.83 0.84 0.83 0.84 0.85 0.84 0.92 0.93 0.92
TF 0.80 0.81 0.80 0.81 0.82 0.81 0.91 0.91 0.91
TO 0.81 0.82 0.81 0.81 0.80 0.80 0.90 0.90 0.90
MC 0.86 0.86 0.86 0.87 0.87 0.87 0.96 0.96 0.96
SC 0.88 0.88 0.88 0.90 0.90 0.90 0.96 0.97 0.96
PB 0.85 0.86 0.85 0.88 0.89 0.88 0.93 0.94 0.93
WB 0.86 0.85 0.85 0.87 0.88 0.87 0.92 0.93 0.92
PP 0.80 0.82 0.81 0.81 0.82 0.81 0.87 0.87 0.87
CP 0.81 0.82 0.81 0.82 0.83 0.82 0.90 0.89 0.89
PG 0.84 0.85 0.84 0.84 0.85 0.84 0.88 0.88 0.88
DG 0.84 0.84 0.84 0.83 0.86 0.84 0.90 0.90 0.90

Mean 0.83 0.84 0.84 0.84 0.85 0.85 0.91 0.92 0.92

Table 10. Time complexity of different classifiers.

Dataset
Execution Time (s)

CNN ANN FCN

VIRAT Video 9430.21 ± 710 10,130.12 ± 720 8146.53 ± 620
YouTube Aerial 55,313.67 ± 477 60,131.00 ± 432 4302.11 ± 398
SYSU 3D HOI 5531.32 ± 142 6130.05 ± 129 4312.62 ± 114

4.6. Experimentation IV: Comparison of the Proposed System with State-of-the-Art Techniques

This section compares the classification accuracy of the proposed system with that of the
existing state-of-the-art methods on the three datasets that have been used in this research. The
classification accuracy is computed by dividing the number of correct predictions by the total
number of predictions that were made by the classifier, as shown in Equation (22). Similarly,
the classification error can be calculated by dividing the number of incorrect predictions by
the total number of predictions made by the classifier, as shown in Equation (23). For the
proposed model, a 95% confidence interval has also been calculated using Equation (24).
Table 11 shows that the proposed system outperforms many other state-of-the-art methods.

CAccuracy =
Correct Predictions

Total Predictions
× 100% (22)

CError =
Incorrect Predictions

Total Predictions
× 100% (23)

Con f idence Interval = CError ± 1.96×

√
CError(1− CError)

no. o f observations
(24)

Table 11. Comparison of the state-of-the-art methods with the proposed system.

Methods Accuracy on
SYSU 3D HOI (%) Methods Accuracy on

VIRAT Video (%) Methods Accuracy on
YouTube Aerial (%)

Hu et al. [42] 54.2 Lee et al. [38] 77.78 Sultani et al. [36] 58.6

Gao et al. [43] 77.9 Khodabandeh et al.
[44] 81.40 Sultani et al. [36] 67.0

Hu et al. [45] 84.89 - - Sultani et al. [36] 68.2
Ren et al. [46] 86.89 - - - -

Proposed method 91.68 82.55 86.63
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5. Discussion

The proposed HOI recognition system achieved impressive human pose estimation
and human–object interaction detection results over ground and aerial imagery. In this
approach, all input images were pre-processed to improve their quality. Then, humans and
objects were segmented out from the images. Using these segmented human silhouettes,
twelve key body parts were identified. Then, only five of these points were selected based
on their cosine similarity score with the target object. Next, multi-scale features were
extracted, including ORB descriptors, texton maps, Radon transforms, and eight-chain
Freeman codes. These features were combined and then dimensionality reduction was
applied. Lastly, the interactions were classified using FCN.

The results and analysis of the proposed HOI detection system are presented as follows.
The mean human body part detection rate is 85.53% for the VIRAT Video dataset, 86.14% for
the YouTube Aerial dataset, and 93.02% for the SYSU 3D HOI dataset. Moreover, the mean
interaction classification accuracy is 82.55% over the VIRAT Video dataset, 86.63% for the
YouTube Aerial dataset, and 91.68% for the SYSU 3D HOI dataset. These results are better
than those achieved by the existing state-of-the-art methods. Several factors contribute to
the better performance of the proposed system as compared to the existing methods. Unlike
those methods which have used raw images as input, the proposed system has been trained
and evaluated on pre-processed images. Moreover, subtracting the backgrounds from the
images also removes the redundant background features, which would have otherwise
contributed to the overall classification process. While other systems used limited features,
the proposed approach used multi-scale features, which have been extracted from full
humans as well as their key body parts. Knowing the exact body parts that were involved
made it easier for the classifier to detect which interaction was performed. Finally, t-SNE
optimized the high-dimensional dataset. Since the combined feature vector was of the
size 1 × 235,154 for each input image, without dimensionality reduction, the model would
become so complex that it would be non-trainable.

The automated part-based model proposed in this paper extracts the twelve key human
body parts. Experimental results show that the model achieves a very high detection rate in
the case of the SYSU 3D HOI dataset but considerably lower detection rates for the two aerial
datasets. This is because humans make up only a small part of the overall aerial images. Hence,
it becomes difficult to identify their body parts. Moreover, the proposed system shows slightly
lower accuracy rates for aerial datasets. This is due to the low image resolutions and fast camera
motions that are almost always associated with remote sensing imagery.

Despite these limitations, the proposed system can be applied in real-life scenarios
that involve surveillance and monitoring applications. Thus far, this model has only been
tested on publicly available datasets and not real-time data. However, for its practical
usage, ground and aerial cameras can be added to it to acquire real-time human–object
interaction videos. Figure 21 shows one such scenario where surveillance and monitoring
is needed. Each person who enters the area is verified and then continuously monitored.
His interactions with the objects in his surroundings are recognized and matched with an
available list of forbidden interactions. If any of the recognized interactions is forbidden,
the surveillance system raises an alarm.
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6. Conclusions

This research provides an efficient image segmentation technique, a simple yet effec-
tive key point detection and body part selection method, and a robust system for HOI
recognition that has been validated on complex human movements, varying postures,
and cluttered backgrounds. To pre-process the input images, the techniques of gamma
correction and non-local means filtering have been used. For image segmentation, an im-
proved version of the Felzenszwalb algorithm has been employed. Using these segmented
silhouettes, twelve key body points have been identified, five of which have been utilized
for feature extraction. Four types of features have been extracted, including ORB, texton
maps, Radon transforms, and Freeman chain codes. For data optimization, t-SNE has been
explored, and for classification, FCN has been used. As shown in the experimentation
section, the proposed system has shown better performance over challenging datasets than
many existing methods. This system can find its application in various fields ranging from
healthcare, assisted living, and sports to education, training, and surveillance. Moreover,
with slight modifications, such as the addition of UAV cameras and multi-vision sensors,
the proposed system can be used for real-time environments.

6.1. Theoretical Implications

The proposed system efficiently detects human–object interactions in complex and
challenging remote sensing and RGBD video datasets. The reason for validating the
system using multiple and varying datasets is to prove the general applicability and overall
efficiency of the proposed approach. Moreover, the task of HOI recognition using remote
sensing data is an under-researched area in the field of computer vision. Hence, this
article will suggest new directions for research in this regard. The proposed system can
be used for research on HOI recognition in videos from sports, healthcare, e-learning,
and surveillance datasets.

6.2. Research Limitations

The proposed HOI recognition system has been tested on two aerial datasets. The
videos in the YouTube Aerial dataset are clearer and mostly captured from a lower height.
On the other hand, the VIRAT Video dataset poses other problems due to fast camera motion
and extreme heights. The target humans are very small in size, making the proposed key
point detection method less efficient. Hence, the system’s performance was affected in
such situations, as shown by the relatively poor results on the VIRAT Video dataset. In the
future, we aspire to work on this problem by modifying the key point detection algorithm
and using new feature descriptors that should lead to better results.
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