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Abstract: A wide variety of hard structures protect coastal activities and communities from the action
of tides and waves worldwide. It is fundamental to monitor the integrity of coastal structures, as
interventions and repairs may be needed in case of damages. This work compares the effectiveness
of an Unmanned Aerial System (UAS) and a Terrestrial Laser Scanner (TLS) to reproduce the 3D
geometry of a rocky groin. The Structure-from-Motion (SfM) photogrammetry technique applied on
drone images generated a 3D point cloud and a Digital Surface Model (DSM) without data gaps. Even
though the TLS returned a 3D point cloud four times denser than the drone one, the TLS returned a
DSM which was not representing about 16% of the groin (data gaps). This was due to the occlusions
encountered by the low-lying scans determined by the displaced rocks composing the groin. Given
also that the survey by UAS was about eight time faster than the TLS, the SFM-MV applied on UAS
images was the most suitable technique to reconstruct the rocky groin. The UAS remote sensing
technique can be considered a valid alternative to monitor all types of coastal structures, to improve
the inspection of likely damages, and to support coastal structure management.

Keywords: drone; groin; breakwater; structure from motion; 3D point cloud

1. Introduction

In the coastal environment, a wide variety of hard structures protect coastal activities
and communities from the action of tides and waves worldwide [1–3]. Structure types
have different configurations and constitution. Seawalls are built parallel to the shore to
defend the inland areas and prevent shoreline retreatment [3,4]. Detached breakwaters
are built shore parallel to dissipate wave energy in the nearshore [3], while jetties and
shore-connected breakwaters play the function of protecting harbours and creating a secure
environment for mooring, operating, and handling ships [3,5]. Finally, groins are built
shore-perpendicular to mitigate shoreline erosion and intersect the updrift sediments [1,6].
Even though different materials can be used to build coastal structures, most of them are
constituted by rocks and/or concrete [1,7].

It is fundamental to monitor the integrity of coastal structures and to detect likely dam-
aged areas, to support management in the proposal of possible intervention and repairs. For
instance, the displacement of stone blocks on rocky groins, rubble mound shore-connected
breakwaters and jetties may endanger the stability of the structures, lowering and even
compromising their protection functions [1,8,9]. The traditional monitoring methods of
rocky coastal structures are based on visual or photographic inspections, however these
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needs to be performed by qualified and trained personnel, and are technically, logistically
and temporally limited [10–12]. Topographic surveys by totals stations and Global Naviga-
tion Satellite System (GNSS) have also been used, nevertheless, despite their advantages in
terms of spatial accuracy, these methods require intense human effort in the field, and often
do not provide a complete survey of the structure [12]. Recently, remote sensing techniques
have been applied to monitor coastal structures. Aerial and terrestrial Light Detection and
Ranging (LiDAR) can provide a detailed 3D reconstruction of rocky coastal protections [13],
however the expensive costs and logistical constraints of LiDAR deployment remain the
biggest disadvantages of this method.

A valuable alternative for monitoring coastal structures is the use Unmanned Aerial
System (UAS). UAS can operate autonomously, provide high spatial and temporal res-
olution with relatively low-cost, and are viable tools for many operational tasks [14,15].
Given their adaptable and multipurpose properties, UASs have improved the coastal envi-
ronmental monitoring to advance knowledge on beach–dune morphodynamics [16–23],
coastal cliffs [24–26], and marine pollution [27–34], among others. The 3D reconstruction
workflow consists in applying the Structure-from-Motion (SfM) photogrammetry tech-
niques to UAS image bulk, to obtain a 3D dense point cloud representing the targeted
area [35]. The use of Ground Control Points (GCPs) is needed to georeference the 3D
dense point cloud [36], however a Real-Time Kinematic assisted UAS (e.g., DJI Phantom 4
RTK; UAS-RTK) can accurately estimate the camera position, thus the use of GCPs can be
potentially avoided [37].

The 3D reconstruction of coastal structures with SfM photogrammetry may improve
the knowledge of structural condition of armour layer for assessing the structure integrity
over a time interval or after extreme events [1]. According to the Construction Industry
Research and Information Association (CIRIA), there are four levels of measures to assess
the condition of armour units [1]: (i) locate units movements by measure with GNSS survey;
(ii) geometric survey to describe armour layer with similar technique of level I; (iii) armour
units position and areas where core and underlayer are exposed using of photographic
methods (photogrammetry, comparative photography); (iv) shape and size of armour
units including armour fractures. Even though different parameters can characterize the
geometry of armour layer, the most important ones are the packing density (number of
units per area) and the armour layer porosity (proportion of void per volume) [1]. These
two parameters have a close relationship and mainly affect the performance of the coastal
structure [38].

Previous works on the 3D reconstruction of coastal structures with UAS-based imagery
are limited to few examples, which focused on the accuracy evaluation of SfM photogram-
metry product [39–41]. The positional accuracy of Digital Surface Model (DSM) in respect
to GNSS receiver was assessed by Henriques et al. [39], who obtained 10 cm and 8 cm of
horizontal and vertical accuracies, respectively. González-Jorge et al. [40] tested instead the
performance of 3D point cloud for detecting displacements of armour layer units. Over-
all, these pioneering and preliminary works showed that UAS surveys can improve the
inspection of coastal structures. However, this technique still needs to be better evaluated.

The aim of this paper is to assess the effectiveness of UAS-RTK and TLS techniques to
reproduce the 3D geometry of a rocky groin. Two surveys were conducted at Leirosa beach
on the North Atlantic Portuguese coast. The L-shape groin was digitally reconstructed
by 3D point clouds and DSM. We evaluated the reconstruction of a L-shaped rocky groin
by SfM photogrammetry and TLS scans in terms of mean surface density and data gaps.
Overall, this work evaluates the most suitable technique to monitor the armour layer of
coastal structures, such as groins and breakwaters, to improve the inspection of likely
damages and support coastal management.
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2. Methods
2.1. Study Site

The study site was the Leirosa beach, on the wave-dominated high energetic North
Atlantic Portuguese coast (Figure 1a). In this coastal sector, the mesotidal regime has an
average amplitude of 2.10 m, reaching a maximum elevation of 4 m during spring tides [42].
The dominant wave regime comes from NW with average significant wave height (Hs) of
2 m and period from 7 s to 15 s [43]. Intense erosion occurred in the last decades, mainly
caused by the littoral drift retention at the Mondego estuary jetty, and by the decrease
in sediment deposition from the Mondego river [44,45]. An average shoreline retreat of
2 m/year was registered by comparing satellite images from 1958 and 2010 [46], while the
dune crest retracted of about 2 m southern the groin over 2018/2019 winter season [16]. An
L-shaped rocky groin was built to protect the urban coastal agglomeration of Leirosa. The
shore-perpendicular sector of the groin extends about 200 m, with an average elevation of
6 m above the mean sea level (MSL), while the shore-parallel sector is shorter (150 m) and
slightly higher (7 m above MSL). Both sectors are composed by stone blocks of about 2.5 m
with a shape factor of 60–80% and a mass of about 15 tonnes. Since the main longshore
transport on this coast is oriented N-S [42,44,45], the groin intersects sediment updrift,
determining accumulation and shoreline advance northern the structure, in front of the
urbanized area of Leirosa (Figure 1b). The mean slope on the shore-perpendicular sector
is 21◦ (1:2.7 m) while on the shore- parallel wall is 30◦ (1:1.75 m—Figure 1j). An initial,
cursory visual inspection revealed significant displacements of stone blocks at the two
heads of the groin, which can determine further dislocation and the loss of the original
shape and function of the structure (Figure 1c–f).
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Figure 1. Study site location and morphological characterization. (a) Location of the study site and
the Mondego estuary in Portugal; (b) Google satellite image of the groin in the local coordinate
system (ETRS89/PT-TM06). Red and blue tags indicate the two heads of the groin shown in (c,d).
Green lines indicate the two profiles shown in (j). (c,d) Pictures taken by DJI Phantom 4RTK showing
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the two groin heads (namely, sub-area 1 and 3, see Section 2.4) (e,f) details of the two groin heads
shown in (c,d), respectively; (g–i) equipment used in the fieldwork campaign, namely the Terrestrial
Laser Scanning (TLS) Leica ScanStation C10 (g), the Unmanned Aerial System (UAS) DJI Phantom
4RTK (h) and the GeoMax Zenith 10 GNSS receiver (i); (j) two cross sections of the studied groin
located in (b). Dark green triangles illustrate the slope of the berms.

A field work campaign was conducted with an Unmanned Aerial System (UAS) and a
Terrestrial Laser Scanning (TLS) on 5 of November 2021 (Figure 1g–i). A dual frequency
GNSS receiver was also used in Network Real Time Kinematic (NRTK) using the Portuguese
stations ReNEP (https://renep.dgterritorio.gov.pt, accessed on 6 January 2022).to collect the
coordinates of: (1) 13 control points to assess the Structure-from-Motion results (Section 2.2);
and (2) 12 targets to georeference and co-register the TLS scans (Section 2.3).

2.2. Unmanned Aerial System Data Acquisition and Processing

The UAS survey was carried out with a DJI Phantom 4 RTK (P4RTK), equipped with a
RGB camera (1′′ CMOS sensor with 20 M effective pixels, 8.8 mm focal length and image
size of 5472 × 3648 pixels). The setup of drone flight and cameras parameters was planned
in DJI GST RTK, choosing a linear flight path (Figure 2a). The flight altitude was set to
50 m, considering an image overlap of 80% (both lateral and frontal). A total of 103 nadiral
images was collected with a mean Ground Sample Distance (GSD) of 1.36 cm/pixel which
is computed considering the flight altitude, sensor dimensions and focal length. The flight
lasted about 10 min. Although the P4RTK can provide accurate georeferenced data [16,47],
we drew 13 crosses on the blocks faces, evenly distributed along the groin, to evaluate the
image positional accuracy in the post-processing phase. The measurements/collection of
these points with the GNSS NRTK lasted about one hour.
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Figure 2. Unmanned Aerial System (UAS) data acquisition and processing. (a) field data acquisition
represented on UAS orthophoto. Red arrows show the UAS flight path, white diamonds represent
the control points placement for georeferencing process; (b) UAS data processing workflow: through
structure from motion (SfM) and multi-view stereo technique (MVS), images and control points were
processed for generating a 3D point cloud and a Digital Surface Model (DSM).

https://renep.dgterritorio.gov.pt
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The UAS imagery post-processing phase was performed with Agisoft Metashape soft-
ware. The application of SfM photogrammetry followed the workflow shown in Figure 2b.
Firstly, images were oriented calculating the external and internal camera parameters
through bundle block adjustment. A set of 3D points (tie points) was obtained representing
the scale invariant features identified in overlapping images. Secondly, since the refinement
of tie points improves the accuracy of reconstruction [26,48], we removed points with a
reprojection error greater than 0.5. Afterwards, the bundle block adjustment was repeated
using the refined tie points. Thirdly, the georeferencing process was performed by selecting
only 3 ground control points from the set of 13 surveys points. The remaining 10 points
were used as check points. All 13 control points were manually picked in the corresponding
images. Fourthly, 3D point cloud was generated through dense matching by computer vi-
sion algorithms based on multi-stereoscopy (Figure 2b). Finally, after gridding the 3D point
cloud with regular cells (i.e., squares 5 × 5 cm), we generated the DSM in CloudCompare.
Each cell grid was calculated by the mean height of all points within the cell. The empty
cells were linearly interpolated using the nearest cells.

2.3. Terrestrial Laser Scanning Data Acquisition and Processing

The TLS survey was performed with a Leica ScanStation C10, scan range of 300 m.
The positional accuracy of a single TLS station is 6 mm for a range of 50 m. A total of
seven scans were distributed along Leirosa groin, with most of stations chosen on the two
groin heads (Figure 3a). A series of 12 circular targets were distributed in the TLS scan
ranges of different station, to stich the scan data in the post-processing phase. Targets
were placed among the terrain in order to be visible at least from two consecutive stations.
Before starting the scanning procedure, targets were visually picked in the TLS screen,
and measured with the GNSS NRTK receiver. When moving to the following station, we
detected the same previous targets for building the scan network. During the TLS survey,
the tide rose influencing the candidate zones for the scans position. In the end, the TLS
survey lasted about 8 h.
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scanning (from 1 to 7), blue-white circles represent the targets (from 1 to 12) placed for stitching
the scans acquired from different stations. (b) TLS data processing workflow: different scans are
co-registered and joined using targets, for finally generating a 3D point cloud and a Digital Surface
Model (DSM).

The resolution of scans was divided into the following categories: (i) medium res-
olution, corresponding to 10 cm distance between points at 100 m; (ii) high resolution,
corresponding to 5 cm distance between points at 100 m.

The TLS post-processing methodology was performed with Leica Cyclone software
(Figure 3b). The main steps consisted in: (i) importing the scans; (ii) reading targets coordi-
nates; (iii) co-registration of the scans. The scans were stitched using the correspondent
picked targets to produce a single 3D point cloud. The georeferencing process was also
included, projecting the 3D point cloud into the Portuguese reference system. Using the
same grid adopted to produce the UAS DSM (Section 2.2), we also generated the DSM from
TLS 3D point cloud.

2.4. Three-Dimensional Point Clouds and Digital Surface Model

We evaluated and compared the 3D point clouds of both UAS-RTK and TLS using two
quality parameters, namely the mean surface density and data gaps. We computed the two
parameters for the entire groin structure, and for three sub-areas. Sub-areas were chosen
on the groin heads and in the central groin area (Figure 4). The head on seaside is the more
affected zone by waves, and already shows damages and block displacements. The south
head shows also block displacements and covers the dune ridge, which is under severe
erosion [16]. Finally, the central area represents a flat wall for protecting the urban area (see
also Figure 1b–f).
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Figure 4. Data processing workflow for the comparative analysis. Three sub-areas (left box, red
polygons) were defined over the whole groin structure (left box, green polygon). The distance
between 3D point clouds and Digital Surface Model were computed using 3D and 2.5D approach
based on point-to-point distance and vertical differences (central boxes). Finally, the errors were
assessed through statistical measures computation (right box).

The mean surface density aims at characterizing the mean points concentration over
the surface, identifying zones without points (data gaps). The 3D point clouds were
projected along Z direction and converted into a regular grid. The mean surface density (ρ)
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was estimated by counting the points inside each grid cell and then calculating the mean of
the overall cells density:

ρ =
1
N

N

∑
i=1

ci (1)

where N is the number of grid cells in the region of interest (C) and ci is the point counting
or local density in grid cell i.

The data gaps indicate the numbers of empty grid cells in the region of interest using

δg = #Dg × Ac (2)

where #Dg is the cardinality of set Dg = {ci : ci = 0, for i = 1, . . . , N} formed by the empty
grid cells and Ac is the grid area.

2.5. Comparative Analysis and Statistical Measures

To assess the accuracy and effectiveness of UAS-RTK and TLS products for mapping
groins, we implemented a two-stage methodology (Figure 4): (i) 3D approach for assessing
the positional accuracy of 3D point cloud, and (ii) 2.5 D approach for assessing the DSM
vertical accuracy.

For the 3D approach, the distance between points of TLS and UAS was calculated. For
this purpose, in CloudCompare software, two algorithms were adopted: (i) Cloud-to-Cloud
(C2C) distance and (ii) Multiscale Model-to-Model Cloud Comparison (M3C2). The C2C
computes directly the distance between two 3D point clouds based a local model fitting.
This local model is calculated for each point of the reference data (TLS 3D point cloud) and
is composed by: (1) the k nearest points or (2) the points inside a sphere with radius r of
the target data (UAS 3D point cloud). The M3C2 measure computes the distances between
two 3D point clouds through the normal direction of a local surface. This local surface is
calculated by searching for points in a radius D and then a cylinder is computed along the
normal direction that intersects the target data [49]. Therefore, the error of UAS point cloud
(∆D) was obtained by:

∆D =
[

∆d1 · · · ∆dN
]

(3)

where ∆di is the distance between the point i of UAS and the correspondent in TLS point
cloud, and N is number of UAS 3D point cloud. Hereinafter, when ∆D is mentioned, it
includes distances calculated by C2C and M3C2.

For the 2.5D approach, a direct vertical difference was calculated using DSM of
Difference (DoD). The overall errors were obtained as:

∆Z =
[

∆z1 · · · ∆zM
]

(4)

where ∆zj = zTLS
j − zUAS

j is the vertical difference of j-th DoD cell.
Finally, the statistical analysis focused at characterizing the errors provided by the 3D

and 2.5D approaches (Figure 4). We firstly fitted the histograms to characterize the distribu-
tion of errors. Then, a robust statistical analysis suitable for non-normal distributions was
adopted [50], in order to compare the results with the traditional statistical measures. For
traditional measures, the mean, the Standard Deviation (Std) and the Root Mean Square
Error (RMSE) were calculated. For robust measures of non-normal error distributions, the
median and Normalized Median Absolute Deviation (NMAD) were computed. In addition,
the robust RMSE (RRMSE) was also computed based on mean and standard deviation [51].

3. Results
3.1. 3D Point Clouds and Digital Surface Model

The Agisoft Metashape processing workflow lasted about 1.5 h and returned a 3D
point cloud with a georeferencing RMSE on check points equal to 3.2 cm. The 3D point
cloud represented the entire groin with about 11 million points (Table 1), with a mean
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surface density of 1.7 × 103 points/m2 and without data gaps. After using the 12 targets
to link the TLS scans in Cyclone that lasted about 1 h, the RMSE of TLS stitching was of
1.5 cm. The final 3D point cloud of TLS covered the groin with about 41 million points
(Table 1). Even though the number of points and mean surface density of TLS point cloud
was about three times the UAS one, the TLS data gap was about 16% of the entire groin
area (6630 m2).

Table 1. Characterization of the 3D point clouds obtained by the Unmanned Aerial System and
Terrestrial Laser Scanning data. Number of points, mean surface density and data gaps are indicated
for the whole groin structure and the three subareas (refer to Figure 4 for sub-areas identification).

Parameters Unmanned Aerial System Terrestrial Laser Scanner

Whole structure
(6630 m2)

Number of points 11.3 × 106 41.3 × 106

Mean surface density (points/m2) 1.7 × 103 6.2 × 103

Data gaps (%) 0 16.8

Sub-area 1
(560 m2)

Number of points 1.0 × 106 15.2 × 106

Mean surface density (points/m2) 1.8 × 103 27.2 × 103

Data gaps (%) 0 1.4

Sub-area 2
(530 m2)

Number of points 0.9 × 106 0.7 × 106

Mean surface density (points/m2) 1.6 × 103 1.3 × 103

Data gaps (%) 0 0

Sub-area 3
(600 m2)

Number of points 1.2 × 106 21.8 × 106

Mean surface density (points/m2) 2.0 × 103 36.4 × 103

Data gaps (%) 0 0.8

Overall, the number of points and mean surface density among the three sub-areas
were much variable on TLS data, while did not change significantly for UAS. In fact, the
mean surface density of TLS was higher on sub-areas 1 and 3, due to the more numerous
scans and stations in these zones. Finally, for the sub-areas 1–3, which are the most
interesting areas to be monitored on the groin structure, TLS survey returned an average
1.1% of surface data gaps. On the other hand, despite the lower means surface density, no
data gaps were found on UAS survey. Figure 5 depicts the 3D point clouds and Digital
Surface Models (DSM) obtained in the data processing step. Although the data gaps were
present on TLS 3D points, the interpolation of the empty cells (5× 5 cm) allowed to mitigate
this effect on DSM.

3.2. Comparative Analysis and Statistical Measures of 3D Point Clouds and DSM

For analysing the spatial distribution of errors, Figure 6 shows the results of 3D and
2.5D approaches for the sub-areas. Overall, more than 50% of errors were concentrated
between 0 and 10 cm. The accumulated green bars presented higher values in sub areas
1 and 3. In fact, the presence of data gaps was proportional to the increase of errors. The
roughness of these sub-areas may have penalized the errors of M3C2 algorithm where it
is not possible to compute the distance in several points due to wrong calculation of the
normal direction of local surfaces (see Section 2.4 and Figure 4). The errors of sub-area
2 registered lower variability among the different algorithms. These results were due to the
regular roughness of the groin surface. Overall, the non-normality of the errors distribution
was corroborated with a course analysis of the histogram shapes. The main reason for this
assumption is the right heavy tails of the histograms.
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details, 3D point clouds (upper row) and Digital Surface Models (DSM, lower row). Red numbered
polygons represent the three chosen sub-areas (1–3, please refer to Section 2.4 for explanation). The
axis labels refer to the projected Portuguese reference systems (ETRS89/PT-TM06).

For an in-depth assessment, the accuracy measures were tabulated highlighting the
main differences between 3D and 2.5D approaches in sub-areas (Table 2). In general, the
conventional measures overestimated the errors between UAS and TLS in comparison
with the robust measures (in the worst case, differences were about 14 cm). The sub-
area 2 presented the lower variability both in terms of Std and NMAD, while sub-area
1 showed high dispersion in relation to the mean value. Overall, the RMSE registered
values in a range of 30 cm due to the variability of errors expressed in term of Std. In
fact, the formulation of RMSE considers the square of errors that magnifies the largest
values mainly observed in sub-areas 1 and 3. However, it can be observed that the RRMSE
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presented a lower variability concentrating values in a range of 10 cm. Although the
distribution of errors deviates from the normal distribution, the differences in sub-area
2 were not significant. Only M3C2 showed considerable deviations between RRMSE and
RMSE (9 cm).
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Table 2. Statistical measures of 3D point cloud and DSM in the chosen sub-areas. Cloud-to-Cloud
(C2C) and Multiscale Model-to-Model Cloud Comparison (M3C2) were the 3D approaches applied
to the 3D point clouds. DSM of Differences (DoD) was the 2.5D approach applied to the DSM. The
statistical measures were composed by: (i) traditional measures for normal distributions: mean,
standard deviation (StD) and Root Mean Square Error (RMSE); (ii) robust measures for non-normal
distributions: median, Normalized Mean Absolute Deviation (NMAD) and Robust RMSE (RRMSE).
For the formulas of statistical measures, please refer to Figure 4.

Approach Sub-Area Mean (cm) Median (cm) Std (cm) NMAD (cm) RMSE (cm) RRMSE (cm)

C2C
1 17.2 7.0 21.1 6.4 27.2 18.4
2 10.0 7.2 7.9 2.3 12.7 10.3
3 12.9 8.1 15.3 5.0 20.0 13.8

M3C2
1 16.8 4.6 36.0 1.6 39.8 16.9
2 10.2 6.7 16.5 1.3 19.4 10.3
3 14.4 7.6 26.8 3.5 30.4 14.8

DoD
1 14.9 5.3 23.8 2.3 28.1 15.0
2 9.0 7.4 6.0 1.5 10.8 9.1
3 14.5 9.3 16.1 3.8 21.7 15.0

4. Discussion

A Real-Time Kinematic assisted Unmanned Aerial System (UAS-RTK) and a Terrestrial
Laser Scanning (TLS) were used to reconstruct a L-shape groin (Figure 1). The fieldwork task
was much faster and easier with the UAS-RTK, since the drone flew and collected images
autonomously in about 10 min. Even though flight planning and camera setup request a
certain experience and expertise (Figure 2), the fieldwork was much less demanding than
TLS deployment. In fact, the limited scan range of the TLS required to place, move and
re-place the instrument through different positions and stations (Figure 3) to survey the
entire structure. The task also required several re-placements of targets to further stitching
the scans from different stations in the post-processing phase. Even though a single
TLS scan lasted about 20 min, placing the instrument and the targets over the different
stations, beside marking the targets in the TLS, lasted about six times the drone setup and
deployment. On the other hand, UAS-RTK and TLS returned similar data processing times
(1.5 h and 1 h, respectively) and requested similar experience and expertise. It is worth to
highlight that the hardest task was to manually mark the 13 control points in images that
lasted about 20 min.

We experienced some logistical limitations due to tide excursion and wave spray. As
also observed by Medjkane et al. [52], it was necessary to plan the data acquisition during
low tide to maximize the coverage of the structure, since the Portuguese coast is a meso-tidal
environment with tide range up between 1.2 m and 3.6 m [42,44,45]. Due to the longer time
data collection requested by the TLS, it was necessary to place the instrument far from the
edges of the structure to guaranty the integrity of the equipment, whose data might have
been affected by wave spray of breaking wave height at this high-energetic coast [43]. This
constrains on TLS placement caused also the occlusion of several relevant zones affecting
the data completeness mainly on downdrift areas (Figure 5). On the other hand, the drone
deployment and quality of images can be limited by certain environmental conditions,
since (i) wind speed should be less than 20 km/h, (ii) drone cannot fly during rainy days,
and (iii) fog and mist are common on the Portuguese coast also during summer [16].

The advantages of UAS-RTK in comparison with TLS were also observed in the
quantitative 3D reconstruction of the groin. The proposed quality parameters were crucial
for assessing the effectiveness of these two techniques to reproduce the 3D geometry of a
rocky groin. Even though UAS returned a 3D point cloud with number of points and mean
surface density of a magnitude four times smaller, no data gaps were observed in the 3D
reconstruction (Table 1). On the other hand, despite the high number of points and mean
surface density, it was not possible to reconstruct about 16% of the groin structure (Table 1).
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It is worth to highlight that the sub-areas 1 and 2 were chosen to allow the computation of
the comparative statistics that require similar point distribution over the surface (Figure 6
and Table 2). In fact, the groin surface zone without TLS data was higher on these sub-areas
(Figure 5) not covering the entire groin section. To further assessments of monitoring tasks
(e.g., track armour units movements), these sub-areas should be upgraded to cover the
entire section.

The proposed approaches for assessing the positional and vertical accuracies of UAS
3D point clouds and Digital Surface Models returned substantial differences between
traditional and robust statistical measures. The armour units displayed on sub-areas 1 and
3 returned several outliers in M3C2 and C2C, due to the low mean surface density and
the existence of data gaps on TLS data (Figure 6 and Table 2). A considerable proportion
of voids on armour layer was observed on these sub-areas caused by the displacement
of several armour units (Figure 1e,f). Due to the lower block density, the initial shape of
the structure was modified and showed increased surface roughness complexity, which
also influenced the M3C2 and C2C distance computation. On the other hand, the sub-area
2 returned low differences between traditional and robust measures, since this area was
composed by more regular surface and stone blocks were more framed. In fact, a lower
proportion of voids on armour layer was observed on this sub-area mitigating the impact
of outliers in M3C2 and C2C distance computation.

When comparing similar works devoted to 3D reconstruction of coastal structure,
we showed that the use of a Real-Time Kinematic assisted UAS (DJI Phantom 4 RTK)
can improve the positional accuracy and the time-demanding placing and surveys of
GCPs can be avoided. The error on check points was substantially lower (3.6 cm) than
Henriques et al. [39], who obtained a DSM positional RMSE of 12.8 cm using a set of GCP
and a traditional workflow.

The recent technological advances allow to incorporate a LiDAR sensor on drones,
which have shown promising results when compared with the UAS-based imagery in
terms of surface density [53]. However, the relative high cost for acquiring UAS-LiDAR
suggests that UAS imagery combined with SfM photogrammetry is still a cost-effective
and valuable solution to reproduce the 3D geometry of rubble mound groins. In fact, for
this type of coastal structures with regular armour units (60–80% shape factor), this remote
sensing technique could be used to characterize the armour layer geometry in terms of
packing density and the armour layer porosity. However, for structures with more complex
armour units (e.g., tetrapod) a further investigation should be implemented for analysing
the impact of the armour layer roughness on the 3D reconstruction in terms of data gaps.
The use of different flight plan configurations (combining nadiral and oblique images)
could be an alternative to mitigate the existence of blind spots and improve the density 3D
point cloud [54,55].

Since the use of UAS showed satisfactory results both in terms of data collection
time and 3D reconstruction, the UAS imagery combined with SfM photogrammetry can
be potentially used to: (i) develop a geospatial database of the coastal structures on the
Portuguese coast; (ii) to increase the temporal resolution of data collection and explore
the potentialities of simultaneous localization additional mapping (SLAM) to improve
the efficiency of data processing [56,57]; (iii) improve the effectiveness of inspection; (iv)
monitor the evolution of likely damaged areas; (v) create a framework to automatically
segment the armour units for analysing and quantifying the damage areas [58]; (vi) provide
an effective tool to the decision makers and coastal management entities.

5. Conclusions

This work reported a fieldwork campaign conducted with a Real-Time Kinematic
assisted Unmanned Aerial System (UAS-RTK) and a Terrestrial Laser Scanning (TLS) to
survey the 3D geometry of a rocky groin on the North Atlantic Portuguese coast.

The Structure-from-Motion (SfM) photogrammetry technique applied on drone images
generated a 3D point cloud and a Digital Surface Model (DSM) without data gaps. The
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drone setup and deployment lasted about one hour. The TLS returned a 3D point cloud
four times denser than the drone, however the resulting DSM was not representing about
16% of the groin (data gaps). This was due to the occlusions encountered by the low-lying
scans determined by the displaced rocks composing the groin. Given that the survey by
TLS was about three times slower than the UAS-RTK, the SFM-MVS applied on UAS-RTK
images was the most suitable technique to reconstruct the rocky groin.

The UAS-RTK remote sensing technique can be used a valid alternative to monitor
rubble mound groins with a shape factor of the armour units between 60–80%. Unlike TLS,
UAS-RTK can map the roughness of the armour layer including areas with high armour
porosity mainly caused by the displacements of armour units. The drone deployment
and the SfM applied on images can improve the inspection of likely damages of coastal
structures, to support coastal structure management and interventions. Future works could
be focus on testing different flight plan configuration to 3D reconstruct the geometry of
other coastal structures with lower shape factor of the armour units and with more complex
surface roughness.
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