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Abstract: Plant water use is an important function reflecting vegetation physiological status and
affects plant growth, productivity, and crop/fruit quality. Although hyperspectral vegetation indices
have recently been proposed to assess plant water use, limited sample sizes for established models
greatly astricts their wide applications. In this study, we have managed to gather a large volume of
continuous measurements of canopy spectra through proximally set spectroradiometers over the
canopy, enabling us to investigate the feasibility of using continuous narrow-band indices to trace
canopy-scale water use indicated by the stem sap flux density measured with sap flow sensors. The
results proved that the newly developed D (520, 560) index was optimal to capture the variation of
sap flux density under clear sky conditions (R2 = 0.53), while the best index identified for non-clear
sky conditions was the D (530, 575) (R2 = 0.32). Furthermore, the bands used in these indices agreed
with the reported sensitive bands for estimating leaf stomatal conductance which has a critical role in
transpiration rate regulation over a short time period. Our results should point a way towards using
proximal hyperspectral indices to trace tree water use directly.

Keywords: hyperspectral; sap flow; proximal; derivatives; vegetation index

1. Introduction

Plant water use through transpiration is an important function that reflects the veg-
etation’s physiological status [1,2], which is regulated by stomatal conductance (gs) over
short periods and by tree structural factors over long term periods, as well as being driven
by climate factors [3]. Since water use rates may affect plant growth, productivity, and
crop/fruit quality [4], a rapid solution for estimating water use rate in whole plants is
essential for vegetation physiological status and agricultural water management [2].

Traditional field measurement of canopy-scale water use mainly relies on invasive sap
flow sensors via the so-called heat pulse velocity (HPV) method, thermal dissipation probe
(TDP) method, or heat balance method [5,6]. However, such approaches are invasive, time-
consuming, expensive, and often unfeasible under many situations because the operation
of sap flow sensors requires vast technical input and maintenance effort [7].

Alternatively, estimating multi-scale water use with remote sensing data has received
increasing attention [8]. Remote sensing is a rapid, non-invasive, and efficient technique
that can acquire and analyze spectral properties of earth surfaces at different spatial scales
ranging from ground-based to satellites platforms [9]. The common approach of applying
satellite-based remote sensing data to estimate evapotranspiration (ET, the total of transpi-
ration, soil evaporation, and canopy evaporation) generally involves empirical [10–12] or
complex energy balance models [13–16]. The thermal infrared (TIR) images were widely
used to estimate evapotranspiration through energy balance [17]. Although these ap-
proaches can estimate evapotranspiration with remote sensing data inputs [16], it is chal-
lenging to partition ET into transpiration (water used by plants) and soil evaporation with-
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out additional inputs [18,19], as the ratio of transpiration to total evapotranspiration (T/ET)
was controlled by various factors [11] and varied among different ecosystems [20–23].

With the development of hyperspectral remote sensing, straightforward relationships
between plant transpiration and remotely sensed data have been built with different
empirical approaches. Among various empirical approaches for relationship analysis,
vegetation index is the simplest, and several remotely sensed hyperspectral models have
recently been proposed to assess plant transpiration. For instance, the Water Index (WI)
of R900/R970 for whole-plant transpiration of olive trees (Olea europaea L.) [24]. Similarly,
the hyperspectral Normalized Difference Vegetation Index (NDVI) for crop (cotton, maize,
and rice) transpiration [19], the Normalized Different Water Index NDWI (860, 1240)
and Moisture Stress Index MSI (1600, 820) for the transpiration rate in wheat under arid
conditions [25], the SR (1580, 1600) index and the ND (1425, 2145) index based on the
original reflectance, and the dSR (660, 1040) index based on the first-derivative spectra for
sap flow of Haloxylon ammodendron [1,26,27].

Even though previous studies indicate the feasibility of applying hyperspectral indices
as a more straightforward approach to trace transpiration, very often the limited availability
of sample sizes greatly restricts wide applications of this method. Using a large database of
synchronous measurements of canopy water use (indicated by stem sap flux density), and
spectra covering as varied plant conditions as possible, is the best way to identify efficient
and robust indices for canopy transpiration estimation [27,28]. However, the continuous
measurement of canopy spectra is not as easy as the operation of sap flow sensors in the
field. To the best of our knowledge, no study has yet reported the long-term continuous
monitoring of canopy spectra matching the high temporal resolution (usually dozens of
minutes or even finer) of sap flux density data.

Using a pair of SS-110 spectroradiometers (Apogee Instruments, Inc., Logan, UT, USA),
we collected minute-scale canopy spectra continuously in the field, allowing us to develop
robust indices from the large volume of synchronous data pairs for estimating canopy
transpiration. The high temporal resolution of spectra data also allows us to deal with the
time lag effect of using remotely sensed data to monitor plant sap flux density.

In addition, a number of transformed spectra from the originally recorded reflectance,
e.g., transmittance and derivative spectra, have proved to be helpful in monitoring plant
biophysical and biochemical parameters [29]. Among them, the derivative spectra analy-
sis holds the advantage of reducing additive constants and minimizing soil background
effects [30], which have been reported to be effective to trace plant physiological param-
eters, including transpiration [1] and photosynthetic parameters [31,32]. Consequently,
developing indices based on derivative spectra to estimate the variation of sap flux density
is worthwhile.

Accordingly, the main objectives of this study are therefore: (1) to verify the feasibility
of using continuous narrow-band indices to track canopy-scale water use (sap flux density);
(2) to evaluate the performances of hyperspectral indices based on reflectance as well as
derivatives to estimate canopy-scale water use; (3) to identify the best indices and sensitive
bands for sap flux density monitoring.

2. Materials and Methods
2.1. Research Site and Field Measurements

This study was conducted in an Integrated Remote Sensing Experimental Site for
mango trees (23◦42′09.5′′N, 106◦59′42.2′′E, 151 m above sea level) located in the Baise
National Agricultural Sci-tech Zone, Guangxi, China (see Figure 1a for the location). This
region is characterized by a dry and hot valley with a prevalently subtropical monsoon
climate. The annual mean temperature is estimated to be ca. 22 ◦C, but the extreme
maximum temperature can reach 42 ◦C. The annual mean precipitation of this region is
appropriately 1166 mm (mainly falling between May and September), while evaporation
can reach approximately 1682 mm.
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Figure 1. Research site location (a), an overview of the plot (b), and the setting of SS-110 spectrometers
over the canopy (c).

The experimental site, with a 10 m height observation tower, was established in
2018 to continuously monitor mango ecological processes, environmental factors, and
hyperspectral remote sensing information. Canopy-scale water use was monitored through
the Granier-type of thermal dissipation probes (12 mango trees in total) within a plot of the
mango plantation. Environmental factors, including air temperature/humidity/pressure,
wind speed/direction, precipitation, soil moisture/temperature, PAR, and net radiation,
were also recorded. The incoming and outgoing radiations at 1 nm spectral resolution from
340 nm to 820 nm were monitored on a minute-scale after July 2019.

Synchronous measurements of canopy sap flux density and spectra were recorded
from July 2019 to July 2021 at this site. The spectra were monitored with a pair of SS-110 field
spectroradiometers (Apogee Instruments, Inc., USA), which can measure in-coming and
out-going radiations at one nm interval over the wavelength domain from 340 to 820 nm.
The spectroradiometers were mounted approximately 1 m above the mango tree in the
vertical direction (Figure 1c). The upward-facing spectroradiometer was used to record
the incoming solar radiation (energy flux density in W m−2 nm−1), while the downward-
facing spectroradiometer was used to record the outgoing reflected radiation (energy flux
density in W m−2 nm−1). The SS-110 field spectroradiometers were connected to a CR1000
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(Campbell Scientific, Inc., Logan, UT, USA) data logger, in which the data were recorded
every 1 min.

The Granier-type thermal dissipation probes (TDP) were installed on the trunks to
monitor the sap flow of 12 mango trees (with diameters ranging from 14 to 26 cm). The
sensors were sealed with silicone to protect from precipitation and were covered with
waterproof foils to avoid thermal influences from radiation [1,33]. Four Granier sensors (in
North, East, South, and West directions) were installed on the tree that was monitored with
SS-110 sensors. All Grainer sensors were connected to a CR1000X (Campbell Scientific, Inc.,
USA) data logger, where data were recorded every 1 min and averaged every 10 min.

2.2. Data Preparations
2.2.1. Sap Flux Density

Sap flux density (Fd, m3 m−2 s−1) was calculated using the empirical equation given
by Granier [34] and Lu et al. [35]:

Fd = 118.99× 10−6
(

∆Tm − ∆T
∆T

)1.231
(1)

where ∆Tm is the temperature difference between the two probes at zero flux, and ∆T is
the temperature difference between the heated and non-heated probes for positive xylem
flow conditions.

As four Granier sensors in different directions were inserted into the tree trunk, the
sap flux density was firstly calculated for each sensor and their averaged value was used
for further analysis.

2.2.2. APOGEE-Based Canopy-Scale Reflectance

The canopy-scale reflectance was expressed with the ratio of outgoing radiation
and incoming radiation measured with SS-110 field spectroradiometers at each specific
wavelength. The calculated instantaneous spectra at the 1-min step were averaged for
every 10 min in order to match the temporal resolution of sap flux density data. Hourly
sap flux density was also generated similarly from the averaged values every 60 min
for investigating the potential of hyperspectral indices to estimate water flux at a longer
time scale.

As solar position (solar zenith and azimuth angles) has a great effect on in situ mea-
surements of irradiation and reflectance [36,37] we, thus, calculated the sun position (zenith
and azimuth angles at the site location) following the algorithm presented by Reda and
Andreas [38] for each spectral measurement. Only data with the solar zenith angles less
than 45◦ were used for further analysis.

Furthermore, we also introduced the clear sky index (Kt) to indicate the sky clearness
at the moments of irradiation measurement [39]. The Kt was calculated with:

Kt =
I

Iext sin h
(2)

where I is the ground measured irradiance, Iext is extraterrestrial solar energy at the top
of the atmosphere, and h is the solar elevation angle. As the SS-110 sensors only cover
the wavelength region from 340 nm to 820 nm, and the sensitivity of the SS-110 is greater
than 10% at wavelengths greater than 400 nm, we took the total irradiation (I) within
400–820 nm measured with the upward-facing SS-110 as ground observed energy density.
The extraterrestrial solar energy density (Iext) within 400–820 nm was simulated from the
LBLRTM (Line-By-Line Radiative Transfer Model, version 5.21) [40]. We defined the sky
conditions as clear (Kt ≥ 0.4) or non-clear (cloudy or overcast, Kt < 0.4) based on the
Kt [41,42].
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2.2.3. Derivative Spectra

In addition to the calculated canopy-scale reflectance, the derivative spectra, which
have been reported as effective in tracing leaf- and canopy-scale transpiration with different
regression methods [1,43], were also calculated according to the “finite divided difference
approximation” method [44,45]. The first-order derivative was expressed as:

d =
ds
dλ

∣∣∣∣
i
≈

s(λi)− s
(
λj
)

∆λ
(3)

where s(λi) and s(λj) are the values of the spectrum (canopy reflectance here) at wavelength
λi and λj, respectively, and ∆λ is the wavelength increment between λi and λj. Higher-order
derivatives were then calculated from lower-order derivatives iteratively. We analyzed
low order (first to third) derivatives as derivatives (especially high orders) sensitive to
noise [46].

2.3. Developing Hyperspectral Indices for Tracing Sap Flow Density

Based on the original reflectance and its derivative spectra, six commonly reported
index types, including the given wavelength (R) with only one band; the simple ratio (SR),
wavelength difference (D), a normalized difference (ND), and inverse differences (ID) with
two spectral bands; the double differences (DDn), which involved three spectral bands,
were used in this study for developing new indices [32]. The formula of these index types
were presented in Table 1.

Table 1. The formula of different index types used in this study.

Index Type Formula of Index Number of Bands

1. R(λ) = Sλ * 1
2. SR(λ1, λ2) = Sλ1

Sλ2
2

3. D(λ1, λ2) = Sλ1−Sλ2 2
4. ND(λ1, λ2) = (Sλ1−Sλ2)

(Sλ1+Sλ2)
2

5. ID(λ1, λ2) = 1
Sλ1
− 1

Sλ2
2

6. DDn(λ1, ∆λ) = 2Sλ1−Sλ1−∆λ−Sλ1+∆λ 3
* Sλ is the spectrum value (reflectance or derivative) at the specific wavelength λ.

The raw spectra at the 1 nm spectral resolution were resampled to 5 nm with the
five-point centered moving average method for shortening the time for index development.
For all index types presented in Table 1, the index values for all possible combinations of
the band(s) were first calculated from the spectra of each sample. A first-order polynomial
linear regression was fit between the index values of the given combination of wavebands
and the sap flux density values.

2.4. Statistical Criteria

The coefficient of determination (R2) was calculated for all indices and served as the
primary statistical criteria for model selection:

R2= 1−∑n
i
(

Fdi − F̂di
)2

∑n
i
(

Fdi − Fd
)2 (4)

In addition to the coefficient of determination (R2), the ratio of performance to devia-
tion (RPD) [47] and the normalized root mean square error by mean (NRMSE) was also
calculated for each index as:

RPD =

√
1

n−1 ∑n
i
(

Fdi − Fd
)2√

1
n ∑n

i
(

Fdi − F̂di
)2

(5)
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NRMSE =
1
n ∑n

i
(

Fdi − F̂di
)2

Fd
·∆100% (6)

where Fd is the measured sap flux density value, F̂d is the model fitted sap flux density
value, Fd is the mean sap flux density value for all samples, and n is the number of samples.

3. Results
3.1. Sap Flux Density and Canopy Reflected Spectra of Mango

A total of 2599 synchronous measurements (10-min) of sap flux density and spectra
were selected (with solar zenith angles less than 45◦) in this study. The mean value of sap
flux density was 5.54 × 10−5 m3 m−2 s−1, with a standard deviation of
2.80 × 10−5 m3 m−2 s−1. Two distribution peaks around 2.25 × 10−5 m3 m−2 s−1 and
7.75× 10−5 m3 m−2 s−1 can be recognized from Figure 2a. The synchronous measurements
of canopy spectra were generated from incoming/outgoing radiations (energy flux density
in W m−2 nm−1), shown in Figure 2b. The dashed line represents the mean values of all
2599 observations at each specific wavelength within the domain between 340 and 820 nm.
The spectra at wavelengths between 340 and 380 nm were noisy because of the low sensi-
tivity (<10%) of the SS-110 spectroradiometers within this spectral region.
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Figure 2. Variations of field-measured sap flux density (a) and spectra in 5 nm resolution (b).

The diurnal variations of sap flux density (10-min and hourly) under different sky
conditions (clear, overcast, and cloudy) are illustrated in Figure 3. The maximum Kt values
around noon on the 6, 7, and 8 of October 2019 were 0.52, 0.53, and 0.36, respectively.
However, the mean Kt values from sunrise to sunset were 0.44, 0.36, and 0.23 on these three
days. Under the clear sky conditions (the 6 October 2019), the sap flow increased quickly
from sunrise and reached peak value around noon of the local solar time. Double peaks
were observed under non-clear sky conditions (overcast or cloudy). Larger maximum Kt
values also resulted in higher sap flux density peak values. The hourly sap flux density
(dashed line) showed a time lag of approximately a half-hour if compared with the 10-min
data series.
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(c) overcast.

3.2. New Hyperspectral Indices for Tracking Sap Flux Density

Based on the 2599 synchronous data pairs, the best band combinations for each
type of spectral index (listed in Table 1), calculated either from the original reflectance
or transformed derivative spectra, were examined. The best index based on the original
reflectance to trace the variation of sap flux density was the D-type index with the spectral
bands of 520 nm and 590 nm. The D (520, 590) index could capture the change of canopy
sap flux density with an R2 of 0.38 and an NRMSE of 39.69%. On the other hand, the best
index identified based on the 1st order derivative spectra was the ND (475, 670) index,
which had an R2 of 0.38 and an NRMSE of 39.82%, respectively. However, for higher-order
derivatives (the 2nd and 3rd orders)-based indices, their performances decreased slightly.
For instance, the R2 values of the D (415, 730), the best-performed index based on the 2nd
order derivative, and the D (735, 790) index, the best one based on the 3rd order derivative
spectra, were 0.29 and 0.30, respectively. Similarly, the R2 values of the ND-type of index
based on the 2nd order and 3rd order derivatives decreased to 0.31 and 0.33, respectively.
The diagram revealing the relationship between the field measured sap flux density and the
D (520, 590) index is shown in Figure 4a. The fitting was improved when using a natural
logarithmic function (R2 = 0.42).
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Remote Sens. 2022, 14, 1483 8 of 15

3.3. Best Spectral Indices under Different Sky Conditions

We have further explored the performances of the spectral indices to trace the sap flux
density under different sky conditions according to the clear sky index (Kt).

For cloudy/overcast sky conditions (Kt < 0.4), the bands 530 nm and 575 nm were
identified as the best band combination for the D-, SR-, ND-, and ID-type of reflectance-
based indices to trace the variation of sap flux density. Among them, the SR (530, 575),
D (530, 575), ND (530, 575), and ID (530, 575) indices based on reflectance could trace the
change of sap flux density with the R2 values of 0.31, 0.32, 0.32, and 0.28, respectively. The
indices based on the derivative spectra were even poorer in estimating the sap flux density
under non-clear sky conditions. The identified best indices based on the 1st, 2nd, and
3rd order derivatives were D (710, 735), ID (575, 650), and SR (735, 740). The R2 values of
these three indices were only 0.26, 0.27, and 0.21, respectively. The relationship between
field-measured sap flux density under non-clear sky conditions and the estimated values
with the D (530, 575) index is shown in Figure 5a. The NRMSE and RPD values of the
D (530, 575) index based on reflectance were 47.35% and 1.21 (n = 1544) for the sap flux
density estimation under cloudy/overcast sky conditions.
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On the other hand, for clear-sky conditions (Kt ≥ 0.4), much higher R2 values were
achieved for all spectral forms (irrespective of original reflectance-based or derivatives-
based). For all spectral forms, the best indices identified could trace the sap flux density
with R2 values higher than 0.50. Among the six types of indices, the ID-type of index
outperformed the other types of indices. Of the best indices identified, the ID (520, 560)
index based on reflectance, the ID (410, 480) index based on the 1st order derivative, the ID
(540, 575) index based on the 2nd order derivative, and the ID (555, 650) index based on
the 3rd order derivative, could capture the variation of sap flux density under clear sky
conditions with R2 values of 0.53 (NRMSE = 25.44%, RPD = 1.45), 0.50 (NRMSE = 26.12%,
RPD = 1.42), 0.52 (NRMSE = 25.62%, RPD = 1.45), and 0.51 (NRMSE = 25.96%, RPD = 1.43),
respectively. The scatter plot of the field measured sap flux density and estimated values
with the ID (520, 560) index based on canopy reflectance is shown in Figure 5b. The results
clearly indicate that the spectral indices were more effective in estimating sap flux density
under clear sky conditions than those under non-clear sky conditions.
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4. Discussion
4.1. Reported Indices vs. Newly Developed

Currently, there are already various narrow-band indices or multiple regression models
(e.g., partial least squares regression) that have been developed from hyperspectral remotely
sensed data for tracing plant transpiration [1,2,19,24,26,27,48–50]. Take hyperspectral
indices as an example, Cao et al. [26] reported the exponential relationship between the SR
(1580, 1600) index and canopy sap flow rate of Haloxylon ammodendron (R2 = 0.806). Marino
et al. [24] and Sun et al. [49] suggested that the water index (WI) calculated with R900/R970
had good correlations with whole-plant (R2 = 0.668) and leaf-scale (R2 = 0.801) transpiration
of Olea europaea L. Our previous research on Haloxylon ammodendron indicated that the
simple ratio index dSR (660, 1040) based on the first-derivative spectra had an R2 of 0.54 with
field measured canopy sap flow [1], and the normalized difference index ND (1425, 2145)
had significant relationships (R2 = 0.40) with model-simulated and in situ measured canopy
transpiration [27]. These reported results revealed the potential of hyperspectral narrow-
band vegetation indices for fast, non-intrusive detection of plant transpiration. While
we could not have evaluated these indices in this study because they used wavelengths
beyond the covering range of SS-110 spectroradiometers, the Hyperspectral Normalized
Difference Vegetation Index HNDVI (814, 672), proposed by Marshall et al. [19] showed a
strong relationship with crop transpiration (R2 = 0.68) and has been evaluated explicitly.
Validation results showed that the index had a very poor performance with the measured
sap flows of mango trees, with an R2 value of 0.005 only (NRMSE = 50.37% and RPD = 1.00).
The sensitivity of spectral indices was species-dependent [51] and may be the primary
reason for this discrepancy.

The newly developed hyperspectral indices in this study, together with several re-
ported hyperspectral narrow-band indices, provided a new way to monitor water flux
directly and non-intrusively. However, addressing the underlying mechanisms remains
a great challenge. The critical role of stomatal conductance (gs) in regulating plant water
use has been clarified [52], with its short-term changes linked closely to the hydraulic
properties to minimize the loss of hydraulic conductivity through xylem [53]. Remote
estimation of stomatal conductance with normalized difference vegetation indices was
reported in the 1990s, and the results showed strong linear or non-linear relationships
between gs and vegetation indices [54–56]. Further recent research on hyperspectral remote
sensing of stomatal conductance revealed that the indices with the yellow (570–630 nm)
and green (530–580 nm) spectral region were highly correlated with gs [57]. The importance
of the yellow band in gs estimation was also confirmed with partial least squares regression
analysis [57]. In addition, the bands 530 nm, 550 nm, and 580 nm have also been selected
as important spectral features using stepwise regression analysis for the remote sensing
of gs [58]. Consequently, the bands used in the newly developed hyperspectral indices in
this study (520, 530, 560, 575, and 590 nm) for water use estimation agree well with the
reported spectral region of stomatal conductance, revealing the underlying physiological
mechanisms to a certain level. Although these spectral bands have not been directly linked
to plant water use, the photochemical reflectance index (PRI), or some modified PRIs
involved these bands, were strongly correlated with photosynthetic parameters which can
be caused by changes in stomata-opening [59]. The PRI has been reported as a useful tool
for the remote sensing of plant water stress at the canopy level [60].

4.2. Effects of Spectral Transformations

Derivative analysis has been reported as feasible for estimating plant biophysical
and biochemical parameters as it holds the advantages of minimizing additive constants
and linear functions [46]. Many derivative spectra-based indices have been reported to
be more effective than reflectance-based indices for deriving biophysical and biochemical
quantities [1,30,61–63]. Several pieces of research on hyperspectral remote sensing of water
flux also indicated that the derivative spectra performed better in estimating the variations
in leaf transpiration [43] or canopy transpiration [1].
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In this study, we investigated the performances of hyperspectral indices based on
reflectance as well as derivatives to estimate canopy-scale sap flux density. Unlike the
results reported by Wang and Jin [43] and Jin and Wang [1], where derivative spectra
showed better accuracies in tracking leaf transpiration using partial least squares regression
(PLSR) [43] and quantifying canopy sap flux density with hyperspectral indices [1], the best
hyperspectral indices identified in this study were those based on reflectance rather than
those based on derivative spectra. The limit wavelength range of the SS-100 spectroradiome-
ter may have possibly confined those better combinations using longer wavelengths for
derivative indices and might explain the discrepancy. However, this result was consistent
with our previous research on canopy transpiration estimation with hyperspectral indices
in a simulated database (n = 2204) with The Soil Canopy Observation of Photosynthesis and
Energy fluxes (SCOPE) model [27], where the first-order derivative spectra-based indices
were tested but they did not result in significant improvement to estimate transpiration in
the simulated dataset with large sample numbers.

To compare the performance of reflectance and derivative spectra to estimate sap
flux density, we illustrated the correlation coefficients of the measured sap flux density
and the spectra (reflectance and the 1st derivative spectra) at each wavelength in Figure 6.
The correlation coefficients between sap flux density and the 1st order derivative spectra
were all between −0.1 and 0.1 throughout the wavelength from 400 nm to 820 nm, while
the reflectance values around 500 nm and 670 nm were relatively significant (correlation
coefficients around 0.16) and correlated with sap flux density. Furthermore, the reflectance
around 570 nm was insensitive (correlation coefficients around 0) to sap flux density, and
the bands around here were involved in many indices presented in Section 3.

Remote Sens. 2022, 14, x 10 of 15 
 

 

the best hyperspectral indices identified in this study were those based on reflectance ra-

ther than those based on derivative spectra. The limit wavelength range of the SS-100 

spectroradiometer may have possibly confined those better combinations using longer 

wavelengths for derivative indices and might explain the discrepancy. However, this re-

sult was consistent with our previous research on canopy transpiration estimation with 

hyperspectral indices in a simulated database (n = 2204) with The Soil Canopy Observa-

tion of Photosynthesis and Energy fluxes (SCOPE) model [27], where the first-order de-

rivative spectra-based indices were tested but they did not result in significant improve-

ment to estimate transpiration in the simulated dataset with large sample numbers. 

To compare the performance of reflectance and derivative spectra to estimate sap 

flux density, we illustrated the correlation coefficients of the measured sap flux density 

and the spectra (reflectance and the 1st derivative spectra) at each wavelength in Figure 

6. The correlation coefficients between sap flux density and the 1st order derivative spec-

tra were all between −0.1 and 0.1 throughout the wavelength from 400 nm to 820 nm, 

while the reflectance values around 500 nm and 670 nm were relatively significant (corre-

lation coefficients around 0.16) and correlated with sap flux density. Furthermore, the re-

flectance around 570 nm was insensitive (correlation coefficients around 0) to sap flux 

density, and the bands around here were involved in many indices presented in Section 

3. 

 

Figure 6. Correlation test between sap flux density and spectra (reflectance and the 1st order de-

rivative spectra) at each wavelength. 

4.3. Performances of Developed Hyperspectral Indices at Different Time-Scales 

The dynamic processes of sap flow and the environmental factors are not entirely 

synchronous due to the time lag between them [64]. A direct comparison between meas-

urements of sap flow and transpiration within a clear day suggested that sap flow lagged 

behind transpiration (a 1 h time lag gave the best fit between the sap flow and transpira-

tion) [65]. Our results illustrated in Figure 3 also showed that the sap flow averaged to 

every 60 min lagged approximately a half-hour behind the 10-min averaged values. To 

discuss the potential of hyperspectral indices to estimate water flux over a longer time 

scale, we have further examined their relationship on an hourly-scale. 

The results (shown in Figure 7) were similar to those generated based on 10-min av-

eraged data. The hyperspectral indices developed from reflectance could trace hourly sap 

flux density with an R2 value of 0.36 under all-sky conditions (n = 352), 0.32 under cloudy 

Figure 6. Correlation test between sap flux density and spectra (reflectance and the 1st order deriva-
tive spectra) at each wavelength.

4.3. Performances of Developed Hyperspectral Indices at Different Time-Scales

The dynamic processes of sap flow and the environmental factors are not entirely
synchronous due to the time lag between them [64]. A direct comparison between mea-
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surements of sap flow and transpiration within a clear day suggested that sap flow lagged
behind transpiration (a 1 h time lag gave the best fit between the sap flow and transpira-
tion) [65]. Our results illustrated in Figure 3 also showed that the sap flow averaged to
every 60 min lagged approximately a half-hour behind the 10-min averaged values. To
discuss the potential of hyperspectral indices to estimate water flux over a longer time
scale, we have further examined their relationship on an hourly-scale.

The results (shown in Figure 7) were similar to those generated based on 10-min
averaged data. The hyperspectral indices developed from reflectance could trace hourly sap
flux density with an R2 value of 0.36 under all-sky conditions (n = 352), 0.32 under cloudy
or overcast sky conditions (n = 223), and 0.57 under clear sky conditions, respectively. These
findings highlight a promising strategy for developing hyperspectral indices to potentially
characterize water flux on broad-scales.

Notably, the remotely sensed data and field survey are responsible for the model
accuracy in plant biophysical parameter prediction [66–68]. Seasonal variation of PRI and
Tc-Ta (the difference between crown temperature and air temperature) also demonstrated a
time delay of PRI for water stress (stomatal conductance and water potential) detection [69].
Thus, we realized that the time lag effect in the sensitivity of hyperspectral indices for sap
flux density estimation should be taken into account in future studies.
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4.4. Pros and Cons of Proximally Sensed Reflected Spectra on Investigating Canopy Functions

Hyperspectral remote sensing is a rapid, non-invasive, and efficient technique for
monitoring the biochemical or biophysical status of vegetation [70]. Compared with the
traditional field measurements of plant water use, proximal remote sensing has great
potential for monitoring real-time plant water use non-invasively. However, unlike the
well-examined biophysical and biochemical parameters, the underlying fundamental mech-
anisms for the remote sensing of plant functions (such as photosynthesis-related parameters,
transpiration rate, etc.) are still unclear. For short periods, the physiological status of vege-
tation, including water and carbon fluxes, are controlled in part by considerably changing
stomatal resistance [52]. However, over longer periods (weeks or months), plants tend to
adjust their foliage density to match the capacity of the environment to support photosyn-
thesis [71]. Hence, the time-series of vegetation indices should be further explored when
using remotely-sensed instantaneous data to measure the physiological status of vegetation.
Moreover, the background noise and interference is also an issue when directly scaling
carbon and water fluxes using canopy spectral signals [44]. Different analysis approaches
should also be involved to improve the estimation precession of transpiration or other
plant function parameters from time-series remote sensing data.
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5. Conclusions

Based on the continuously field-monitored minute-scale canopy reflected spectra and
sap flow, we verified the feasibility of using narrow-band indices based on reflectance as
well as derivatives to trace canopy-scale water use (sap flux density) in this study. Although
the D (520, 590) index calculated from canopy reflectance had an overall R2 of 0.38, an
index that performed much better, ID (520, 560), was developed to track canopy water use
under clear sky conditions (clear sky index ≥ 0.4). The bands used in these indices agreed
well with the reported sensitive wavelengths regarding stomatal conductance, partially
revealing their underlying physiological mechanisms. The results obtained in this study
should provide valuable insights for non-invasively retrieving canopy transpiration from
proximal remotely sensed data.
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