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Abstract: Southwest China has abundant grassland resources, but they are mainly scattered across
fragmented mountainous terrain with frequently cloudy and rainy weather, making their accurate
identification by remote sensing challenging. Therefore, the goal of this study was to generate
prefecture-level city-scale mountainous grassland distribution data to support the development of
sustainable grassland husbandry. Here, we proposed a sample selection method and comprehensively
utilized multi-source data to obtain the quasi-10 m southwest grassland distribution data. The sample
selection method was to first determine the sample selection range based on multi-source land
use/cover database, and then to randomly select the samples under the constraint of secondary land
use types, multiple factors of terrain and pure pixels. This method can deal with the difficulty in
identifying the fragmented grassland distribution caused by steep mountains and hills. In addition, a
multispectral time series dataset was constructed based on the fusion of Landsat 8 OLI and Sentinel-
2A/B data due to cloudy and rainy weather and was used as one of the input features along with
synthetic aperture radar Sentinel-1 time series data and the terrain multi-factor data. Finally, a remote
sensing method to accurately identify grassland distribution in southwest China was constructed
based on the Google Earth Engine (GEE) platform. Taking Zhaotong City, a prefecture-level city in
Yunnan Province, as an example, a thematic map of grassland distribution with an overall accuracy
of 88.21% was obtained using the above method. This map has been used by the local government of
Zhaotong City in their planning of the development of sustainable grassland husbandry.

Keywords: southwest grassland; Google Earth Engine; time series; multi-source remote sensing
identification; random forest

1. Introduction

Natural grassland and permanent artificial grassland (referred to as grassland) repre-
sent the largest proportion of China’s terrestrial ecosystems, accounting for approximately
40% of the country’s land area [1]. The preservation of grassland is important to the na-
tional goal of constructing an ecological civilization. The southern grassland is mainly
distributed in the hills and mountains of 14 provinces (autonomous regions), including
Yunnan, Guizhou, and Sichuan, accounting for approximately 15% of China’s grassland
area [2]. However, due to the presence of many mountains and hills in southwest China,
grassland distribution is fragmented, which makes monitoring by field surveys or remote
sensing difficult. Additionally, since the middle of the 20th century, the core of China’s ani-
mal husbandry has mainly been located in the northern grassland area, with less attention
given to the southwest grassland area. There have been few studies aimed at identifying the
southwest grassland distribution, and the precision of the resulting data is insufficient [3].
At the same time, due to the underdeveloped information and production technology in
the grassland areas of southwest China, local grazing models are inadequate, and thus the
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economic and ecological benefits are still poor. Additionally, with the increasing demand
for meat, eggs, and milk, and the implementation of rural vitalization strategies, there
is an urgent need to promote the development of sustainable grassland husbandry in
southwest China. Accurately identifying grassland distribution in southwest China can
provide basic data for the development of sustainable grassland husbandry. Therefore,
research on remote sensing identification methods for mountainous grassland distribution
in southwest China is of great significance to environmental management and economic
development at both the regional and national scale.

In addition to the difficulty in identifying the fragmented grassland distribution
caused by the complex terrain, the lack of available remote sensing data due to cloudy
and rainy weather in southwest China is also a challenge [4]. The existing southwest
grassland distribution data mainly come from national or global land cover datasets,
which leads to the problem of the inaccurate identification of grassland boundaries at the
prefecture level, and there is a lack of targeted research on the remote sensing identification
of southwest grassland distribution [5]. Therefore, it is necessary to overcome the above
difficulties through constructing a remote sensing method to identify fragmented grassland
distribution accurately.

Generally, the accuracy of image classification depends largely on sample selection
and input feature selection [6,7].

The spatial uniformity of sample selection makes it representative and reduces the
problem of excessive dependence on location accuracy [8]. To ensure that the sample
selection covered the research area as much as possible, Zhang et al. established a grid
based on the research area and randomly selected training samples for each grid square,
which improved the accuracy of grassland classification [9]. However, southwest grassland
distribution is mostly distributed on mountains at different altitudes. By only ensuring the
spatial uniformity of sample selection it is difficult to fully represent southwest grassland,
which may cause serious commission and omission errors. Therefore, reducing this effect
by considering the topographic features of grassland distribution in the sample selection
process was key for fragmented grassland identification in mountainous regions.

Time series data are used as one of the input features to be able to effectively deal with
the problem of “foreign objects with the same spectrum” and have a positive impact on the
final classification result [10–18]. Fortunately, there are currently high-temporal-resolution
remote sensing data that provide data support for the remote sensing identification of
southwest grassland distribution based on a time series. He et al. [19] proved the potential
of using Sentinel-1/2 time series data to map the distribution of rice cultivation in cloudy
areas. However, it is difficult to establish a complete multispectral time series for image
classification under a no-cloud standard in southwest China. Therefore, the establishment
of a complete multispectral time series was also key to fragmented grassland identification
in cloudy regions.

Additionally, learning the topographic features of grassland distribution in the input
features is also critical to improving the accuracy of grassland distribution identification [20].
In many grassland extraction studies, a digital elevation model (DEM) was used as one of
the grassland discrimination rules, and then the accuracy of grassland classification was
improved [21–23].

However, image classification based on a high number of samples and input features
has the limitations of high labor and time costs. The GEE platform can directly call the
massive number of images that have been preprocessed and the variety of algorithms
that have been packaged, and it has powerful data processing and analysis capabilities
that can effectively deal with this problem [24,25]. In recent years, many studies have
completed image classification based on time series data and the GEE platform [26–29].
Those studies showed that GEE can provide massive data and cloud computing support
for remote sensing research.

Therefore, this study mainly used the GEE platform and considered Zhaotong City,
Yunnan Province, as the research area to achieve the accurate identification of grassland
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distribution by remote sensing data in a mountainous region. The main innovations
include the following: (1) generating the range of sample selection based on five sets of non-
homogenous land use/cover data, and then determining samples using the constraint of
multiple factors of terrain, secondary land use types and also pure pixels, in order to make
sure that the samples can completely cover the various land uses under the premise that
the samples are randomly and evenly spatially distributed; (2) a complete multi-spectral
time series dataset mainly based on the fusion of Landsat 8 OLI and Sentinel-2A/B was
constructed, which was used together with synthetic aperture radar Sentinel-1 time series
data and the terrain multi-factor data to enhance the characteristics of ground objects. The
above two points improved the separability of ground objects and the accuracy of the
classification results.

The structure of this article is as follows: Section 2 introduces the study area and
data sources used in the study in detail, including remote sensing data, topographic data,
existing related thematic data bases, and verification data. In Section 3, the grassland
distribution identification method is introduced, including the sample selection method,
input feature selection method, classification method, and verification method. The results
of grassland extraction and accuracy assessment are described in Section 4; Section 5 is the
discussion around this research; and Section 6 summarizes the conclusions of this article.

2. Study Area and Data Sources
2.1. Study Area

Southwest China is a vast area that lies south of the Qinling Mountains and the Huai
River, and east of the Qinghai–Tibet Plateau. Grassland accounts for 30.51% of the total
land area in southwest China. Yunnan Province has the highest proportion of natural
grassland area in the region [30].

In this study, Zhaotong City in Yunnan Province (Figure 1) was selected as a demon-
stration area for the remote sensing identification of grassland distribution. Zhaotong
City is located in the hinterland of the Wumeng Mountains in the northeastern part of
Yunnan Province, at the junction of the three provinces of Yunnan, Guizhou, and Sichuan.
It is located between 102◦52′ and 105◦19′ E, and 26◦55′ and 28◦36′ N. It covers an area
of 23,000 km2.

The terrain of Zhaotong City is undulating, with high mountains and deep valleys, and
there are great differences in climate at different altitudes. The annual average temperature
is in the range of 11–21 ◦C, and the annual average rainfall is in the range of 660–1230 mm.
The area covered by forest and grass in the territory accounts for approximately 58% and
represents a healthy natural environment [31]. However, the current scale level of animal
husbandry in Zhaotong City is relatively low. The proportion of beef and mutton in the
city accounts for only 7.34% of the total meat products, while the city has 10,080 km2 of
natural pastures, and so has not yet taken advantage of its rich grassland resources [32].
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Figure 1. Study area of Zhaotong City, Yunnan Province.

2.2. Data Sources

The geographic coordinate system used for all data in this study was GCS_WGS_1984.

2.2.1. Remote Sensing Data

Sentinel-1, Landsat 8 OLI, and Sentinel-2A/B, used in this study, were directly archived
in the GEE platform. The GF-1 data originated from the China Earth Observation Shared
Data Platform. After downloading and processing, they were uploaded to the GEE platform
for classification and calculation. Due to the different sensor types of the above data, they
are collectively referred to as multi-source remote sensing data.

The calibrated, ortho-corrected Sentinel-1 ground range detected (GRD) scenes were
processed using the Sentinel-1 toolbox. Landsat 8 OLI images were level-2 data products
after atmospheric correction by the Landsat Surface Reflectance Code (LaSRC) method.
Sentinel-2A/B images were 2A-level data products after atmospheric correction by the
Sentinel-2 Level-2A atmospheric correction processor (Sen2cor) method. The geomet-
ric correction of GF-1 data was accomplished with Landsat’s simultaneous precision
correction data.

Specifically, in order to reduce the impact of outliers on the classification results,
Sentinel-1 is a mosaic of the median value of Sentinel-1 images month by month, which is
composed of 12 images. Sentinel-2A/B and Landsat 8 OLI images were fused on the GEE
platform. First, Sentinel-2A/B and Landsat 8 OLI images, after masking cloud cover in
2019, 2020, and 2021, were fused monthly at the median value, and then the median value
of the corresponding month of the 2019 and 2021 fusion images were used to supplement
the 2020 fusion images, namely, the 2020 fusion images were supplemented with the fusion
images of the adjacent year according to the corresponding month. However, limited by
the number of images and cloud cover, only the fusion images of February, March, April,
June, August, and November 2020 covered almost the entire study area, with a coverage
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of 99.91%, 99.99%, 100%, 99.92%, 100%, and 99.97%, respectively. The GF-1 image on
27 August 2020 was used. Additional information on the above data is shown in Table 1.

Table 1. Description of the remote sensing data used in this study.

Sensor Used Bands Descriptions Resolution Input Features

Sentinel-1 VV 5.405 GHz 10 m
Radar time series dataVH 5.405 GHz 10 m

Landsat 8 OLI Blue 452–512 nm 30 m

Multispectral time
series data

Green 533–590 nm 30 m
Red 636–673 nm 30 m
NIR 851–879 nm 30 m

SWIR1 1566–1651 nm 30 m
SWIR2 2107–2294 nm 30 m

Sentinel-2A/B Blue 496.6 nm (S2A)/492.1 nm (S2B) 10 m
Green 560 nm (S2A)/559 nm (S2B) 10 m
Red 664.5 nm (S2A)/665 nm (S2B) 10 m
NIR 835.1 nm (S2A)/833 nm (S2B) 10 m

SWIR1 1613.7 nm (S2A)/1610.4 nm (S2B) 20 m
SWIR2 2202.4 nm (S2A)/2185.7 nm (S2B) 20 m

GF-1 Blue 450–520 nm 16 m
Green 520–590 nm 16 m
Red 630–690 nm 16 m
NIR 770–890 nm 16 m

Considering the connectivity between multi-source data, the nearest neighbor interpo-
lation method was used to resample all bands with non-10 m resolution to 10 m.

2.2.2. Terrain Data

A DEM of Zhaotong City, with a spatial resolution of 15 m, derived originally from the
Synthetic Aperture Radar Satellite in 2000, was obtained as commercial data by this study,
and was used to calculate the slope and aspect data using the ArcGIS 10.5 software. The
three datasets constituted the terrain multi-factor data required for this study, resampling
to 10 m. The three terrain datasets were used as input features of the classification model
on the GEE platform.

2.2.3. Use of Existing Thematic Databases

Six non-homogenous remote sensing monitoring data that reflected grassland infor-
mation were used to determine the sample selection range. The spatial resolution and
mapping accuracy of each data product are shown in Table 2.

Table 2. Details of the six non-homogenous remote sensing monitoring datasets used in this study.

Name Resolution Mapping Accuracy

1:100,000 land use data [33] 30 m 85%
GlobeLand30 data [34] 30 m 83.50%

CGLOPS-1 data [35] 100 m 80%
GLC_FCS30 data [36] 30 m 82.50%

FROMLC data [37] 10 m 72.76%
China 1:1,000,000 vegetation map [38] — 64.8%

With reference to the classification system of the GlobeLand30 data, combined with
the actual land use situation in the study area, the classification system used in this study
was cultivated land (10), forest (20), grassland (30), water bodies (60), impervious surfaces
(80), and bare land (90). The classification system of other data products (Table 2) was
transformed to this classification system for sample selection.
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2.2.4. Verification Data

This study collected grassland verification samples through field surveys, and non-
grassland verification samples and supplementary grassland verification samples were
determined through an expert visual interpretation of high-spatial resolution images on
the GEE platform. There were 112 non-grassland verification samples and 117 grassland
verification samples. The spatial distribution of the verification samples is shown in
Figure 2.

Figure 2. Location of verification samples.

3. Methods

The overall workflow used for grassland distribution identification in Zhaotong City
in 2020 is presented in Figure 3, consisting of the following steps: (1) samples; (2) input
features; (3) experimental design; and (4) classification and validation.

Figure 3. Flow chart of the remote sensing grassland identification method.
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3.1. Sample Selection

The quantity and quality of sample selection have a greater impact on the classification
results than the classification algorithm does [39]. In order to accurately identify the
distribution of grassland in southwest China, this study utilized the following process of
sample selection:

(1) Determine the sample range using a non-homologous data-voting method:

There are many mountains and hills in southwest China, which makes it difficult to
collect samples in the field and leads to high time and labor costs. Therefore, the non-
homologous data-voting method was proposed in this study to determine the sample range.
Specifically, 1:100,000 land use data, GlobeLand30 data, CGLOPS-1 data, GLC_FCS30 data,
and FROMLC data were collected, and then pixels with the same classification of cultivated
land, forest, grassland, impervious surfaces, water bodies, and bare land in the above data
were used as the sample selection range. The sample was randomly generated within the
sample selection range, which is called sample_1 in this study.

(2) Divide and recode the sample selection range according to the secondary land use
types and terrain multi-factor data:

Referring to the 1:100,000 land use data, the sample selection range of cultivated land,
grassland, and impervious surfaces was divided according to the corresponding secondary
land use types. Referring to the CGLOPS-1 data, the sample selection range of forest
was divided according to the corresponding secondary land use types. Additionally, the
sample selection range of bare land, water bodies and impervious surfaces was not divided
according to the secondary land use types. The specific types are shown in Table 3.

Table 3. Discrete classification types for dividing the sample selection range.

Primary Land Use Types Secondary Land Use Types

Cultivated land Mountain paddy; hilly paddy; plain paddy; paddy with slopes above 25◦;
mountain dryland; hilly dryland; plain dryland; dryland with slopes above 25◦

Grassland High coverage grassland; medium coverage grassland; low coverage grassland
Impervious surfaces Urban land; rural residential land; industrial and construction land

Forest

Closed forest, evergreen needle leaf; closed forest, deciduous needle leaf; closed
forest, evergreen, broad leaf; closed forest, deciduous, broad leaf; closed forest,
mixed; closed forest, unknown; open forest, evergreen needle leaf; open forest,

deciduous needle leaf; open forest, evergreen broad leaf; open forest, deciduous
broad leaf; open forest, mixed; open forest, unknown

The DEM was reclassified into 0–1400 m (low land), 1400–2100 m (medium land),
and 2100 m and above (high land), and the slope data were reclassified into 0–15◦ (gentle
slope), 15–25◦ (medium slope), and 25◦ and above (steep slope). The aspect data were
reclassified into two classes: sunny slope and shady slope. Only the sample selection
range of cultivated land, grassland, and forest was divided according to the multi-factor
terrain data.

Finally, the sample selection range was divided and recoded according to the above
data, except for water bodies and bare land. Cultivated land, forest, grassland, and
impervious surfaces are divided into categories of 82, 120, 51, and 3. As shown in Figure 4,
the type code after the division was composed of the secondary land use type and the
corresponding category codes of the DEM, slope, and aspect after reclassification.

The purpose of dividing and recoding the sample selection range is to make the sample
selection results more complete and representative of the study area. Additionally, taking
into account the practical application of determining the range of grassland distribution, this
code was only used for sample selection, and the actual classification type was consistent
with the primary land use type of the sample selection.
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Figure 4. An example of how the sample selection range was recoded.

(3) Determine the final sample selection range by filtering pure pixels and then generate
random samples:

To avoid the problem of excessive dependence on the location accuracy of mixed
pixels and heterogeneous grass samples, the algorithm, designed in this study, used a
900 m2 square as the standard, and then traversed the type-encoded raster data (the sample
selection range generated by (2)) sequentially. Restricted by the area threshold, after
filtering pure pixels, the number of sub-categories of cultivated land, forest, grassland,
and impervious surfaces are 66, 116, 46, and 3, respectively. As shown in Figure 5, sample
squares with an area of 900 m2, different types of codes, and non-overlapping areas were
selected as the final sample selection range. In addition, considering the randomness of
sample selection, the ArcGIS 10.5 software was used to create random sample points for
each type of code by controlling the minimum allowable distance between sample points
of the same type of code according to the final sample selection range. On the basis of the
number of samples in each primary class, the number of samples in each subclass was
proportional to the number of corresponding pure pixels. Additionally, they were then
merged according to the primary type code, resulting in six types of random samples,
which are referred to as sample_2 in this study.

Figure 5. The example of the final sample selection range used to filter pure pixels and to obtain
random samples.

(4) Delete and supplement samples manually on the basis of (3):

With the help of high-spatial-resolution images, a normalized difference vegetation
index (NDVI) time series curve, and China’s 1:1 million vegetation map on the GEE plat-
form, partial samples of (3) were supplemented and deleted. Due to the non-homologous
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data-voting method, samples were missing in areas with inconsistent classification results
of non-homologous data and, therefore, were supplemented. Additionally, partial samples
of vegetation types were deleted with reference to China’s 1:1 million vegetation map in
order to improve the reliability of the vegetation samples. The sample generated after
manual intervention is called sample_3.

In addition, in order to reflect the advantages of the sample selection method proposed
in this study, multi-spectral time series based on the fusion of Landsat 8 OLI and Sentinel-
2A/B were used as input features to test the influence of sample_1, sample_2, and sample_3
as samples on the classification results, respectively. The number of samples of each type
was proportional to the area of that type in Zhaotong, and the number of samples for the
six classification types in the above three samples is the same.

3.2. Input Feature Selection

To compare the performances of different features, we designed three feature scenarios
as shown in Table 4: (1) FS1 was designed to examine the ability of multispectral time series
data (multispectral fusion images and GF-1) to identify southwest grassland distribution;
(2) FS2 was designed to explore whether integrated multispectral and radar time series
data (Sentinel-1) can improve the classification accuracy; and (3) FS3 was designed to
explore the ability of the terrain multi-factor data (DEM, slope, and aspect) in improving
the separability between other lands and grassland. Additionally, in the process of conduct-
ing the above three feature scenarios, sample_3 was used as the training samples of the
classification model.

Table 4. Scenarios design based on input feature selection.

FS1 FS2 FS3

Multispectral time series data
√ √ √

Radar time series data
√ √

The terrain multi-factor data
√

3.3. Random Forest Classification on the GEE Platform

As a current mainstream machine learning model, the random forest model can
predict the effects of thousands of explanatory variables. It uses decision trees as a unit
and aggregates multiple decision trees for classification, which can effectively solve the
classification problem of a large amount of high-dimensional data [40]. Therefore, we used
the random forest model to classify the input features.

Due to the large number of input features and samples, these processes were all
completed by the high-performance cloud computing GEE platform. There is a need to
adjust the number of decision trees when we invoke the random forest algorithm of the GEE
platform. Considering the computational efficiency, we selected the number of decision
trees with relatively high overall accuracy from the number of 1–200 decision trees as the
optimal parameter. Other parameters in the classifier were set as the default. After the
ablation test, the optimal parameter of the model was identified, the classification model
was determined, and the grassland distribution range of Zhaotong City was obtained in
each experiment.

3.4. Verification of Grassland Extraction Results

To evaluate the accuracy of remote sensing in identifying grassland distribution,
we combined the six types of classification systems into two: grassland and other lands.
Additionally, the four evaluation indicators of precision, recall, overall accuracy, and F1
score were calculated through the verification data (Section 2.2.4) to assess the grassland
extraction results.

Precision refers to the proportion of extracted positive examples (grassland) in all
extraction results, and recall refers to the proportion of extracted positive examples in
all positive examples. Overall accuracy refers to the proportion of all correctly extracted
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examples from all examples. F1 score refers to the harmonic average of precision and recall.
The closer the values of the above four indicators are to 1, the better the results of the
grassland distribution recognition. The specific formula are as follows:

Precision =
TP

FP + TP
(1)

Recall =
TP

FN + TP
(2)

Overall Accuracy =
TP + TN

FN + TP + FP + TN
(3)

F1 score =
(

1 + β2
)Precision× Recall

Precision + Recall
, β = 1 (4)

Here, TP, FP, FN, and TN are shown in Table 5.

Table 5. Confusion matrix.

Predicted Value

Actual Value
Grassland Other Lands

Grassland True Positive (TP) False Positive (FP)
Other lands False Negative (FN) True Negative (TN)

4. Results and Analysis
4.1. Results and Analysis of Sample Selection

The sample selection in this study satisfied the requirements of randomness, unifor-
mity, and completeness, and could completely represent various realistic manifestations of
different land use types under different terrain conditions. The final sample selection is
shown in Figure 6 and the sample numbers of cultivated land (10), forest (20), grassland
(30), water bodies (60), impervious surfaces (80), and bare land (90) were 1162, 627, 500, 65,
134, and 39, respectively.

By comparing the classification results of EXP1, EXP2, and EXP3 with the high-
resolution images of Google Earth, it was found that the grassland omission problem
of EXP1 was mainly distributed in the mountains in the north and east of Zhaotong City,
particularly on the steep slopes of the mountains. This is due to the fact that sample_1 was
randomly generated within the sample selection range, without division, according to the
terrain multi-factor data. Hence, it does not have a complete representation of grassland
samples and is also unevenly distributed in the study area (as shown in Figure 7).

As shown in Figure 8, the classification results of EXP1 had the problem of omitting
grassland into cultivated land in the steep slopes of the mountains, which was improved
in EXP2 and EXP3. Compared with EXP1, the omission errors of grassland in EXP2 and
EXP3 were reduced by 0.1759 and 0.2308, respectively, indicating that it was both necessary
and effective for sample selection to follow the principle of integrity. Although EXP2 also
obviously improved the grassland omission problem, it still had the problem of omitting
grassland into cultivated land, and EXP3 identified grassland distribution more accurately
than EXP2. This is because the samples of EXP3 were more complete and more evenly
distributed in space after manual intervention in sample selection. Among them, the
overall accuracy of EXP3 was the highest, which was 0.1223 higher than that of EXP1 and
0.0393 higher than that of EXP2 (as shown in Table 6).

In summary, the classification results and accuracy based on sample selection show
that representative and spatially evenly distributed samples can improve the separability
of cultivated land and grassland to a great extent.
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Figure 6. Sample selection results.

Figure 7. Sample selection for grassland on steep slopes in sample_1, sample_2, and sample_3.

Table 6. Classification accuracy for the grassland distribution identification based on sample selection.

Precision Recall Overall Accuracy F1 Score

EXP1 0.9375 0.3846 0.6725 0.5455
EXP2 0.9296 0.5641 0.7555 0.7021
EXP3 0.9730 0.6154 0.7948 0.7539
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Figure 8. Examples of EXP1, EXP2, and EXP3 classification results. Region a is located on sunny
slopes in the low land with steep slopes, and region b is located on sunny slopes in the middle land
with steep slopes.

4.2. Results and Analysis of Input Feature Selection

By comparing the classification results of FS1, FS2, and FS3 with the high-resolution
images of Google Earth, it was found that the classification results of FS1 had the problem
of omitting grassland into cultivated land in the low terrain areas of Zhaotong City. This
problem was improved after adding radar time series data (FS2) and the terrain multi-factor
data (FS3) as input features. FS3 showed that adding radar time series and the terrain
multi-factor data together had greater separability between grassland and cultivated land
than using sentinel-1 only (FS2). In addition, FS2 showed that there was a problem of
omitting a small amount of grassland into forest on steep slopes, while FS3 had better
performance in distinguishing forest and grassland on steep slopes. After adding the
terrain multi-factor data as part of input features (FS3), the omission errors of grassland
were reduced by 0.11 more than those of FS2. Examples of FS1, FS2, and FS3 classification
results are shown in Figure 9.
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Figure 9. Examples of FS1, FS2, and FS3 classification results. Region c is located on sunny slopes
in the low land with steep slopes, and region d is located on shady slopes in the middle land with
steep slopes.

The final result of input feature selection is FS3. Classification results and accuracy
based on input feature selection showed that learning the features of ground objects as
comprehensively as possible is beneficial to the accurate identification of ground object
distribution. The combined use of multispectral and radar time series is helpful in dis-
tinguishing grassland and cultivated land in the lowland with steep slopes. The specific
classification accuracy is shown in Table 7.

Table 7. Classification accuracy for the grassland distribution identification based on input
feature selection.

Precision Recall Overall Accuracy F1 Score

FS1 0.9398 0.6667 0.8079 0.7800
FS2 0.9873 0.6667 0.8253 0.7959
FS3 0.9891 0.7778 0.8821 0.8708
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4.3. Results and Analysis for the Grassland Distribution Identification

The thematic map generated in this study of the grassland distribution (Figure 10)
in Zhaotong City in 2020, with an overall accuracy of 88.21%, has been used to provide
reliable grassland resource background data for the development of local sustainable
grassland husbandry. The difficulty of accurately identifying the grassland distribution
in southwest China due to the complex terrain and cloudy and rainy climate has been
effectively addressed.

Figure 10. Grassland distribution remote sensing identification map of Zhaotong City, Yunnan
Province in 2020.

In the grassland extraction results, the smallest patch area is approximately 88 m2,
and the largest patch area is 22,819,650 m2, reflecting that the remote sensing identification
method of mountainous grassland distribution in this paper has advantages in identifying
broken grassland patches, and is suitable for application in mountainous and hilly areas.

5. Discussion

The fragmented distribution of grassland in southwest China is an important reason
for its difficulty in accurate identification. Additionally, remote sensing identification is
also limited by the lack of no-cloud images. Therefore, this study attempted to deal with
these problems in two aspects: sample selection and input feature selection.

In terms of sample selection, the reliable, rapid, and reproducible collection of training
samples is a challenge for land cover classification [41], especially in a fragmented moun-
tainous region. The non-homologous data-voting method promoted in this paper reduces
the errors and uncertainties in the training samples extracted from a single source dataset.
Since the sample selection range, determined by the non-homologous data-voting method,
only accounts for 19% of the study area, only 29 grassland verification samples and 56 non-
grassland verification samples are included in this range. Among them, two grassland
verification samples were wrongly classified as non-grassland, and two non-grassland
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validation samples were wrongly classified as grassland. Additionally, from the results and
accuracy of grassland identification, it is reliable and available to determine the training
samples based on the non-homologous data-voting method. Compared with the method
of collecting samples in the field, this method not only made the samples fast and easy
to obtain, but also made samples objective and not subject to human influence. However,
a limitation is that the non-homologous data-voting method limits the sample selection
range, resulting in the lack of samples in some areas, which then need to be supplemented
manually. In follow-up work, we can use other data products with higher accuracy to
complete sample selection without manual intervention.

In terms of input feature selection, the construction of multispectral time series data
used the median data of the corresponding months in the two years before and after to
supplement the 2020 data, which not only improved the coverage (only 0.21% of the study
area has no data), but also maintained the geographic rationality of the time series spectrum
characteristics of ground objects. Additionally, multispectral time series data can make
up for the negative impact of hill shadows in radar data on grassland classification, to a
certain extent [42,43]. The grassland extraction results show that the grassland distribution
has significant terrain characteristics: in Zhaotong, approximately 64% of the grassland
is distributed in the area with an altitude of more than 1400 m, approximately 75% of the
grassland is distributed in the area with a slope of more than 15◦, and approximately 50%
of the grassland is distributed on shady slopes. Therefore, taking the terrain multi-factor
data as one of the input features is conducive to fully learning the terrain characteristics of
ground objects, thereby reducing the commission and omission errors of grassland.

In addition, the DEM data with a resolution of 15 m, used in sample selection and
input feature selection, can be replaced with ALOS PALSAR products with a resolution of
12.5 m (URL: https://earth.esa.int/eogateway/catalog/alos-palsar-products?text=ALOS+
PALSAR+RTC, accessed on 28 February 2022) when applying the remote sensing method
to accurately identify grassland distribution; this may make the identification of grassland
distribution more accurate.

6. Conclusions

The remote sensing data product of Zhaotong City in 2020 solved the problem of
grassland borders being indistinguishable in the identification of grassland distribution,
and therefore was able to meet the needs of prefecture-level cities. It will enable the
authorities in Zhaotong City to understand the distribution of their grassland resources to
accelerate the development of sustainable grassland husbandry. Using the GEE platform,
which has strong computing power, a large amount of global-scale satellite data, and
the capability for online visual calculation and analysis, the methods in this study were
suitable for monitoring dynamic changes in grassland and for assessing the degradation of
grassland over several decades.

In summary, compared with previous remote sensing grassland monitoring data, the
remote sensing grassland distribution identification data product produced in this study
can better meet the needs of Zhaotong City for the development of sustainable grassland
husbandry. The specific conclusions are as follows.

(1) Sample selection should follow the principles of completeness and randomness. If
the sample selection range is not divided according to the secondary land use types
and terrain multi-factor data, the results of random sample selection in the study
area will not be fully representative. This can cause poorer classification results in
areas lacking samples that conform to the realistic representation of primary land use
types. In this study, complete sample selection mainly reduced the omission errors
of grassland and effectively solved the problem of the grassland distribution being
difficult to accurately identify due to the complex topography of southwest China.

(2) The combined use of all available multispectral and radar data has the potential to
identify the grassland distribution in mountainous fragmented terrain, and terrain
characteristics are vital to mountainous grassland identification. This study used

https://earth.esa.int/eogateway/catalog/alos-palsar-products?text=ALOS+PALSAR+RTC
https://earth.esa.int/eogateway/catalog/alos-palsar-products?text=ALOS+PALSAR+RTC
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multispectral and radar time series data as input features, which effectively solved the
problem of the grassland distribution being difficult to accurately extract due to cloud
cover and heavy rain in southwest China. The input features applied in this study
enabled the model to learn the time spectrum characteristics of radar and optical
images, and the topographic features of southwest grassland, which improved the
separability of ground objects.

(3) The random forest model is suitable for dealing with the classification problem of
multiple input features, which can be efficiently calculated and classified by the GEE
cloud computing platform. In this study, there were 2527 sample points (including
training and test samples) and 67 bands of input features. Experiments have shown
that the random forest model can effectively learn multiple input features, and that the
GEE platform only takes approximately 2–3 min to identify the optimal parameters
(number of decision trees) for the model. Therefore, with a small time cost, a remote
sensing thematic map of the grassland distribution in Zhaotong City in 2020 was
obtained using the GEE platform.
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