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Abstract: This work addressed the problem of miscalibration or decalibration of mobile stereo/bi-
monocular camera setups. We especially focused on the context of autonomous vehicles. In real-world
conditions, any optical system is subject to various mechanical stresses, caused by vibration, rough
handling, collisions, or even thermal expansion. Such mechanical stresses change the stereo pair
geometry, and as a consequence, the pre-calculated epipolar geometry or any geometric-based
approach is no longer valid. The standard method, which consists of estimating the calibration online,
fails in such harsh conditions. The proposed method was based on a robust linearly constrained state
estimation technique able to mitigate the model mismatch without estimating the model parameters.
Therefore, our solution was able to mitigate the errors with negligible use of additional computing
resources. We propose to use a linearly constrained extended Kalman filter for a stereo-based visual
odometry or simultaneous localization and mapping approach. Simulations confirmed that the
method kept the system (and objects of the map) localized in real-time even with huge miscalibration
errors and parameter variations. The results confirmed that the method was robust to a miscalibration
of all the extrinsic calibration parameters even when the standard online calibration procedure failed.

Keywords: stereo; bi-monocular; miscalibration; visual navigation; linear constraints; Kalman
filtering

1. Introduction

Stereo or bi-monocular systems are widely used in autonomous robots, for both
localization and navigation. Indeed, such visual systems can provide a dense or sparse
3D reconstruction of the area in front of the cameras and may include very useful depth
information for obstacle detection and avoidance. When using a stereo camera system, an
accurate calibration is required in order to obtain 3D measurements from the visual data. In
the context of stereo vision, such a calibration is performed with a known target observed
simultaneously by the two cameras. Such observations make possible the estimation of both
left and right intrinsic camera calibrations, but also of the relative camera pose, namely the
extrinsic calibration of the stereo pair. At the end of such a calibration process, the intrinsic
parameters of each camera are estimated (focal length, principal points, and distortion),
and the physical relationship between the two cameras is given as a rototranslation matrix
with six degrees of freedom.

Intrinsic parameters are linked to the camera–lens system and can be proofed against
accidental decalibration in sensitive systems such as for exploration rovers. This is not
true for extrinsic parameters. Indeed, due to movement, vibration, or temperature changes
during operation, the rigid transform between the cameras can change. In this case, the
stereo system properties are no longer valid, and then, it starts to perform poorly. At this
step, a recalibration is often needed. If the stereo system is the main sensor for visual odom-
etry or simultaneous localization and mapping (SLAM), such decalibration is extremely
detrimental as it may make the system fail. In practice, under miscalibration/decalibration,
we observe:
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• A loss of depth estimation coverage: feature matching accuracy is impacted by the
wrong calibration, making the 3D environment reconstruction sparse with potential
obstacles’ misdetection;

• A loss of accuracy almost impossible to detect during the actual mission. This implies
the wrong depth estimation, and so the wrong localization and 3D reconstruction.

In this article, we propose to investigate a new robust state estimation technique using
linear constraints (LCs), which is able to mitigate model mismatch without estimating
the model parameters. Therefore, our solution is able to mitigate the errors coming from
a decalibrated stereo system with negligible use of additional computing resources. We
propose to use a linearly constrained extended Kalman filter (EKF) for stereo-based visual
odometry or SLAM approaches. To the best of our knowledge, this is the first method
applied to visual navigation that mitigates a calibration error without having to estimate
the desired parameters. The classical way to deal with such error is the online estimation of
the calibration parameters [1,2]. As a result, we did not require an evolution model for all
the uncertain parameters and could manage different errors randomly occurring during
the mission, even in conditions where the standard online calibration failed. This solution
is well suited for planetary exploration rovers as mechanical stress occurs at launch and
landing, and a strong temperature gradient occurs, making the extrinsic calibration change
(and of course, in such a case, a standard recalibration is not possible).

This article is organized as follows: Section 2 presents the related works on mis-
matched calibration correction, but also mismatch mitigation. Section 3 introduces the
linear constraint extended Kalman Filter and its adaptation to visual navigation. Finally,
experiments on simulations are provided and discussed in Section 4 showing the efficiency
of the approach.

2. Related Works

Multi-view geometry is a well-known problem. In 1981, Reference [3] formalized
the well-known eight-point algorithm for reconstructing a scene in 3D by using point
matches in images. Ten years later, References [4,5] extended this work and presented
some improvements for the pose reconstruction problem. Stereo vision is a special case
of multi-view geometry where the two cameras are perfectly aligned to facilitate data
association. As a consequence, much work has been performed on stereo approaches.

A significant number of camera system calibration (including stereo) solutions exist.
For instance, a baseline method was proposed in [6,7], where detected features on the image
were matched with a known 3D pattern, in order to obtain a system of linear equations to be
solved in order to extract the camera calibration parameters. Note that nonlinear lens distor-
tion parameters can also be estimated. The estimation of the rotation parameters of a stereo
system given the observed points, which are calculated via boundary representations of
input images, was proposed in [8]. In [9], the authors used a huge scale bar fiducial marker
to process the calibration. Note that fiducial-marker-based (checkerboard) approaches to
calibrate multiple cameras are impractical in various fields such as self-driving vehicles,
multi-robot fleets, or exploration rovers, where the system has to be calibrated for many
vehicles and they can be subject to mechanical stresses during their life time. For that
reason, alternative approaches focus on online calibration.

Considering online calibration, the authors in [10–12] proposed to calibrate the stereo
system while moving, using standard bundle adjustment techniques combined with epipo-
lar constraints, and where the calibration was continuously estimated using an iterated EKF.
Similarly, References [13,14] proposed an extension with convolutional neural network
image segmentation to improve feature tracking while removing dynamic objects. Other
approaches make use of known objects in the environment, such as [15], which estimated
the height, roll, and pitch of a stereo system used for driver assistance systems by detecting
lanes (supposed as planar and parallel) on a straight road segment, or [16], which also
used known features on the road to achieve on-the-fly calibration of a stereo system. Other
methods such as [17,18] make use of landmarks to directly estimate stereo parameters from
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image content. In practice, as stereo imaging systems are entering widespread use, methods
that are easy to operate and that provide high-quality stereo calibration are fundamental.
The majority of works focus currently on using SLAM-based approaches [19–21] to estimate
the pose, map, and calibration.

Notice that all SLAM-based methods rely on a complete SLAM process to estimate
the calibration on-the-fly, and the calibration is often assumed to be constant during the
experiment as if an initial calibration bias was to be estimated. This SLAM approach can be
time consuming and is not applicable in specific applications such as planetary exploration
rovers or in relocalization tasks for multi-vehicle fleets. Moreover, we can observe that
standard on-line approaches diverge in the case of very strong noise or vibrations, making
the system unreliable. This is the reason why new robust calibration techniques are needed,
being the main objective of this contribution.

In this article, the goal was to mitigate the impact of miscalibration on the naviga-
tion system performance, as calibration parameters may not be continuously estimated
accurately. With respect to the state-of-the-art, we propose a completely different and new
approach in which we did not estimate the calibration errors, but we mitigated the impact
of such errors on the navigation solution. The main contribution of this work was the
adaptation of the theoretically defined constraints into a realistic visual navigation task.
We proved that using constraints was, at least, as effective as estimating the calibration
parameters on-the-fly (and even more efficient under some conditions of operation). More-
over, in practice, the initialization and definition of the noise parameters and covariance
matrices in a Kalman filtering approach are very difficult and are no longer required with
our solution. To the best of our knowledge, there is no alternative method to mitigate the
effect of miscalibration during visual navigation apart from estimating on-the-fly all the
calibration parameters with a SLAM approach.

This paper provides a complete study for the proposed solution performing more than
1400 (100 MC*14 tests) simulations in a Monte Carlo framework to validate the solution.
We performed the analysis with different types of noises and different noise amplitudes
for the miscalibration (relative rotation and position) and compared each time the result
with the classical EKF and EKFfull solutions. We also proved that the IMU was not
mandatory in the approach and also that the initialization of the covariance had an impact
on classical approaches, but not on our solution. The experiments showed the robustness
of the approach with reference to the state-of-the-art when using a similar EKF-SLAM
framework.

3. Mitigation of Stereo Calibration Errors

The design and use of state estimation techniques are fundamental in a plethora of
applications, such as robotics, tracking, guidance, and navigation systems [22,23]. For linear
dynamic systems, the KF is the best linear minimum mean-squared error (MSE) estimator.
The most widespread solution for nonlinear systems is to resort to system linearizations,
leading to the EKF [24]. In both cases, the main assumption is a perfect system knowledge:
(1) known process and measurement functions and their parameters; (2) known inputs;
(3) known noise statistics (i.e., first- and second-order moments for both the KF and EKF).
However, these are rather strong assumptions in real-life applications, where the noise
statistics’ parameters and/or inputs may be uncertain and the system parameters may be
misspecified. This is the case for miscalibrated stereo cameras where the system parameters
(in our case, the calibration) are imperfect or may change during the experiment.

The performance degradation of minimum MSE estimators under model mismatch
has been widely reported in the literature [25–28], and this is the reason why there exists
a need to develop robust filtering techniques able to cope with mismatched systems. In
the sequel, we detail how to exploit and use linearly constrained filtering for vision-based
navigation.
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3.1. Background on Linearly Constrained EKF

In a previous work [29], we proposed the theory behind a linearly constrained EKF
(LCEKF) for systems affected by additive noise and system inputs and discussed its use for
model mismatch mitigation, considering a simple toy example. In this previous work, we
mainly focused on dynamic model errors. In this contribution, we propose to extend and
apply this theoretical development to a real, much more complex application such as visual
navigation, in order to prove the efficiency of such a mitigation technique. Moreover, we
extended the use of constraint to the observation function and mapping step of a classical
SLAM approach.

Consider a nonlinear discrete state-space model (NLDSSM) with additive process and
measurement noises,

xk = fk−1(xk−1) + wk−1, (1)

yk = hk(xk, θ) + vk, (2)

where fk−1(.) is a known system model process function and hk(., θ) is a known system
model measurement function, which depends on an additional parameter vector θ. In
the case of NLDSSMs, including a dynamic stochastic representation of both state and
measurements, state estimation refers to the estimation of xk (state at discrete time k) based
on measurements up to discrete time l, typically denoted as x̂k|l , x̂k|l(y1, . . . , yl). The
term estimator includes filters (l = k), predictors (l < k), and smoothers (l > k). A standard
approach to derive a filter x̂k|k of xk is to assume that the NLDSSM (1) and (2) can be
linearized at the vicinity of a so-called nominal trajectory [24], yielding the EKF,

x̂k|k−1 = fk−1(x̂k−1|k−1) + mwk−1 , (3)

ŷk|k−1 = hk(x̂k|k−1, θ) + mvk , (4)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (5)

where mwk−1 = E[wk−1], mvk = E[vk] (with E the expectation), and Kk the Kalman gain
at time k. This Kalman recursion represents our true model. However, in most cases, θ is
also an unknown parameter vector. We considered the situation where θ is estimated via
an initial calibration process yielding θ̂ = θ+ dθ̂. In these cases, the practitioner has only
access to an assumed model, also known as a mismatched model, leading to a mismatched
Kalman recursion,

x̂k|k−1 = fk−1(x̂k−1|k−1) + mwk−1 , (6)

ŷk|k−1 = hk(x̂k|k−1, θ̂) + mvk , (7)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1). (8)

Since the EKF of xk is based on the measurements and our knowledge of the model and
their parameters, any mismatch between the true model (4) and the assumed one (7) leads
to a suboptimal filter, and possibly to a filter with bad performance, as the discrepancy
between the two models increases. Indeed, at time k ≥ 1, since the Kalman recursion
is implemented according to the mismatched model (6)–(8), whereas the measurement
satisfies the true observation model (2), the estimation error introduced by the Kalman
recursion with respect to the true state value xk is given by,

x̂k|k − xk = x̂k|k−1 + Kk(yk − ŷk|k−1)− xk

= fk−1(x̂k−1|k−1)− fk−1(xk−1)+

Kk

(
hk(xk, θ)− hk(x̂k|k−1, θ̂)

)
. (9)
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If the calibration is accurate enough, the following first-order Taylor expansion holds:

hk(xk, θ) ' hk

(
xk, θ̂

)
+

∂hk

(
xk, θ̂

)
∂θT (θ− θ̂), (10)

and the estimation error (9) can be recast as:

x̂k|k − xk = fk−1(x̂k−1|k−1)− fk−1(xk−1) + Kk

(
hk

(
xk, θ̂

)
− hk(x̂k|k−1, θ̂)

)
+ ε(Kk), (11)

with:

ε(Kk) ' Kk

∂hk

(
xk, θ̂

)
∂θT (θ− θ̂). (12)

Then, one can notice that if ε(Kk) = 0, then (11) reduces to the estimation error of the
modified NLDSSM,

xk = fk−1(xk−1) + wk−1, (13)

yk = hk(xk, θ̂) + vk. (14)

Thus, any attempt to enforce ε(Kk) = 0 amounts to a “regularization” of the true measure-
ment in order to compel the regularized measurement to match the assumed measurement
model. However, since ε(Kk) = 0 can not obviously be satisfied for any xk, a weaker regu-
larization condition is used in practice, that is E[ε(Kk)] = 0, which leads to an unbiased
filter: E[x̂k|k] = E[xk]. However, in most cases, E[ε(Kk)] is probably not computable either;
hence, it is approximated by:

E[ε(Kk)] = KkE

∂hk

(
xk, θ̂

)
∂θT

(θ− θ̂) ' Kk

∂hk

(
x̂k|k−1, θ̂

)
∂θT (θ− θ̂), (15)

which leads to the simplified, but implementable, LCs,

Kk

∂hk

(
x̂k|k−1, θ̂

)
∂θT = 0, (16)

in order to obtain E[ε(Kk)] ' 0.

Note that the (θ− θ̂) vector just needs to be in the null space of the matrix Kk
∂hk(x̂k|k−1,θ̂)

∂θT .

However, since (θ− θ̂) is unknown, a conservative approach is to consider that it may
span the whole vector space it belongs to, which leads to (16). If we had some additional
information on the span of (θ− θ̂), we could reduce the number of linear constraints by
incorporating this knowledge in (16).

To summarize, in order to mitigate the error coming from a miscalibrated measurement
function, we added LCs to the gain matrix to derive a new Kalman gain Lk that verifies (16).
As a result, the LCEKF minimizes the MSE associated with the true state xk by matching
the true measurement with the mismatched model. In practice, the standard Kalman gain
Kk is modified as follows:

Lk = Kk −KkdHk(dHT
k S−1

k dHk)
−1S−1

k , (17)

with dHk = ∂hk

(
x̂k|k−1, θ̂

)
/∂θT and Sk the standard innovations’ covariance. The only

additional calculation needed here is the calculation of dHk and a matrix multiplication
(S−1

k is already calculated in the standard EKF). Finally, the EKF update step is modified as
follows,
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x̂k|k = x̂k|k−1 + Lk(yk − ŷk|k−1), (18)

Pk|k =

I−Kk

∂hk

(
x̂k|k−1, θ̂

)
∂xT

k

Pk−1|k + (KkdHk)(dHT
k S−1

k dHk)
−1(KkdHk). (19)

The EKF update step modifications are: the constraint gain Lk instead of Kk and the
additional term in Pk|k (where Pk|k is the covariance matrix of the system at time k given all
information until time k). Note that the used matrix values are already calculated in the
standard EKF, so very little additional processing cost is needed.

3.2. Stereo-Based Visual Navigation

The goal was to use the previously described LCEKF in the context of stereo visual
navigation. In our case, the observation model h(·) represents the reprojection of a 3D
point in both cameras’ images. The stereo vision principle is shown in Figure 1.

CL z

y
x

CR
z

y
x

p3D

p1

p2

p1

D

RTstereo

Figure 1. Stereo vision observation model. A 3D point is reprojected in both cameras. The extrinsic
calibration of the stereo pair is defined by the rototranslation RTstereo.

Let us consider a state vector xk used for a standard EKF SLAM/odometry approach
containing the left camera position p and orientation α = [αx, αy, αz]T , the velocity v, and
the list of landmarks represented as a 3D point clouds,

xk =
[
pT , αT , vT , pT

3D1
, . . . , pT

3DN

]T
, (20)

Lets note the vehicle state with:

xvk =
[
pT , αT , vT ,

]T
, (21)

where a landmark p3D = [x, y, z]T is given in the world frame w (note that the method
is not restricted to such a state vector: another representation can be used in a similar
way). Given the translation and rotation that define the pose of the left camera in the world
frame (CL),

tw→cL =

tx
ty
tz

 and Rw→cL = Rz(αz)Ry(αy)Rx(αx), (22)
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and:

K =

K1
K2
K3

,

the intrinsic calibration matrix of the camera (in our case, we supposed without lost of
generality that KL = KR = K, but one could use two different values for a bi-monocular
approach). The 3D point can be reprojected in the left camera frame by using the standard
camera projection matrix,

p2DL ∝ KRT
w→cL

(p3D − tw→cL),zu
zv
z


L

=

K1RT
w→cL

(p3D − tw→cL)
K2RT

w→cL
(p3D − tw→cL)

K3RT
w→cL

(p3D − tw→cL)

,

[
u
v

]
L
=


K1RT

w→cL
(p3D−tw→cL )

K3RT
w→cL (p3D−tw→cL )

K2RT
w→cL

(p3D−tw→cL )

K3RT
w→cL (p3D−tw→cL )

. (23)

In a similar way, we can obtain the reprojection of the landmark in the right camera, by
using its pose in the world frame: Rw→cR and tw→cR . Thus, we have,

p2DR ∝ KRT
w→cR

(p3D − tw→cR)

[
u
v

]
R
=


K1RT

w→cR
(p3D−tw→cR )

K3RT
w→cR (p3D−tw→cR )

K2RT
w→cR

(p3D−tw→cR )

K3RT
w→cR (p3D−tw→cR )

. (24)

Then, one can note that,
RTw→cR = RTcL→cR RTw→cL (25)

and that the displacement from one camera to the other one is given by the extrinsic
calibration step such as,

RTcL→cR = RTstereo =

[
RcL→cR tcL→cR

0 1

]
, (26)

with RcL→cR = Rz(sαz)Ry(sαy)Rx(sαx) and tcL→cR =
[stx

sty
stz
]T (s for stereo), so we

have in our case:
θ̂ =

[sαx
sαy

sαz
stx

sty
stz
]T . (27)

Finally, for each observed 3D point of the environment by both cameras of the stereo pair,
we obtain the 4D observation vector given by the true observation model,

y = (uL, vL, uR, vR)
T = hk

(
xk, θ̂, K

)
, (28)

where uR and vR are strongly dependent on the calibration value of the stereo pair θ̂ used
in RTstereo.

Note that, in the case where the stereo baseline middle point is taken as the body frame
reference, both left and right 2D detection are impacted by the calibration parameters, but
the exact same estimation technique can be used.

We defined in the case of a stereo camera approach the observation function and
the measurement model parameters that impact this model. The main idea is to use the
LCEKF described in Section 3.1 in order to mitigate the errors coming from this mismatched
observation model hk(·).
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3.3. LCEKF Customization for Stereo-Based Visual Navigation

In order to be able to apply the LCEKF approach, the prerequisite is to process the
Jacobian of the observation function hk(·) with respect to parameters θ, that is to calculate
the Jacobians of (23) and (24). However, a direct application of the algorithm proposed
in [29] failed. Indeed, when considering SLAM approaches, the constraint on the update
step is not sufficient. Each time a new object is seen, a new landmark has to be initialized
and set into the map, making the state vector of a dynamic size. This step makes use of
a classical two-view triangulation function, which is also dependent on the mismatched
parameters θ̂. A new 3D point is initialized from two 2D observations p2DL and p2DR in
such a way that,

p3D = g(p2DL , p2DR , θ̂) (29)

The landmark 3D world coordinates p3D are processed through g(·) as follows. Let p2DL
and p2DR be the homogeneous coordinates of the left and right 2D detection. Let p̂2DL and
p̂2DR be the coordinates of the reprojection of the landmark 3D point into the left and right
camera image planes,

p̂2DL ∝ KRT
w→cL

(p3D − tw→cL), (30)

p̂2DR ∝ KRT
w→cR

(p3D − tw→cR). (31)

We need to minimize the reprojection error p2Dx − p̂2Dx , x ∈ {L, R}, which is equivalent to
having p2Dx and p̂2Dx collinear, so the cross-product should be:{

p̂2DL ∧ p2DL = 0
p̂2DR ∧ p2DR = 0

. (32)

By rewriting (32) with a matrix A function of θ as A(θ̂)p3D = 0, we can easily process
the landmark coordinates p3D by using the mismatched model (indeed, Rw→cR is a function
of θ̂). Note that its covariance Cp3D can also be easily processed at this step.

Classical SLAM approaches would append the map with this new landmark such as
presented in Figure 2a. Nevertheless, in the LCEKF SLAM framework, a new landmark
cannot be directly included in the map with its covariance as it would be calculated with
mismatched parameters. We observed that proceeding that way made the LCEKF diverge.
We had to take into account the errors of the calibration parameters at the mapping step in
the following way. First, we initialized a new landmark in the map state vector with its
calculated pose p3D = g(p2DL , p2DR , θ̂) associated with a huge covariance (see Figure 2b).

Then, we classically extended the state vector and the state covariance matrix with
this new landmark. The final step would be to perform an update of this new landmark by
using the observations pL and pR in order to correct its pose and covariance. We can see that
such an update makes use of the same observation function (28) as for a classical update
step so the constraint can be applied in the same way for the mapping and the update
step. We had to calculate the Jacobian of hk(·) with reference to the state vector including
the new landmark and proceed with the constraint as explained before. Nevertheless,
by performing such an update at this step, we would only have four observations (two
for p2DL and two for p2DR ), but we require six degrees of freedom to constrain the six
parameters of θ̂.

Therefore, we postponed the update step of the landmark pose and covariance and
processed it simultaneously with the classical LCEKF update step. The advantages were:
first, we obtained more degrees of freedom to apply the constraints as we should have
more than one landmark observed; second, we did not require processing the Jacobians of
hk(·) twice. Finally, in the case that we had to initialize more than one new landmark at the
same time, we also ensured had enough degrees of freedom to fully apply the constraints.
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P3D

x̂vk|k−1
Pk|k−1

PP3D ,x

(a)

PT
P3D ,x

C3D
P3D

x̂vk|k−1
Pk|k−1

0

(b)

C∞

0T

Figure 2. (a) represents the classical map state appended upon landmark initialization. The appended
parts correspond to the landmark’s mean and covariance (black) and the cross-variances between the
landmark and the rest of the map (gray). (b) represents the appended solution used followed by an
update under constraints.

4. Experiments

In order to evaluate our proposed LCEKF-based robust visual navigation, we made a
comparison with:

• A standard EKF-based navigation that supposes the given calibration parameters θ to
be good (denoted EKF);

• A standard EKF-based navigation that contains the 6 parameters of θ in its state vector
such that the recalibration is performed on-line (denoted EKFfull).

In order to obtain a fair comparison, we conducted the experiment in a simulated
environment where the 2D detection matching was perfectly known, to get rid of outliers
that could impact the solution. Indeed, it is well known that in Kalman filtering approaches,
the data association problem can quickly cause filter divergence. We chose to validate our
approach in a perfectly known detection/matching context in order to only focus on the
impact of miscalibration in such a perfect case.

Considering the 3D simulated trajectory, as the main objective of this work was
to apply the theory to a simplified case and to prove the feasibility of our method, the
simulated world was simply composed of randomly generated 3D points around the
trajectory. An example of the studied case is provided in Figure 3.

Moreover, we performed 100 Monte Carlo runs, where for each trial, the three ap-
proaches ran with the same noise realization. Furthermore, different noise amplitudes were
tested to see the limits of each solution.

We tested the three solutions (EKF, LCEKF, and EKFfull) in a full EKF-SLAM approach
in which the map was unknown and built iteratively. This represents the case of an
exploration rover where the environment is unknown and needs to be mapped. Such an
analysis is conducted in Section 4.3.

4.1. State/Measurement Models

For the prediction step of our Kalman filtering approaches, we tested two evolution
models: a constant velocity model and one based on the IMU. Both models showed that
the LCEKF was equivalent to or better than the EKFfull. We present both the classical
visual-IMU approach and the visual-only approach with a constant velocity assumption.
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Figure 3. Simulated trajectory. This example represents one of the studied 6D trajectories generated
along a spline with its associated random 3D point cloud.

The simulated inertial measurement unit (IMU) provided acceleration aB and angular
velocity wB. Such data were expressed first in the camera frame (the body B to navigation
N frame conversion was at this step needed and made use of bias and gravity). To use the
IMU, we augmented the state vector with the bias estimate of the accelerometer bacc and
gyrometer bgyr. We integrated the data in a very standard way with constant bias,

x̂k|k−1 = f(x̂k−1|k−1) (33)
x̂k|k−1(p) = x̂k−1|k−1(p) + x̂k|k−1(v)dt
x̂k|k−1(α) = x̂k−1|k−1(α) + wNdt
x̂k|k−1(v) = x̂k−1|k−1(v) + aNdt

(34)

Considering the observation/measurement model, we used the one defined in Section 3.2.
The prediction was performed at a frame rate of 100 Hz, while the observations came at
20 Hz. The maximal simulated field of view of the camera was fixed to a maximum of
100 m, and images were simulated at a VGA resolution of 640 × 480 with the intrinsic
calibration matrix K:

KL = KR = K =

300 0 240
0 300 320
0 0 1

 (35)

4.2. Noises and Miscalibration/Decalibration Types

In order to evaluate the performance and limits of each method, we propose to add
some noise to the calibration parameters θ. We explored five cases for θ̂ = θ+ dθ̂:

(i) Reference case: dθ̂ = 0;
(ii) Constant noise: dθ̂ = δ. This represents the use of the wrong initial calibration, but

with no stress during the experiment;
(iii) Sinusoidal noise: dθ̂ = δsin(t). This case represents for example the day/night

thermal constraint encountered for planetary exploration rovers;
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(iv) Discontinuous noise: dθ̂ = δH(t). This case represents a chock or accident encoun-
tered while navigating (H(·) can be a combination of Heaviside functions);

(v) Periodic noise: dθ̂ = δΠ(t); This case simulated a strong vibration of the system for a
non-perfectly rigid stereo system (Π(·) is a periodic square wave).

For all the experiments, noise was added to the inputs of the system according to the
covariances defined hereafter:

• For the IMU: Qacc = (0.1dt)2I3; Qgyr = ( 0.5π
180 dt)2I3;

• For the 2D detections: Pz = (0.5)2I2.

with dt the time between two prediction and Pz the covariance of the measurement. The
calibration parameters are defined with a perfect stereo configuration and a baseline of 2 m:

θ = [0, 0, 0,−2, 0, 0].

Different calibration errors were tested. We arbitrarily chose to present results with a decal-
ibration involving a 5% error on the baseline. In the results below, dθ̂ was processed with:

δ = [0.01◦,−0.05◦, 0.1◦, 0.1m,−0.01m, 0.005m].

The ground truth δ calibration error values during each experiment are presented in
Figure 4.

4.3. SLAM Experiment with IMU
4.3.1. Reference Case Comparison (i)

The objective of this experiment was to test the efficiency of the EKF in a nominal case,
as well as to explore the impact of constraints for the LCEKF and additional parameters
to estimate for the EKFfull. Localization (including rotation and position) and mapping
(landmarks poses) errors are presented in Figure 5. It can be clearly seen that both the
LCEKF and EKFfull provided the same localization results. Considering the mapping,
the EKFfull showed better initialization of the landmarks, but the same convergence. As
expected, the EKF with perfect knowledge of the calibration outperformed the two extended
approaches as the EKFfull compensates observation errors and noise by changing the
calibration parameters, and the LCEKF consumes degrees of freedom by fixing constraints
on the Kalman gain.
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Figure 4. Ground truth δ error calibration value for the different experiments. Major effects of
decalibration noise are applied on the tx translation (the baseline) and on the αz rotation (rotation
around the baseline axis). Blue, red, and yellow are respectively the values for tx, ty, and tz and αx,
αy, and αz.
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Figure 5. SLAM without noise (Case i): methods’ comparison. (1) and (2) represent respectively the
MSE of the pose and attitude estimation over 100 executions. Full lines are the mean of the estimation,
and dotted line represent the 3 sigma values. (3) represents the MSE of the landmark convergence
during the simulation.

4.3.2. Noisy Cases (ii), (iii), and (iv)

The results are provided in Figure 6 for the constant noise Case (ii), in Figure 7 for
sinusoidal noise (iii), and in Figure 8 for discontinuous noise (iv). For all these tests with
a mismatched model, it is clear that the standard EKF diverged and did not provide any
good results. An interesting thing to note is that both the LCEKF and EKFfull provided the
same results, while the first one did not estimate the calibration on-the-fly (both the red
curves and green curves are overlapping). Moreover, whatever the noise applied on the
calibration, the results were quite equivalent. The main difference can be observed on the
mapping results. We can see that the landmark convergence was good for both techniques,
but the initialization was a little bit better for the EKFfull. This can be easily explained by
the fact that the LCEKF initialization makes use of constraints on the mismatched model
and not of the closest estimation of the true model. Nevertheless, the convergence after
multiple observations was as good as the one of the EKFfull.

4.3.3. Periodic Noise Case (v)

This last case is interesting as we can see a difference between both the LCEKF and
EKFfull. Localization and mapping results are provided in Figure 9. As the vibration was
fast and strong, the estimation of calibration parameters was no longer always fast enough
to fit the true model. In such a case, the LCEKF showed quite better performances. If the
noise was very strong as in Figure 10 (0.5 m on the baseline), the EKFfull diverged as it
worked with a changing, but still miscalibrated system. In this experiment:

δ = [0.01◦,−0.05◦, 0.1◦, 0.5m,−0.01m, 0.005m].
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As the noise was centered and periodic, it could be observed that the EKF performed better
than the EKFfull. The divergence could be observed when the estimation of the calibration
was too slow. In such extreme cases, the LCEKF clearly outperformed both the EKF and
the EKFfull showing the efficiency of the proposed approach, even in the presence of very
big disturbances.

0 500 1000 1500 2000 2500 3000 3500

Simulation iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r 

in
 m

e
te

rs
Pose error result

LCEKF pose error

LCEKF 3xstd error

EKFfull pose error

EKFfull 3xstd error

EKF pose error

EKF 3xstd error

(1a)

0 500 1000 1500 2000 2500 3000 3500

Simulation iteration

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

E
rr

o
r 

in
 m

e
te

rs

Pose error result

LCEKF pose error

LCEKF 3xstd error

EKFfull pose error

EKFfull 3xstd error

(1b)

0 500 1000 1500 2000 2500 3000 3500

Simulation iteration

0

0.005

0.01

0.015

E
rr

o
r 

in
 r

a
d

ia
n

s

Attitude error result

LCEKF attitude error

LCEKF 3xstd error

EKFfull attitude error

EKFfull 3xstd error

EKF attitude error

EKF 3xstd error

(2a)

0 500 1000 1500 2000 2500 3000 3500

Simulation iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
rr

o
r 

in
 r

a
d
ia

n
s

10
-4 Attitude error result

LCEKF attitude error

LCEKF 3xstd error

EKFfull attitude error

EKFfull 3xstd error

(2b)

0 500 1000 1500 2000 2500 3000 3500

Simulation iteration

0

0.5

1

1.5

2

2.5

3

E
rr

o
r 

in
 m

e
te

rs

Landmark pose error result

LCEKF ldmk pose error

EKFfull ldmk pose error

EKF ldmk pose error

(3)

Figure 6. SLAM with constant noise (Case ii): methods’ comparison. Figures (1a) and (2a) represent
the MSE of the pose and attitude estimation over 100 executions for the three methods. As the EKF
results hide the two other, the same results without the EKF are presented in Figures (1b) and (2b).
Full lines are the mean of the estimation, and dotted lines represent the 3 sigma value. Figure (3)
represents the MSE of the landmark convergence during the simulation.
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Figure 7. SLAM with sinusoidal noise (Case iii): methods’ comparison. Figures (1a) and (2a) represent
the MSE of the pose and attitude estimation over 100 executions for the three methods. As the EKF
results hide the two other, the same results without the EKF are presented in Figures (1b) and (2b).
Full lines are the mean of the estimation, and dot lines represent the 3 sigma value. Figure (3)
represents the MSE of the landmark convergence during the simulation.

4.4. SLAM Experiment Comparison with and without the IMU

In order to prove that the stereo miscalibration compensation was not dependent
on the IMU measurements, a comparison with and without the IMU is provided in this
section. In both cases, the LCEKF was able to restrain the drift, but also to maintain the
scale. Indeed, in classical EKF or bundle-adjustment (BA)-based SLAM, the scale is mainly
obtained thanks to the baseline (and IMU). In our case, due to the constraints, the scale was
first initialized by the supposed known baseline, but the Kalman gain was then modified
with the linear constraints in order to fit the observations. As a result, the scale did not drift.

The results for the different noises (i) to (v) with and without the IMU are provided in
Figures 11–14. As can be seen from the experiments, the LCEKF was for each case more
robust than the EKFfull. While removing the IMU, the scale factor of the environment
could only be obtained from the stereovision process. If the calibration is not well known,
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this scale factor will be wrong. In the case of LCEKF, as the observations were constraints,
the scale factor was forced to fit the constraints over the observation function. As a result,
even if the IMU made the estimation more accurate, it was not mandatory to correct this
bias coming from miscalibration.
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Figure 8. SLAM with discontinuous noise (Case iv): methods’ comparison. Figures (1a) and (2a)
represent the MSE of the pose and attitude estimation over 100 executions for the three methods. As
the EKF results hide the two other, the same results without the EKF are presented in figures (1b) and
(2b). Full lines are the mean of the estimation, and dotted lines represent the 3 sigma value. Figure (3)
represents the MSE of the landmark convergence during the simulation.

4.5. On the Influence of Kalman Covariance Initialization for Calibration Parameters

As stated before, the main motivation for this work was to apply a theoretical devel-
opment to a real application. We proved that we can deal with calibration errors without
estimating such parameters. Of course, the theory can also be applied to other parameters,
as proven in our previous works (both impacting observation or evolution models). When
considering experiment with small miscalibration errors, we showed that the performances
were quite equivalent with the LCEKF and EKFfull. Nevertheless, the main drawback of
using calibration parameter estimation inside a filter-based approach is that it requires
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an evolution model for all the uncertain parameters. Such models are quite difficult to
estimate, and it is well known that the KF is very sensitive to covariances and noise ini-
tialization. In order to show the influence of such parametrization, we performed some
additional simulations. The parameters of the experiments are described in Table 1. We
performed multiple experiments with different parameters for the required random walk
over the calibration parameters (well estimated, no noise consideration, underestimated,
and overestimated noises).
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Figure 9. SLAM with periodic noise (Case v): methods’ comparison. Figures (1a) and (2a) represent
the MSE of the pose and attitude estimation over 100 executions for the three methods. As the EKF
results hide the two other, the same results without the EKF are presented in Figures (1b) and (2b).
Full lines are the mean of the estimation, and dotted line represent the 3 sigma value. Figure (3)
represents the MSE of the landmark convergence during the simulation.
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Figure 10. SLAM with high amplitude periodic noise (Case v): methods’ comparison. Figures (1a)
and (2a) represent the MSE of the pose and attitude estimation over 100 executions for the three
methods. The LCEKF results without the EKF and EKFfull are presented in Figures (1b) and (2b).
Full lines are the mean of the estimation, and dotted lines represent the 3 sigma value. Figure (3)
represents the MSE of the landmark convergence during the simulation. Figure (4) shows the EKFfull
calibration parameters’ estimation.

Table 1. Study of the influence of covariances’ and noises’ initialization.

Figure 15 Figure 16 Figure 17 Figure 18

Random walk well estimated none underestimated overestimated
σ2

rotation 10−6 rad2 0 rad2 0.5× 10−6 rad2 2× 10−5 rad2

σ2
translation 1 mm2 0 mm2 0.1 mm2 20 mm2
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Figure 11. SLAM with no noise (Case i): methods’ comparison. Figures (1) and (2) represent the MSE
of the pose and attitude estimation over 10 executions for the three methods while using the IMU for
prediction. All the methods performed in the same way. Figures (3) and (4) represent the MSE of the
pose and attitude estimation over 10 executions for the three methods while using a constant velocity
model for prediction (no proprioceptive sensor). It can be seen that without the use of the IMU, both
the LCEKF and EKFfull had a positioning error that increased over time (classical observed drift).
Nevertheless, the LCEKF is more robust.

As can be seen with these last simulations (Figures 15–18), the EKFfull was very
sensitive to the covariances used to predict the uncertain parameters, while the LCEKF
was totally independent of such data. This point is a major advantage of using constraints
instead of estimating the parameters as such noise conditions are very difficult to estimate
in any real experiment.

Conclusions

It is interesting to see that, in the case that the model used was perfect, indeed, when
we do not have any error on θ, the standard EKF performed very well, as predicted by
the theory, while both the LCEKF and EKFfull had a good, but quite inferior performance.
This is easily explainable by the fact that the EKFfull ties to compensate errors and noise
from the measurements by changing the calibration parameter, and so, by creating a
mismatched model. Regarding the LCEKF, using constraints on the calculation of the gain
consumes degrees of freedom for the update step, reducing the achievable performance of
the optimal filter.
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Figure 12. SLAM with constant noise (Case ii): methods’ comparison. Figures (1) and (2) represent
the MSE of the pose and attitude estimation over 10 executions for the three methods while using
the IMU for prediction. All the methods performed in the same way. Figures (3) and (4) represent
the MSE of the pose and attitude estimation over 10 executions for the three methods while using a
constant velocity model for prediction (no proprioceptive sensor). It can be seen that without the use
of the IMU, both the LCEKF and EKFfull had a positioning error that increased over time (classical
observed drift). Nevertheless, the LCEKF is more robust.

Considering the case with a mismatched model, it is clear that the standard EKF SLAM
diverged whatever the noise shape was, which supports the need for improved solutions
in practice. Both the LCEKF and EKFfull maintained almost the same performances for all
the experiments. A difference can be noted on the landmark pose error at the start of the
trajectory. The LCEKF had a stronger error for the initialization of the landmark. Indeed, by
trying to neglect calibration errors, the first initialization under the constraints was much
less precise than a direct initialization with estimated calibration (if the estimation was
good). This can also be seen when new landmarks were initialized around Iteration 1500.
Nevertheless, such landmark error was quickly reduced, and the landmark pose converged
to the one of the EKFfull.
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Figure 13. SLAM with chock noise (Case iii): methods’ comparison. Figures (1) and (2) represent
the MSE of the pose and attitude estimation over 10 executions for the three methods while using
the IMU for prediction. All the methods performed in the same way. Figures (3) and (4) represent
the MSE of the pose and attitude estimation over 10 executions for the three methods while using a
constant velocity model for prediction (no proprioceptive sensor). It can be seen that without the use
of the IMU, both the LCEKF and EKFfull had a positioning error that increased over time (classical
observed drift). Nevertheless, the LCEKF is more robust.

This last conclusion was no longer true in the case of periodic noise representing the
high vibration of the system. In this case, the estimation of the calibration parameters
performed by the EKFfull was not always fast enough to ensure a good calibration over
time. On its side, the LCEKF mitigated the noise (even with a very high amplitude) and
provided a much better performance.

The last point is the consideration of the random walk for the estimated calibration
parameters. Such inline calibration estimation required a good knowledge of the noises.
In the case that these parameters are not well estimated, the Kalman Filter approaches are
prone to diverge, as shown by our last simulation. Considering the LCEKF, as no noise
model was needed, our solution was totally insensitive to such parameters, making the
solution well suited for such applications.
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Figure 14. SLAM with periodic square noise: methods’ comparison. Figures (1) and (2) represent
the MSE of the pose and attitude estimation over 10 executions for the two methods while using
the IMU for prediction. Figures (3) and (4) represent the MSE of the pose and attitude estimation
over 10 executions for the two methods while using a constant velocity model for prediction (no
proprioceptive sensor). It can be clearly seen that the EKFfull diverged in both case.
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Figure 15. SLAM without the IMU and smooth sinusoidal noise. With a good random walk for K
parameters, the estimation performed properly, making the EKFfull work fine. Note that the LCEKF
and EKFfull performed in the same way.
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Figure 16. SLAM without the IMU and smooth sinusoidal noise. Without random walk for K
parameters, the estimation was not performed properly, making the EKFfull diverge. Note that there
was no impact on the LCEKF as the K parameters were not estimated.
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Figure 17. SLAM without the IMU and smooth sinusoidal noise. With underestimated random walk
for K parameters, the estimation was not performed properly, making the EKFfull diverge. Note that
there was no impact on the LCEKF as the K calibration parameters were not estimated.
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Figure 18. SLAM without the IMU and smooth sinusoidal noise. With overestimated random walk
for K parameters, the estimation was not performed properly, making the EKFfull diverge. Note that
there was no impact on the LCEKF as the K calibration parameters were not estimated.

5. Conclusions and Future Work

This article proposed a new solution to mitigate the problem of a misspecified model
in the case of EKF-based SLAM approaches with two cameras. Our solution used the
addition of a linear constraint in the calculation of the Kalman gain in order to match the
true measurements to the assumed (mismatched) model. We could observe quasi-similar
results with our LCEKF or an EKF in which the calibrations parameters were perfectly
estimated. Nevertheless, in the case of extreme perturbation of the parameters or when the
covariances of the parameters was not well estimated (as is the case in all real scenarios),
the LCEKF clearly outperformed the standard approach. The proposed solution is well fit
for robots/vehicles in which the estimation of such calibration parameters is not feasible or
not performed (low embedded power, etc.), when the initial calibration for each robot is
difficult (huge homogeneous robot fleet), or when the system is submitted to vibration that
will impact the calibration in an uncertain way such that the noise covariances cannot be
known. As future work, it would be of interest to analyze and extend the exploitation of
linear constraints using a Lie group formulation and within the context of an optimization
framework to better cope with the system nonlinearities and to be included in current
state-of-the-art SLAM approaches.
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20. Muhovič, J.; Perš, J. Correcting Decalibration of Stereo Cameras in Self-Driving Vehicles. Sensors 2020, 20, 3241. [CrossRef]

[PubMed]
21. Konolige, K. Small vision systems: Hardware and implementation. In Robotics Research; Springer: Berlin/Heidelberg, Germany,

1998; pp. 203–212.
22. Crassidis, J.L.; Junkins, J.L. Optimal Estimation of Dynamic Systems; CRC Press: Boca Raton, FL, USA, 2011.
23. Poulo, S. Adaptive Filtering, Algorithms and Practical Implementations; Springer: New York, NY, USA, 2008.
24. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.
25. Spall, J.C.; Wall, K.D. Asymptotic distribution theory for the Kalman filter state estimator. Commun. Stat.-Theory Methods 1984,

13, 1981–2003. [CrossRef]
26. Vorobyov, S.A. Principles of minimum variance robust adaptive beamforming design. Signal Process. 2013, 93, 3264–3277.

[CrossRef]
27. Liu, X.; Li, L.; Li, Z.; Fernando, T.; Iu, H.H. Stochastic stability condition for the extended Kalman filter with intermittent

observations. IEEE Trans. Circuits Syst. II Express Briefs 2016, 64, 334–338. [CrossRef]
28. Vila-Valls, J.; Chaumette, E.; Vincent, F.; Closas, P. Modelling mismatch and noise statistics uncertainty in linear MMSE estimation.

In Proceedings of the European Signal Processing Conference, A Coruna, Spain, 2–6 September 2019.
29. Hrustic, E.; Ben Abdallah, R.; Vilà-Valls, J.; Vivet, D.; Pagès, G.; Chaumette, E. Robust linearly constrained extended Kalman filter

for mismatched nonlinear systems. Int. J. Robust Nonlinear Control 2021, 31, 787–805. [CrossRef]

http://doi.org/10.1038/293133a0
http://dx.doi.org/10.1109/34.601246
http://dx.doi.org/10.1109/TPAMI.2004.17
http://www.ncbi.nlm.nih.gov/pubmed/18579936
http://dx.doi.org/10.1109/70.481754
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.3390/s18113964
http://www.ncbi.nlm.nih.gov/pubmed/30445745
http://dx.doi.org/10.1109/TIP.2009.2017824
http://www.ncbi.nlm.nih.gov/pubmed/19497819
http://dx.doi.org/10.1016/j.eswa.2013.08.096
http://dx.doi.org/10.3390/s16091492
http://www.ncbi.nlm.nih.gov/pubmed/27649178
http://dx.doi.org/10.1016/j.imavis.2017.07.003
http://dx.doi.org/10.3390/s20113241
http://www.ncbi.nlm.nih.gov/pubmed/32517299
http://dx.doi.org/10.1080/03610928408828808
http://dx.doi.org/10.1016/j.sigpro.2012.10.021
http://dx.doi.org/10.1109/TCSII.2016.2578956
http://dx.doi.org/10.1002/rnc.5305

	Introduction
	Related Works
	Mitigation of Stereo Calibration Errors
	Background on Linearly Constrained EKF
	Stereo-Based Visual Navigation
	LCEKF Customization for Stereo-Based Visual Navigation

	Experiments
	State/Measurement Models
	Noises and Miscalibration/Decalibration Types
	SLAM Experiment with IMU
	Reference Case Comparison (i)
	Noisy Cases (ii), (iii), and (iv)
	Periodic Noise Case (v)

	SLAM Experiment Comparison with and without the IMU
	On the Influence of Kalman Covariance Initialization for Calibration Parameters

	Conclusions and Future Work
	References

