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Abstract: Reliable and fine-resolution electric power consumption (EPC) is essential for effective
urban electricity allocation and planning. Currently, EPC data exists mainly as statistics with low
resolution. Many studies estimate fine-resolution EPC based on the positive correction between
stable nighttime light and EPC distribution. However, EPC is related to various factors other than
nighttime light and is spatially non-stationary. Yet this has been ignored in current research. This
study developed a novel method to estimate EPC at 500 m resolution by considering spatially non-
stationary through fusing geospatial data and high-resolution satellite images. Deep transfer learning
and statistical methods were used to extract socio-economic, population density, and landscape
features to describe EPC distribution from multi-source geospatial data. Finally, a random forest
regression (RFR) model with features and EPC statistics is established to estimate fine-resolution EPC.
A study area of Shenzhen city, China, is employed to evaluate the proposed method. The R2 between
predicted EPC and statistical EPC is 0.82 at sub-district level in 2013, which is higher than an existing
EPC product (Shi’s product) with R2 = 0.46, illustrating the effectiveness of the proposed method.
Moreover, the EPC distribution for Shenzhen from 2013 to 2019 was estimated. Furthermore, the
spatiotemporal dynamic of EPC was analyzed at the pixel and sub-district levels.

Keywords: remote sensing; electric power consumption; high-resolution satellite imagery; nighttime
light imagery; random forest; transferable deep model

1. Introduction

The rapid progress of industrialization and urbanization has led to a significant
increase in urban electric power consumption (EPC). According to a survey conducted by
the National Bureau of Statistics of China, the per capita domestic electricity consumption
has increased from 515.0 kWh in 2013 to 732.1 kWh in 2019 [1]. The increase in EPC is not
only related to economic activity but also climate change. The Sustainable Development
Goal 11 (SDG 11) calls for making cities inclusive, safe, resilient, and sustainable by 2030 [2].
Ensuring that residents have access to electricity service facilities is essential for achieving
this goal. Accurate and reliable EPC distribution estimation on a fine-scale provides the
data basis for achieving this goal. In this study, EPC mainly referred to domestic usage
and was closely related to residents, which were closely related to the urban economy,
population, and living environment. Current urban EPC data mainly exists as statistical
data in the form of administrative units, which cannot meet the need for fine-scale urban
sustainability research due to coarse resolution. Therefore, developing a fine-scale gridded
EPC estimation method is urgently needed.

With the development of remote sensing satellite technology, abundant nighttime
light data has provided a new way to conduct socio-economic spatialization research.
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Previous studies have demonstrated a strong positive correction between nighttime light
intensity and EPC at multiple levels [3,4], and the relationship between EPC and nighttime
light intensity has been based on linear multiple regression models built to estimate the
EPC distribution [5]. The Defense Meteorological Satellite Program/Operational Linescan
System (DMSP/OLS) and Suomi National Polar-orbiting Partnership Visible and Infrared
Imager/Radiometer Suite (Suomi NPP-VIIRS) imagery are primary data sources in EPC
distribution research [6]. Letu et al. [7] found that light areas on DMSP/OLS imagery in
Asia were highly correlated with EPC distribution. Furthermore, Sahoo et al. [8] estimated
EPC in Uttar Pradesh, India using annual Suomi NPP-VIIRS nighttime light composites.
In addition, some researchers utilized nighttime light data to achieve global EPC mapping:
Shi et al. [5] assumed that levels of urban development were similar worldwide and divided
the world into 40 sub-regions to estimate the global EPC distribution from DMSP-OLS
nighttime stable data. Similarly, Hu et al. [9] adopted a local adaptive correction method for
nighttime light data (using different correction strategies for each local area) and established
a linear relationship between nighttime light and statistical data to achieve a global EPC
estimation. Lu et al. [10] utilized nighttime lights in connection with population and built
datasets to map EPC at a spatial resolution of 1 km.

However, the above studies assumed spatial stability of nighttime light and population
variables. The relationship between nighttime light intensity and EPC is spatial and
non-stationary, but current research has ignored this. Researchers have constructed a
relationship between EPC and nighttime light intensity based on linear models to achieve
regional EPC estimation for the positive correlation between nighttime light intensity and
EPC. The accuracy of EPC estimation is limited because the complexity of interactions
between EPC and nighttime light data has not been completely considered. Additionally,
current methods assume that EPC is only related to the brightness of nighttime light and
do not consider other related factors, leading to low accuracy.

Several studies have demonstrated that population, economy, and living landscape are the
main factors affecting urban development in China [11,12]. Furthermore, the EPC distribution
is closely related to urban development [13]. High-resolution satellite imagery contains an
abundance of information about landscape features that could be correlated with economic
activities [14,15]. Hence, exploring an appropriate estimated model based on multi-source
factors and considering spatial non-stationary data would provide a better understanding
and a new insight for grid EPC estimation. Meanwhile, the development of deep learning
technology provides support for image semantic feature extraction. Landscape features can be
extracted from high-resolution remote sensing images. The nighttime light data and population
density products can reflect the economic position and population distribution, respectively.

In summary, this study develops a novel approach to estimate EPC distribution at
pixel level with multi-source geospatial data. To estimate EPC distribution more accurately,
many factors are considered, including socio-economic factors and landscape factors. The
main steps of the method were as follows. First, the monthly Suomi NPP-VIIRS raw data
for 2013–2019 were inter-calibrated and were synthesized annual data. Second, calibrated
annual synthetic images and WorldPop population products were used to characterize
economic and population density characteristics. Landscape features relating to EPC
changes were extracted from high-resolution satellite imagery using the transfer learning
of ResNet-50 deep neural network model. Third, considering the non-linear relationship
between economic, population, and landscape features and EPC estimation, a random
forest regression (RFR) model was adopted to estimate the EPC at a spatial resolution of
500 m with EPC statistics. The spatial resolution of the pixel-level EPC results corresponds
to the Suomi NPP-VIIRS nighttime light images. Living landscape features, population
distribution features, and socio-economic features at the sub-district level were used as
independent variables. All electricity consumption statistics at the sub-district level were
used as the dependent variable. Finally, the trained RFR model is used to estimate pixel-
level EPC from 2013 to 2019. This study evaluated the estimation results against an existing
EPC product quantitatively and qualitatively.
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The rest of this paper is organized as follows: Section 2 contains the study area and
data, Section 3 contains the methodology, Section 4 contains the experimental results,
Section 5 contains the discussion, and Section 6 contains the conclusion.

2. Study Area and Data
2.1. Study Area

Shenzhen, China, was selected as the study area, which is located in southern Guang-
dong Province in Southern China adjacent to Hong Kong (Figure 1). In 2019, it consisted of
nine districts, covering an area of 1997.47 km2, with a total resident population of 13.0266
million. It experienced rapid electricity energy consumption growth in recent years and is
one of the most economically efficient cities in mainland China. The region boundary data
used in this study was the sub-district administration, which is the minor administrative
division that belongs to the local township division. According to the most recent admin-
istrative district boundary data, there are 73 sub-districts in Shenzhen [16]. Some new
sub-districts were merged, and 55 sub-districts were used in the final analysis to ensure the
sub-district data consistency from 2013 to 2019.

GUANGDONG
Shenzhen

Na'nao

Xixiang

Pingshan

Xili

Guanlan

Shiyan

Buji

Pingdi

Shajing

Kuiyong
Dapeng

Gongming

HenggangFuyong Dalang
Longgang

Pinghu

Longcheng

Yantian

Songgang

Kengxin

Meilin

Bantian

DonghuTaoyuan
Minzhi

Xi'nan

Guangming

Meisha

ShaheAohai
Nanshan

FutianShatou

Qingshuihe

Zhanshang

Guangming

Liantang
Shatoujiao

Haishan

Zhanshang

114°30'0"E

114°30'0"E

114°20'0"E

114°20'0"E

114°10'0"E

114°10'0"E

114°0'0"E

114°0'0"E

113°50'0"E

113°50'0"E

22°50'0"N 22°50'0"N

22°40'0"N 22°40'0"N

22°30'0"N 22°30'0"N

0 10 205 km
Sub-district boundaryLow High

(a) EPC statistics in Shenzhen at sub-district scale

Figure 1. Location of the study area. (a) EPC statistics in Shenzhen at sub-district scale. The map was
completed with the ArcGIS (version 10.5) software.

2.2. Data Source

Detailed information regarding the datasets used in this study has been shown in
Table 1, which shows three types: Geographic Information System (GIS) data (vector
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format), statistics, and remote sensing imagery (raster format). GIS data included Shenzhen
administrative boundaries that exist in vector format. Statistics included demographics and
annual per capita domestic electric power consumption data collected from the National
Bureau of Statistics. Remote sensing data existed in raster format, including Suomi NPP-
VIIRS nighttime light data, high-resolution satellite images from Google Static Maps,
and WorldPop gridded population data.

Table 1. Multi-source data for EPC estimation.

Data Description Data Source Spatial
Resolution Year Used

Monthly Suomi NPP-VIIRS nighttime lights NOAA/NGDC (https://ngdc.noaa.gov/eog/viirs/(accessed on 10 December 2020)) 500 m 2013–2019
High-resolution satellite imagery (Level-14) Google Static Maps API (http://www.google.cn/intl/zh-CN/earth/(accessed on 1 May 2021)) 17 m 2013–2019

WorldPop gridded population WorldPop (https://www.worldpop.org/(accessed on 1 May 2021)) 100 m 2013–2019
Demographic at Sub-district level National Bureau of Statistics (http://www.stats.gov.cn/(accessed on 10 May 2021)) Sub-district level 2013–2019

Per capita domestic electric power consumption National Bureau of Statistics (http://www.stats.gov.cn/(accessed on 10 February 2021)) National-level 2013–2019
Shenzhen administrative boundaries Geospatial Data Cloud (http://www.gscloud.cn/(accessed on 10 February 2021)) – 2015

Shenzhen house price Fang.com website (http://Fang.com/(accessed on 10 February 2021)) – 2013–2019

2.2.1. GIS Data and Statistics

• Administrative boundaries. Shenzhen administrative boundaries were used for two
reasons. First, they restricted the spatial scope of the data used, and second, they
stratified the data, which ensured that features from the raster dataset were on a
sub-district level administrative district (level 4 in China). The administrative unit
exists as a polygon and is in the World Geodetic System 1984 (WGS 84) geographic
coordinate system (EPSG:4326).

• Electric power consumption data. National Bureau of Statistics provides annual
per capita power consumption based on power consumed by the population at the
national level. Therefore, in this study, the EPC at sub-district scale was calculated
by multiplying the annual per capita domestic electricity consumption and resident
population. EPC statistics from 55 sub-districts were obtained for the training model.
This data was used as a label for training the RFR model and was used to calibrate
results for the EPC estimation. The number of electricity scales (unit: kWh) was used
to present local electricity energy consumption levels. Figure 1a maps the sub-district
level EPC covering Shenzhen in 2016.

• Housing price data. The house price data in Shenzhen is obtained from the Fang.com
website (https://Fang.com/) (accessed on 10 February 2021), which is the largest on-
line housing market website in China. The data is vector point format with longitude,
latitude, and house price. An average total of 8519 sets of valid data are obtained after
preprocessing every year.

2.2.2. Remote Sensing Imagery

• Nighttime light imagery. Nighttime light can reveal regional EPC to a certain ex-
tent [17]. Accordingly, nighttime light imagery serves as a critical data source for EPC
estimation in this study. Currently, there is much multi-source nighttime light data
available. However, considering the limitations of data quality, spatial resolution,
and temporal continuity, Suomi NPP-VIIRS nighttime light data was selected. This
data was obtained using a new generation of US polar-orbiting operating environment
project satellite (National Polar-orbiting Operational Environmental Satellite System
Preparatory Project, NPP). The VIIRS provided by NPP can receive nearly 22 bands of
image data, among which the day/night band can identify even weak light sources.
The spatial resolution of the nighttime light products is 500 m. Monthly Suomi NPP-
VIIRS composite products were used in this study, which was a one-month interval
from 2013 to 2019. Due to the increase in spatial resolution, noise in the original data
was unavoidable. The noise here mainly refers to the light seen from the earth and
not from a stable light source (such as light from flames and gas burning). Therefore,

https://ngdc.noaa.gov/eog/viirs/
http://www.google.cn/intl/zh-CN/earth/
https://www.worldpop.org/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
http://www.gscloud.cn/
http://Fang.com/
https://Fang.com/
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to ensure the best results, it was necessary to remove noise from the original data.
The process used to do so has been described in detail in the data processing section.

• High-resolution satellite imagery. High-resolution satellite imagery contain rich se-
mantic information about the building environment on the ground [18]. The urban
landscape environment can also reflect the gap between the rich and poor, which can
indirectly reflect electricity consumption [19]. Google Earth provides a rich source of
high-resolution satellite imagery and is constantly updated. The high-resolution satel-
lite imagery was utilized in our method to extract surface observation features [18].
Considering the research unit and the presence of noise in super-spatial resolution
remote sensing data, the Google Static Maps covering Shenzhen city at a zoom level
of 14 (spatial resolution of 17 m × 17 m) were used. Datasets can be downloaded via
the Google Static Maps API (https://developers.google.com/maps/documentation/
static-maps/intro?hl=zh-cn/) (accessed on 1 May 2021) with three multispectral bands
(red, green, blue).

• Gridded population. WorldPop population data, which holds population density
data from AfriPop, AsiaPop, and AmeriPop mapping and started in 2013 with a
spatial resolution of 100 m (http://www.worldpop.org.uk/) (accessed on 1 May 2021).
This open archive of spatial demographic datasets for Central and South America,
Africa, and Asia is intended to support development, disaster response, and health
applications.

3. Methodology

The proposed approach consists of three main steps (see Figure 2): (1) data processing
and feature extraction was conducted for multi-source geospatial data (house price vector
data, Suomi NPP-VIIRS data, high-resolution satellite imagery, and grid population data).
Especially, a multi-step CNN based transfer learning model is adopted to extract the
landscape features for high resolution remote sensing images together with nighttime
light data; (2) the RFR model is used to construct the EPC estimation model based on the
economic, landscape, and population features obtained from Step (1); and finally (3) the
accuracy evaluation of the EPC estimation model at the sub-district scale is conducted.
Multi-source data covering a typical city in Shenzhen, China, is used in the experiment.
This study also analyzed the spatiotemporal dynamics of EPC from 2013 to 2019.

NTL clusters as 

label

NPP-VIIRS nighttime 

light data

Grid population

(worldPop)

High resolution 

imagery

annual synthetic 

NTL

Statistical EPC 

GMM clustering

CNN-based 

Transfer learning 

model

FC1

FC2

 
FC4096

PCA

Data calibration
Population 

distribution features

RFR model

Pixel-level EPC

Social economic 

variable

Landscape features 

(FC0,FC2, ,FC24)

y

x

Spatiotemporal 

dynamics analysis

Accuracy evolution 

at sub-district level

Step 3: Evoluation

Step 2: EstimationStep 1: Data processing and feature extraction 

Housing price 

(Vector point data) Data calibration

Figure 2. The methodological framework for EPC estimation at pixel level.
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http://www.worldpop.org.uk/


Remote Sens. 2022, 14, 1469 6 of 22

3.1. Data Processing

The preprocessing for remote sensing data and gridded population products is an
essential step before feature extraction. This study used the geographic coordinate system
and spatial resolution of Suomi NPP-VIIRS nighttime light data as references for the EPC
map. First, all data were calibrated by the data processing tools in ArcGIS software,
resulting in the same geographic coordinate system. Then, based on the administrative
boundaries of Shenzhen, all satellite images were extracted using the Extract-by-Mask
tool in ArcGIS software. All data was organized within the exact Shenzhen geographic
boundaries and under a unified geographic coordinate system.

The increased spectral resolution of Suomi NPP-VIIRS nighttime light imagery effec-
tively avoids the saturation of pixels in the city center. Nevertheless, there were still outlier
values and abnormal value pixels that needed to be corrected. The Suomi NPP-VIIRS
product’s official website provides the annual synthetic data products after correction for
2015 and 2016. Therefore, this study conducted raw nighttime monthly image composite
data calibration and synthesized annual data from the calibrated data. The specific method
is as follows. First, the monthly data was averaged to produce nighttime annual image
composites. Lighting data in China is seriously distorted (pixel values are 0) due to the in-
fluence of clouds, which occurs in May, June, and July [20]. Therefore, this study eliminated
the data from May to July and synthesized the annual data using the other nine months of
each year in the synthetic annual data processing. The calculation formula was as follows:

DNj =
∑4

i=1 DNi + ∑12
i=8 DNi

9
(1)

where DNi represents the ith month light brightness value, DNj is the average light bright-
ness value in the jth year, and j varies from 2013 to 2019, excluding 2015 and 2016.

Second, outliers in the annual synthetic data were calibrated based on the 2015 and
2016 global annual calibrated composites data provided by the Suomi NPP-VIIRS official
website. Calibrated composites data for 2015 and 2016 was produced into binary images
via the raster-calculator tool in ArcGIS software. The binary image is an image in which
negative pixels were marked as 0; otherwise, pixels were marked as 1, eliminating negative
outliers in the raw nighttime light composites data. The raw nighttime light composites
data for 2014 and 2017 were multiplied by the corresponding pixel values of calibrated
composites data for 2015 and 2016 to eliminate negative outliers. Similarly, negative outliers
processing was conducted on the nighttime light composites data for 2013–2019.

Third, the outliers in the annual synthetic data are corrected according to the maximum
nighttime light brightness of major cities. This preprocessing was mainly based on two
assumptions: first, there was an assumption that pixels with stable nighttime light that
appeared for a long time in a year were worth keeping. However, pixels with abnormal
values that suddenly changed in value, which may have been caused by weather and
other factors, were removed. Because the nighttime light brightness value represents the
economic development of an area, the instantaneous high light value or low light value
cannot represent the overall economic development. Thus, the pixels with stable nighttime
light that appeared for a long time in a year were worth keeping.

Next, according to economic development, maximum nighttime light brightness
values in Beijing, Shanghai, and Guangzhou were used as the threshold value of the
nighttime light brightness in Shenzhen. Outliers in nighttime light annual image composites
were replaced using the eight-neighborhood filtering approach. It has been proved that
the nighttime light intensity in Chinese cities is strongly correlated with urban economic
development. The three cities of Beijing, Shanghai, and Guangzhou are the most developed
in China, so it is reasonable to regard the maximum light brightness value of the three cities
as extreme.

After synthesizing the annual nighttime data, these annual nighttime data are clus-
tered. The extraction of landscape features from high-resolution images was based on
the nighttime composite data clustering results. Inspired by the work of Jean et al. [14],
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the nighttime lighting data from 2013 to 2019 were clustered by Gaussian Mixture Model
(GMM). The clustering results were analyzed based on the silhouette coefficient to deter-
mine the optimal clusters. The silhouette coefficient calculates the overall distance between
clusters and neighboring clusters to verify the validity of the clustering result [21]. Given a
point i, the silhouette coefficient of i was defined as follows:

S(i) =
b(i)− a(i)

max(a(i), b(i))
(2)

where a(i) was the average distance between i and others in the same cluster, and b(i) was
the minimum average distance between i and others in a different cluster. The silhouette
coefficients corresponding was averaged to all points S(i) to verify the validity of cluster
results. The annual nighttime lighting data are clustered considering the effect of economic
development on the nighttime lighting brightness. The silhouette coefficient score corre-
sponding to each cluster was calculated, where the number of clusters ranged from 2 to 9
(Figure 3). As illustrated in Figure 3, the silhouette coefficient score was the highest, when
the cluster number was four, which means that this was the optimal cluster number. Thus,
the annual nighttime composites data was clustered into four clusters. After nighttime
light data clustering, the nighttime light clusters corresponding to each pixel were used as
corresponding high-resolution image patch labels. The four nighttime light values clusters
represent different development levels of the region, respectively. Furthermore, a different
landscape environment also represents a different development level for a region. Thus,
the nighttime light cluster results are used as the label data of high-resolution remote
sensing images to extract the surface observation features. This paper has proved that
using the nighttime light data cluster results as the label for remote sensing images can
effectively extract regional economic development level characteristics.

Figure 3. The silhouette score comparison of GMM for different numbers of clusters in 2013.

3.2. Feature Extraction from Multi-Source Data

Spatial distribution of EPC is a complex phenomenon related to the population density,
the natural environment, and the built environment. The brightness of nighttime lights
has been shown to reveal the socio-economic conditions of an area [22]. Generally, places
with low nighttime light have a low intensity of human activities at night and a low in-
frastructure density, so the poverty potential is relatively high [23]. Existing research [9,24]
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suggested that EPC is related to socio-economic, demographic, and built environment
factors. Three types of variables from multi-source data were extracted. Table 2 lists the
detailed information about those variables. Each variable was calculated at the pixel level
and sub-district level. Economic variables were extracted from the nighttime light data and
housing price data, respectively. Moreover, population density features related to domestic
EPC were extracted from the WorldPop population product. Landscape features were
extracted from the high-resolution satellite imagery via transfer learning of ResNet-50 deep
neural network. Ultimately, 28 dimensional features (25 dimensional landscape features,
economic features, and population density) were selected to estimate EPC. The detailed
feature extraction process has been described in the following sections.

Table 2. Independent variables derived from multi-source data.

Indicators Feature Name Description Data Source

Economic variables
Nighttime light The data value of nighttime light in each pixel;

The mean data value of nighttime light in each sub-district.
Suomi NPP-VIIRS nighttime

light data

House price The max housing price at pixel level and sub-district level,
respectively. Shenzhen house price

Population density Population density Population density at pixel level and sub-district level,
respectively. worldPop product

Landscape features FC0–FC24 25 principal components extracted from high-resolution satellite images
at pixel level and sub-district level, respectively. Google Static Maps

Figure 4 shows the relationship between statistical EPC and independent variables
(nighttime light intensity,population density, and house price) at sub-district level. It should
be noted that the mean data value of nighttime light and the maximum values of house
price data in each sub-district are used. The results show that population density and
house price variables are more strongly correlated with EPC than nighttime light intensity
at sub-district level. However, existing studies have demonstrated a strong correlation
between nighttime light intensity and EPC on a fine scale [10,25], which is also the basis for
this study.

Figure 4. The relationship between statistical EPC and independent variables (nighttime light
intensity, population density, and house price) at sub-district level. The blue lines are fits to the data
with corresponding 95% confidence intervals in light blue.

3.2.1. Social-Economic and Population Variables Extraction

Socioeconomic variabels were calculated from Suomi NPP-VIIRS and housing price
data using ArcGIS software. Specifically, socio-economic variables at the sub-district level
were calculated using the spatial analysis tool in ArcGIS software based on the sub-district
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administrative boundaries vector data. Pixel-level variables were extracted based on the
spatial resolution of Suomi NPP-VIIRS nighttime light data. Pixel-level variables were
calculated based on the Suomi NPP-VIIRS nighttime light data spatial resolution. This
study applied the same method as nighttime light data processing to extract the maximum
house price value at the pixel and sub-district level to supplement the socio-economic
variables. Since the 5× 5 pixel block in WorldPop data corresponds to a pixel in Suomi
NPP-VIIRS image, the average value of the 5× 5 pixel block is used as the pixel-level
population density variable. Sub-district level population density is calculated by the ratio
of sub-district level statistical population to the area.

3.2.2. Landscape Features Extracted Using CNN-Based Transfer Learning

High-resolution satellite images provide an abundance of living environment information
about landscape features that was related to economic activity. Recently, the application of
deep learning techniques to remote sensing image datasets has made significant progress in
computer vision tasks [26]. However, CNN-based (convolutional neural network) deep learning
techniques are usually the most effective in supervised learning task with an abundance of
labeled training data [27]. The EPC statistic at sub-district level is sparse as labeled data.
The generated dataset is many orders of magnitude smaller than data used in deep learning
applications. Therefore, the lack of training label data makes this technique challenging.
Transfer learning provides opportunities for supervised learning tasks with a small amount
of labeled data [28]. This study adopted a multi-step transfer learning, where nighttime light
intensities were used as a proxy for EPC. Here, the nighttime light data cluster results were
used as a label for the source task in this transfer learning. This study developed a multi-step
CNN-based transfer learning model that integrated high-resolution images with nighttime
light to extract landscape features related to EPC distribution. Figure 5 shows the proposed
approach, which consists of two parts: transfer learning (Figure 5a) and feature extraction
(Figure 5b).

7UDQVIHU�3DUDPHWHUV
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C
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C
onv

C
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Figure 5. ResNet-50 based deep transfer learning for landscape features extraction. (a) Fine tuning of
pretrained CNN. (b) Pretrained CNN-based model as a feature generator.
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Following previous research [29], this study transferred two related learning tasks.
Using a pretrained CNN model on a large dataset as a feature extractor has been shown
to be better than training from scratch, especially when the target task has fewer labeled
samples [30]. Assuming that there are two related learning tasks, called the source task DT
and the target task TT, the corresponding domains are DS and TS, respectively. The pur-
pose of transfer learning is to learn the conditional probability distribution P(YT|XT) in
DT based on the information obtained in DS and TS (DS 6= TS or TS 6= TT). Generally,
the number of labeled samples for the target task is limited and exponentially less than the
labeled samples of the source task. The goal of transfer learning is to improve the learning
ability of the target prediction function using knowledge from the source task.

To avoid limited sample problems, the pretrained ResNet-50 model based on a large-
scale Places-365 dataset was used to initialize the weights of the proposed CNN model
(Figure 5a). The high-resolution satellite images and nighttime light clustering results are
applied to fine tune the CNN-based model. The approach weights from a ResNet-50 model
which was pretrained on the Places-365 dataset [31] were transfer learned with all weights
available except for turning during the backpropagation algorithm on high resolution
images. For this transfer learning model, the source domain is the Places-365 dataset and
the target domain is high-resolution imagery. The Places-365 challenge dataset has eight
million training images and identifies the scene category depicted in a photograph [31].
Transfer learning processing allows researchers to relabel weights from the source domain
to the target domain and adapt the backpropagation algorithm to improve the target task.

Considering the simple structure and high computational efficiency of the model,
ResNet-50 was used as a classifier in this study. Compared with other variants of CNN-
based models, ResNet-50 has fewer parameters and higher computational efficiency [32].
The architecture of the ResNet-50 model has been shown in Figure 6. ResNet-50 consists
of 16 residual blocks, which contain a residual branch and a shortcut branch. Compared
with the traditional convolution structure, there is one more shortcut branch, which is used
to transmit low-level features so that the network can be trained deeply [33]. Specifically,
the default input size of ResNet-50 is 224× 224× 3 with three channels. The input image
size was adjusted to 128× 128× 3 to transfer a deep model to classify a high-resolution
images patch. The rest of the structures of the model were the same.
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Figure 6. The structure of ResNet-50.

The in-depth features useful for EPC estimation were extracted based on the pre-
trained model that classified nighttime light intensity classes from daytime imagery
(high-resolution satellite images) (supplement in Figure 5b). Inspired by the work of
Zhao et al. [34], the Principal Component Analysis (PCA) was applied to reduce the dimen-
sionality of input data and prevent overfitting by performing an orthogonal transformation
of the original features into the principal components. Following Zhao’s work [34], the min-
imum number of principle components (25-dimensional vector) were selected to limit the
computational cost of the procedure.

The fine-tuned CNN-based model was then used as a feature extractor to extract these
features. The landscape features at the pixel level and sub-district level were extracted
separately using the fine-tuned CNN-based model from high-resolution images. The size
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of pixel is the same as Suomi NPP-VIIRS nighttime light data. Since the nighttime light
data was available at a spatial resolution of nearly 500 m× 500 m cell size, our inputs
were 32× 32 pixel tiles daytime satellite image from Google Static Maps at a zoom level
of 14 (spatial resolution of 17 m × 17 m), which approximately corresponded to 0.25 km2

areas. Google imagery is acquired from the Quickbird satellite, which provides real-
time high-resolution maps that facilitate the acquisition of the surface features used in
this article. Because this paper aims to obtain an EPC of 500 m, it is easy to extract
some redundant features from Google images with a very high resolution, which are not
conducive to our direct use. Therefore, by investigating related research on surface feature
extraction, 17 m resolution images are more favorable for extracting surface features of
middle-level semantics.

Due to the irregular sub-district boundaries, 25 32 × 32 pixel tiles covering each
sub-district were filtered based on the rule that the overlapping area of the tile and the sub-
district accounts for more than sixty percent of the tile area. The daytime satellite images
used in this study were primarily collected from 2013 to 2019. Each of these pixel tiles
were matched with nighttime light images using coordinates. This ensures that each pixel
tile from the high-resolution image corresponds to each pixel of the nighttime light image.
The output from the pretrained ResNet-50 network for each subset of images consisted
of a 4096-dimensional vector, which was used as an input to the fully connected layers.
The smaller 512-dimensional vector was aggregated by averaging. Batch normalization was
used in all the added connected layers. This study used the CrossEntropyLoss loss function
and Adam optimizer with a learning rate of e−4 and trained the network for 100 iterations.
The weights of the last convolutional layer and fully connected layers were only trained.
The network used a subset of images from Shenzhen, which were fed into the final full
connected layers that yielded a 512-dimension vector. Finally, the PCA method was used
for the 512-dimension vectors to calculate the main components of 25 dimensions used as
part of the training samples for the RFR model. It should be noted that the sample labels
of high-resolution remote sensing images are the nighttime light data clustering results.
Moreover, the night light clustering results represent the regional economic development
level. Therefore, the 25 dimensional features represent the characteristics of the built
environment corresponding to different development levels expressed as FC0–FC24.

3.3. EPC Estimation Using RFR Model

The Pearson correlation coefficient and significance tests (P-values) between indicators
and EPC were calculated before building the random forest model (see Table 3). The indi-
cators include socio-economic (nighttime light and house price), landscape (FC0–FC24),
and population density factors extracted in the previous section. The results showed that
each factor was significant at the 0.05 level, indicating that each factor had a significant
correlation with EPC. However, the Pearson correlation coefficient showed that the correla-
tion coefficient calculated by a single factor was relatively low, indicating a low positive
or negative correlation between a single factor and EPC. However, the effect of the sum
of each factor on EPC was not ruled out. Existing studies have also shown that the weak
correlation of a single factor cannot represent the positive effect of the combined effect of
the factors on the dependent variable [34].

The association between the features and EPC at pixel level should be built to estimate
the EPC distribution. This study adopts the random forest regression (RFR) algorithm to fit
the EPC estimation model. RFR is a bagging ensemble learning algorithm for regression
tasks, which consists of a large number of regression trees [35]. Each tree generates its
prediction results, and the final prediction is made through a voting scheme. The final pre-
diction will not be based on any single tree but on the forest, which helps avoid overfitting
the model to the training dataset. It has several advantages over other machine learning
methods. For example, in the RFR model, raw data does not need to be standardized, which
is beneficial when processing multi-source data of different dimensions. The model has a
simple structure and runs quickly. Additionally, the RFR structure is easier to understand
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and interpret and can be used to explain the importance of features and teaching features
to the results.

Table 3. The correlation coefficient and significance test (P-values) for each indicator.

Indicators Correlation
Coefficient p-Values Indicators Correlation

Coefficient p-Values

FC0 0.164 * 0.004 FC14 0.107 * 0.007
FC1 −0.110 * 0.030 FC15 0.076 * 0.039
FC2 −0.153 * 0.000 FC16 0.218 * 0.000
FC3 0.239 * 0.005 FC17 0.013 * 0.005
FC4 0.076 * 0.005 FC18 −0.228 * 0.004
FC5 0.001 * 0.001 FC19 −0.026 0.605
FC6 −0.138 * 0.007 FC20 −0.149 * 0.003
FC7 −0.326 * 0.008 FC21 −0.116 * 0.023
FC8 0.201 * 0.000 FC22 −0.144 * 0.005
FC9 0.119 * 0.020 FC23 −0.207 * 0.000

FC10 0.010 * 0.008 FC24 −0.039 * 0.005

FC11 0.204 * 0.000 Nighttime
light 0.264 * 0.000

FC12 0.364 * 0.009 House price 0.102 * 0.000

FC13 0.312 * 0.000 Population
density 0.082 * 0.004

* Represents correlation is significant at 0.05. p-values ≤ 0.05, FC0–FC24: refers to the landscape features.

The National Bureau of Statistics provides the census data for population and per
capita domestic electric consumption at sub-district scale. Sub-district EPC can be obtained
by multiplying the two statistics from 2013 to 2019. Thus, it is significant to estimate pixel-
level EPC through sub-district EPC data. For this reason, this study takes 55 sub-districts in
the study area as training samples. That is, The RFR model trained by taking the sub-district
EPC in the study area as the dependent variables and the multiple features in Section 3.2
(social-economic, population density, and landscape features) as the independent variables.
In this model, there are 289 decision trees and the number of variables randomly chosen
to split nodes is 2. The detailed information of optimal parameters for the trained RFR
model is shown in Table 4. Each unsampled sample constitutes the Out-Of-Bag (OOB) data.
Prediction accuracy was evaluated by assessing OOB accuracy, which is calculated as the
mean square error between the OOB data and the data used to grow the regression tree [36].
The RFR model was implemented using a Python package named scikit-learn [37]. All the
variables were used to start the RFR model. Several parameters need to be determined
when training the RFR model. Here, this study achieved optimal hyperparameters of
RFR using the GridSearchCV method [38] using all the samples as the training data. This
method randomly selects 70% of samples for training and 30% for the validation set and
repeats this step for each training. Grid search refers to adjusting the parameters within
the specified parameter range and using the adjusted parameters to train the model. This
method finds the parameter with the highest accuracy on the validation set from all the
parameters, which is a training and comparison process. This combination of training and
cross-validation facilitates finding optimal parameters.

Table 4. The random forest model parameters.

Parameter Name Description Optimal Value

N_estimators Number of trees 289
Max_depth Maximum depth of the tree 22
Min_samples_split Minimum number of samples required to split an internal node 2
Min_samples_leaf Minimum number of samples required to be at a leaf node 2

The relationship between the EPC at the sub-district scale and the multiple features
was obtained by training the model. The trained model is applied to predict the EPC
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distribution at the pixel scale. The RFR result is the average of all the estimated values
for decision trees, so the final output could not exceed the range of the output value in
the training data. Further, it could not completely reach the output value range in the
training data, which is an inherent limitation of the model [39]. The trained RFR model
with sub-district level samples was used to predict pixel-level EPC, which will cause the
predicted value to be in an inherent range. The above analysis showed that the RFR model
could expand and compress the range of estimated values. The range of the estimated
EPC was higher than the actual EPC. For deviations from the training model, the total EPC
was normalized at the sub-district level. The normalization factor was calculated using the
following Equation (3) :

Fys = EPCys

/ n

∑
i

EPCyi (3)

where EPCys was the statistical EPC for a sub-district s in year y, ∑n
i EPCyi was the total

estimated EPC for each sub-district, and Fys was the normalization factor for a sub-district
s in year y. Based on the calculated factor Fys, the pixel-level EPC for each sub-district was
estimated using the following equation:

EPCysi = Fys × EPCyi (4)

where EPCysi was the normalized EPC for i pixel for a sub-district s in year y.

4. Experimental Results

In the following sections, the proposed model has been demonstrated. This has been
followed by an accuracy assessment of EPC estimation and a spatial and temporal analysis
for the estimated EPC. Specifically, pixel-level EPC results were compared and evaluated
with an existing EPC product, and spatiotemporal variations of EPC were examined at the
sub-district level.

4.1. EPC Estimation at Pixel Scale

Figure 7a–f demonstrates the estimated EPC distribution in Shenzhen from 2014 to
2019. It reveals some areas with high concentrations of EPC, such as Futian District and
Nanshan District in the center of Shenzhen. Futian District is the administrative, financial,
cultural, and commercial center of Shenzhen. With the economic development of Shenzhen,
its EPC distribution was generally in a growth and expansion trend from 2014 to 2019.
Figure 7a1–f1 shows EPC changes in Futian District and Luohu District from 2014 to 2019.
These two districts belong to the center urban area of Shenzhen. It can be seen that the
high-value EPC areas marked in red are expanding continuously. This also shows that
electric power consumption is also increasing with the economic development. In addition,
Longgang District, located in the east of Shenzhen, is a suburb far away from the center
urban area. Duo to its rapid development period from 2014 to 2019, it can be seen that EPC
is growing and expanding every year.

4.2. Accuracy Assessment for EPC Estimation

The EPC estimation results of the proposed model are compared with an open global
EPC dataset (Shi’s product). [5] produced global EPC maps with a 1-km spatial resolution
from 1992 to 2013 (hereafter, this paper refers to this as Shi’s product) by utilizing the linear
regression model with nighttime light. Both quantitative and qualitative analyses were
adopted to assess the proposed validity of the method and EPC estimation results.

The pixel-scale demographic data is not available, and the sub-district is the finest
administrative unit available. Thus, the precision comparison is carried out at sub-district
level for quantitative analysis. Survey data was from the demographic and statistical
analysis of electricity consumption per capita conducted between 2013 and 2019. The
demographic data was from 2013 to 2019 at sub-district scale. Sub-district EPC can be
obtained by multiplying the demographic by per capita electric power consumption. The
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estimation result and Shi’s product in 2013 were compared for experimental comparability.
Figure 8 shows the linear fit between the survey and modeled data, compared to evaluate
EPC results at sub-district level. The linear fit model indicated a coefficient of determination
of R2 = 0.82 compared with Shi’s product (R2 = 0.46). Results reveal that the proposed
model performed well in terms of estimating EPC.
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Figure 7. The estimated EPC map in the WGS 84 geographic coordinate system for (a): 2014, (b): 2015,
(c): 2016, (d): 2017, (e): 2018, and (f): 2019 by utilizing the proposed method. The area in the red box
mainly includes Futian District and Luohu District, and (a1–f1) shows the results of the red box in
more detail. The maps were completed with the support of ArcGIS (version 10.5) software.

Figure 8. Accuracy assessment between the estimated EPC and statistical EPC at the sub-district
level in 2013. The blue line in each figure is the result of the linear fitting. (a) EPC results estimated
by Shi’s product (Shi et al. 2016); (b) EPC estimation results based on RFR model (ours).
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In addition to the coefficient of determination R2, the root mean squared error (RMSE)
and Mean Absolute Error (MAE) values were calculated for sub-district to assess accuracy.
Table 5 shows the accuracy assessment of estimated EPC results for Shenzhen. It reveals
that our model was much better than Shi’s in terms of both the RMSE and MAE. The RMSE
(Equation (5)) and MAE (Equation (6)) values were calculated for sub-districts as follows:

RMSE =

√
1
N

n

∑
i=1

(ŷ− y)2 (5)

where N (N = 55) was the number of sub-districts, ŷ was the total EPC estimated by
the model (calculated based on the sub-district level), and y was the statistical EPC data
obtained from the yearbook.

MAE =

√
1
N

n

∑
i=1

(ŷ− y)2 (6)

In addition, this paper also calculates the relative standard deviation (RSD) of the
results to obtain the degree of deviation of each point from the mean. Smaller values
represent less bias in the predictions and more concentrated data distribution. The relative
standard deviation (RSD) is expressed as follows:

RSD =

√
1
N ∑n

i=1 (y− y)2

y
× 100 (7)

where y is the mean of the data.

Table 5. Comparison of the EPC estimated accuracy between Shi’s product and ours.

Model RMSE MAE R2 RSD

Shi’s 72,178.27 52,149.42 0.46 87.30%
Ours 4357.10 3250.34 0.82 63.15%

Figure 9 shows the results of this paper (Estimated EPC) and the comparison data
(Shi’s product) compared with the statistical EPC. It reveals that the results of this paper
are consistent with the statistical data distribution, while the comparison data are quite
different. We take into account that the comparison data is calculated assuming that the
development of the city is consistent, which ignores the spatial heterogeneity of EPC
distributions within cities.

For qualitative comparison, data from Shi’s global products for the study area are
obtained for comparison. The two results for pixel level were then divided into five grades
using the Natural Breaks (Jenks) method from low to high. The estimated EPC at pixel
level was plotted to make a better qualitative comparison with Shi’s results, as shown
in Figure 10. The EPC data in this study are distributed at 500 m resolution, while Shi’s
product is 1 km. It shows that our results can portray richer spatial change information due
to the advantage of higher resolution. Specifically, our results map (see Figure 10a) showed
the changing trend in EPC in the central district, and EPC boundaries can also be identified
in the suburbs, such as Dapeng New District. In contrast, Shi’s results (see Figure 10b) did
not sufficiently describe the trend in EPC in the district area due to their coarse resolution.

The results reveal that the spatial resolution of the EPC distribution of our model is
finer but leads to a higher estimation accuracy. The global EPC dataset (Shi’s product) takes
into account the social-economic factor from nighttime light data but does not consider
others, especially the population density and landscape features. Our model integrates
multi-source geospatial data and high-resolution remote sensing data and fully considers
the EPC distribution factors, including socio-economic, population density, and landscape
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features. The proposed model estimates EPC at a finer scale and comprehensively considers
the factors affecting EPC distribution. As a result, our model results are better than Shi’s
product dataset, which shows the effectiveness of the proposed model. The results show
that although this study uses the relationship at sub-district scale to predict, the pixel-level
EPC will cause an error of scale conversion, which is within an acceptable range in the
study area.

Figure 9. The comparison histogram for results at district level.

In addition, Figure 11 shows the accuracy of our results by comparing them with
sub-district census data from 2014 to 2019 in Shenzhen. For our estimated EPC, R2 values
were between 0.6 and 0.8 with an average R2 of value 0.66. In contrast to the suggestions of
previous research by Lu [10] and Xie [25], these validated results showed that acceptable
estimates can be achieved using the proposed method. The main error is caused by the
relatively large cloud coverage in the selected high-resolution satellite imagery resulting in
the R2 lower than 0.6 in 2017 and 2018.

±0 2010 kmLow High ±0 2010 kmLow High

(a) (b)

Figure 10. The estimated Shenzhen EPC maps at the pixel level in 2013. (a) The EPC result of the
proposed model (the spatial resolution is consistent with the Suomi NPP-VIIRS data about 500 m);
(b) The EPC result produced by Shi et al. at 1 km resolution. The maps were completed with the
support of ArcGIS (version 10.5) software.
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Figure 11. Accuracy assessment of estimated EPC from 2014 to 2019 (a–f) in Shenzhen.

5. Discussion
5.1. Method Validation

This study adapted gradient-weighted class activation mapping (Grad-CAM) to verify
that the proposed CNN model could extract high-level semantically meaningful features
from high-resolution imagery related to EPC distribution. Grad-CAM follows the CNN
gradient flow that returns from an individual output class to the original image tile to
establish an activation map, highlighting the input features most relevant to each class
prediction. The areas with significant divergence between the rich and the poor in Long-
gang District, Shenzhen were analyzed as shown in Figure 12. Grad-CAM was used to
compute activation map for the poorest and wealthiest socio-economic classes. The overlaid
activation map highlighted the visual features that most triggered the poorest and richest



Remote Sens. 2022, 14, 1469 18 of 22

class predictions (Figure 12B); these activation patterns could be associated with the slums
map shown in Figure 12C. The red highlighting in the heat map indicates that the proposed
model could learn economic features related to the EPC distribution.

� �

� �

� �

� �

Slum area Richer area
A. High-resolution imagery B. The activation map C. Slum area map 

Figure 12. The model interpretability studies using Grad-CAM. (A): an aerial tile from high-resolution
imagery. (B): Grad-CAM is used to compute activation map for the poorest and wealthiest socio-
economic class. The activation maps are then overlaid with the high-resolution image tiles (A).
(C): The discontinuous urban fabric slums area division from the Shenzhen Planning Documents is
mapped to this area.

Gini importance was used to assess important weight of each variable. The higher Gini
importance value indicates that the variable is relatively more important. Variables ordered
by Gini importance have been shown in Figure 13. There are 28 selected features. Popu-
lation density is the most critical feature with an importance weight of 28.38%, followed
by nighttime light intensity and landscape feature (FC11), whose importance weights are
14.81% and 7.19%, respectively. The above analysis showed that population density was an
essential feature that affected the distribution of residential electricity consumption in Shen-
zhen. Moreover, 25-dim landscape features (FC0 - FC24) extracted from high-resolution
satellite images had a total importance of 52.74%, and the values were are all between 0.87%
and 7.19%, indicating that these features have various influences on EPC distribution.

This study removed FC0–FC24 features and calculated the model accuracy further to
illustrate the importance of landscape features (FC0–FC24). Results show that the model
accuracy falls from 0.66 to 0.45 after removing landscape features. The above analysis
revealed that features extracted from remote sensing images benefit EPC estimation.

Figure 13. The Gini importance of variables (FC0–FC24 represents the landscape features) in the
RFR model.
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5.2. Spatiotemporal Dynamics Analysis of EPC from 2013 to 2019

The linear regression analysis method was adopted to explain the spatiotemporal
dynamic of EPC in Shenzhen from 2013 to 2019. As in Hu et al. [9] and He et al. [24],
the SLOPE index was used to measure the change trends of each grid from 2013 to 2019.
The slope of the regression model for every area was calculated to determine the EPC
changing type from 2013 to 2019 [9,24]. The calculation formula of the slope was as follows:

SLOPE =
n ∑n

k=1(ykEi_k)−∑n
i=1 yk ∑n

k=1 Ei_k

n ∑n
k=1 y2

k − (∑n
k=1 yk)2

(8)

where n was the number of years (in this study n = 7), yk represented the kth year between
1 and 7, and Ei_k was the ith grid of the kth year. SLOPE > 0 stood for an increasing
trend, whereas SLOPE < 0 indicated a decreasing tendency. Moreover, the slope coefficient
for each grid was divided into five grades based on the Natural Breaks (Jenks) method:
negative growth, slow growth, medium growth, relatively fast growth, and fast growth
(Figure 14). Based on the grid-level SLOPE index, the average SLOPE index for each
sub-district level was calculated to represent variation trends as shown in Figure 14b.

±0 10 205 km

Slow Relative-slowMedium Relative fast FastNegative No data

(a) The variation rends of EPC at pixel level.

±0 10 205 km

Slow Relative-slow Medium Relative fast Fast

Sub-district boundary

(b) The variation trends of EPC at the sub-district level

Figure 14. The variation trends of EPC in Shenzhen from 2013 to 2019. (a) The variation of EPC at
pixel level; (b) The variation trends of EPC at the sub-district level. The maps were completed with
the support of ArcGIS (version 10.5) software.

Figure 14 displays the temporal variation types of the sub-district level EPC in Shen-
zhen, according to the SLOPE index. In general, EPC in the Shenzhen urban west has been
growing faster than in the east. The sub-districts belong to the rapid growth type mainly
located in the south of central coastal regions of Shenzhen, including Futian sub-district
and Yuanling sub-district in the Futian District and Sungang sub-district and Dongmen
sub-district in the Luohu District. The regions that experienced relatively rapid growth
were mainly concentrated in the high-tech park coverage area in Nanshan District (Nantou
and Yuehai Sub-districts), the typical high-density residential area in Bao’an District (Xin’an
Sub-district), and some sub-districts in the Longgang District near the main city center (Buji
and Longhua sub-districts). The EPC in Dapeng New District, Pingshan District and the
northern part of Longgang District in Shenzhen’s eastern suburbs has slowly grown.

6. Conclusions

High-precision EPC distribution with a high resolution is the essential primary data
for urban research. Electricity is the most widely used energy source in modern society
and the primary energy source for Chinese households [40]. Some literature shows that
electricity consumption is positively correlated with economic growth [41]. Similar to
income, household electricity consumption is also one of the indicators to measure people’s
comfort and welfare [42]. Therefore, EPC distribution can better reflect the actual situation
of inequality than other indicators. Due to the rapid development and energy consumption
in cities, many urban problems have been brought out, such as uneven infrastructure
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allocation and uneven development. Therefore, refined EPC distribution data is essential
for appropriate urban governance and planning, which can help balance infrastructure
resources and cities. For example, in the construction of public facilities, considering
the EPC distribution can assist the allocation of public service facilities more reasonably.
To measure the level of regional development, the distribution of electricity consumption
can provide the government with a considerable reference.

Reliable EPC estimation on a fine scale is essential for urban planning and response
to the unbalanced distribution of energy utilization. This study presented a methodology
for estimating electric power consumption at 0.00416◦ spatial resolution from 2013 to
2019 using multi-source data. High-resolution remote sensing data can reflect landscape
characteristics related to urban EPC. The advantages of the proposed method for estimating
EPC are that it combines multi-source remote sensing data and machine learning, and it
not only takes socio-economic and population density into account but also considers
landscape features from high-resolution images, which improves estimation accuracy. The
EPC estimation model was evaluated using statistical data from the National Bureau of
Statistics at a sub-district scale. The average R2 is above 0.66, which suggested considerable
accuracy. To evaluate the validity of our results, this study conducted a comparative
analysis with an existing EPC product, which showed that our results were excellent in
both qualitative and quantitative terms. However, the advantage of comparing products is
achieving global EPC estimation. Due to the limitation of house price data, our method does
not achieve global EPC estimation. The results confirmed that multi-source data and an RFR
model could be combined to map EPC at the pixel level and demonstrated that improved
modeling was achievable when landscape features extracted from high-resolution images
were used in combination. Additionally, the spatiotemporal dynamic of EPC from 2013 to
2019 in Shenzhen was attempted to be detected. The analysis showed that the EPC dynamic
change area was mainly in the west of Shenzhen. The regions with relatively minor changes
were mainly located in the east, occupied mainly by forest land. All data used in this
study, including Suomi NPP-VIIRS nighttime light data, high-resolution satellite imagery,
and WorldPop population data, is public and globally available. Similar data reflecting local
economic conditions can be used for house price data. Therefore, the proposed method is
easily transferable to other regions.
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33. Yapıcı, M.M.; Tekerek, A.; Topaloğlu, N. Performance comparison of convolutional neural network models on GPU. In
Proceedings of the 2019 IEEE 13th International Conference on Application of Information and Communication Technologies
(AICT), Baku, Azerbaijan, 23–25 October 2019; pp. 1–4.

34. Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with
Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [CrossRef]

35. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Ishwaran, H.; Lu, M. Standard errors and confidence intervals for variable importance in random forest regression, classification,

and survival. Stat. Med. 2019, 38, 558–582. [CrossRef]
37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
38. Lerman, P. Fitting segmented regression models by grid search. J. R. Stat. Soc. Ser. 1980, 29, 77–84. [CrossRef]
39. Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random

forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [CrossRef] [PubMed]
40. Lin, B.; Omoju, O.E.; Okonkwo, J.U. Factors influencing renewable electricity consumption in China. Renew. Sustain. Energy Rev.

2016, 55, 687–696. [CrossRef]
41. Shiu, A.; Lam, P.L. Electricity consumption and economic growth in China. Energy Policy 2004, 32, 47–54. S0301-4215(02)00250-1.

[CrossRef]
42. Zhang, C.; Su, B.; Zhou, K.; Yang, S. Analysis of electricity consumption in China (1990–2016) using index decomposition and

decoupling approach. J. Clean. Prod. 2019, 209, 224–235. [CrossRef]

http://dx.doi.org/10.3390/rs11040375
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/sim.7803
http://dx.doi.org/10.2307/2346413
http://dx.doi.org/10.1016/j.envres.2021.111660
http://www.ncbi.nlm.nih.gov/pubmed/34265353
http://dx.doi.org/10.1016/j.rser.2015.11.003
http://dx.doi.org/10.1016/S0301-4215(02)00250-1
http://dx.doi.org/10.1016/j.jclepro.2018.10.246

	Introduction
	Study Area and Data
	Study Area
	Data Source
	GIS Data and Statistics
	Remote Sensing Imagery


	Methodology
	Data Processing
	Feature Extraction from Multi-Source Data
	Social-Economic and Population Variables Extraction
	Landscape Features Extracted Using CNN-Based Transfer Learning

	EPC Estimation Using RFR Model

	Experimental Results
	EPC Estimation at Pixel Scale
	Accuracy Assessment for EPC Estimation

	Discussion
	Method Validation
	Spatiotemporal Dynamics Analysis of EPC from 2013 to 2019

	Conclusions
	References

