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Abstract: Precipitation is one of the many important natural factors impacting agriculture and natural
resource management. Although statistics have been applied to investigate the non-stationary trend
and the unpredictable variances of precipitation under climate change, existing methods usually
lack a sound physical basis that can be generally applied in any location and at any time for future
extrapolation, especially in tropical areas. Physically, the formation of precipitation is a result of
ascending air which reduces air pressure and condenses moisture into drops, either by irregular
terrain or atmospheric phenomena (e.g., via frontal lifting). Thus, in this paper, pressure change
events (PCEs) will be used as a physical indicator of the stability of atmospheric systems to reveal
the impact of temperature on precipitation in the tropical areas of Florida. By using data from both
national and regional weather observation networks, this study segments the continuous observation
series into PCE sequences for further analysis divided by dry and wet seasons. The results reveal
that the frequency and intensity of PCE are highly associated with the occurrences of weather events.
Decreasing pressure favors precipitation, and may turn extreme when the temperature and air
moisture are sufficient to fuel the process. With similar intensity, decreasing pressure change events
(DePCEs) generally bear a higher probability of precipitation (POP) and precipitation depth (PD)
than increasing pressure change events (InPCEs). The frequency of alternating between InPCEs and
DePCEs is subject to the temperature of the season and climate. Due to the seasonal fluctuations
of weather characteristics, such as temperature and relative humidity, the dependence of extreme
precipitation on these characteristics can be interpreted via PCE. A 7% increase rate of precipitation
vs. temperature rise, determined by the Clausius—Clapeyron (C—C) relationship, can be observed
from extreme precipitation with variances in the season and PCE types. Although indicated by other
research, active vertical movement of air caused by a phase change in water at the frozen point is
not pronounced in Florida. The response patterns of humidity to precipitation also vary by season
and PCE types in extreme conditions. In summary, PCEs demonstrate reliable physical evidence of
precipitation formation and can better associate the occurrence and intensity of extreme weather with
other characteristics. In turn, such associations embody the underlying physical concepts present at
any location in the world.

Keywords: precipitation; pressure change; weather extremes; Florida

1. Introduction

Trends in extreme weather events have changed drastically over recent decades [1],
and there is plenty of evidence to support that the patterns of temperature and precipi-
tation have changed with global warming. Climate change has led to an increase in the
frequency and intensity of extreme weather events [2] such as heavy rain, drought, and
heat waves, having a wide impact on production and economy, especially in agriculture.
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For example, from 1964 to 2007, a crop loss of 1820 million and 1190 million Mg was
caused by droughts (approximately equal to the global maize and wheat production in
2013) [3] and extreme heat disasters, respectively [4]. According to the most complete
disaster reports for 2000–2007 [3], 6.2% of the total global cereal production was lost due to
extreme weather events when compared to the expected total production. Florida is highly
vulnerable to extreme weather, such as summer thunderstorms, hurricanes, drought, etc.,
bringing significant risks to the economic, environmental, and social systems. For example,
Beaver et al. [5] mentioned that hurricanes in Florida could destroy submerged aquatic
vegetation, which may break the balance of the ecosystem.

In order to model extremes for agriculture or hydrology projects, weather-related
research is mainly statistically based, and assumes the dependence of extremes on climate
conditions [6–10], which is restricted by the time and location to which the data are at-
tributed, lacking portability. Therefore, finding a physically sound method to interpret the
extreme weather events is important in forming a generality that applies regardless of the
specifics of a dataset, which is usually an incomplete representation of all scenarios.

Physically, the formation of precipitation is a result of ascending air which reduces
air pressure and condenses the moisture into drops, either by irregular terrain or by
atmospheric phenomena (e.g., via frontal lifting) [11,12]. As justified by Yu et al. [13]
in terms of the analysis of pressure change events (PCEs), precipitation is favored by
decreasing pressure and amplified by rising temperatures, consistent with the Clausius–
Clapeyron (C–C) relationship [14–19] under extreme conditions. Although the moisture-
holding capacity will be high under high temperature, PCE determines the capability of
extracting moisture into precipitation. However, not many studies have been conducted to
investigate the interaction of temperature, pressure change and absolute humidity (AH)
during extreme precipitation in PCE-determined weather events in tropical areas.

In this study, PCE will be used as a physical indicator for the stability of atmospheric
systems in the development of extreme precipitation features subject to other weather mea-
surements in the tropical area of Florida. There are three key components in this research:
(1) compiling data from both national (NOAA) [20] and regional weather observation net-
works (FAWN) [21] and segmenting the continuous observation series into PCE sequences
for further analysis; (2) defining the features of extremes (a detailed definition of extreme
follows at the end of Section 2.1) from data, and extracting the dependence of different
extremes on long-term temperature climate conditions (e.g., average monthly temperature
(AMT)), in order to interpret the climate impact on extreme occurrences and intensity; And
(3) refining and transforming the features that define the weather conditions associated
with PCE, as well as investigating the dependence of extremes on these weather conditions.

This paper aims to justify, from agricultural and hydrology perspectives, the physical
nexus of weather formation according to evidence gathered from analyzing various weather
observations on a PCE basis, with an emphasis on extreme precipitation. In the rest of this
paper, data sources and conditions will be introduced first, followed by the methodology
section, which describes the pre-processing of data and how PCE is used to interpret
the physical mechanism of precipitation formation. Next, the results section graphically
inspects the relationships between PD/POP and cumulative event pressure change (CEPC),
before investigating the dependence of AMT and atmospheric stability, in order to interpret
the relationship between PCE and the extremes of precipitation in different seasonal weather
changes. Summaries are given at the end.

2. Data

The analysis in this paper focuses on the state of Florida in the United States, a
region characterized by humid tropical climate patterns in the south and a subtropical
climate pattern (as shown in Figure 1) in the center and north [22]. Hourly observations of
precipitation (mm), sea level pressure (hPa), air temperature (◦C), and relative humidity
(RH) (%) are used for analysis. To achieve good coverage of the overall state, data were
collected from two sources: National Centers for Environmental Information (NCEI) [20]
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for six main cities (see Figure 1) (Pensacola (ID:13,899: 1948–2021), Tallahassee (ID:93,805:
1942–2021), Jacksonville (ID:13,889: 1948–2021), Orlando (ID:12,815: 1952–2021), Tampa
(ID:12,842: 1940–2021) and Miami (ID:12,839: 1948–2021)), and the Florida Automated
Weather Network (FAWN) [21] for rural agriculture settings. FAWN is a weather network
of 42 monitoring stations across Florida, and is maintained by the University of Florida.
Figure 1 shows all of the locations. The data from all stations of both sources are lumped
for analysis, since the physics of the dependence of extremes on weather parameters holds
generally.
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Figure 1. Positions of all weather observation locations in this study.

2.1. Data Preparation

There were multiple pre-processes performed before analysis. To increase the sample
size of extremes in analysis, data from those two sources were converted into a consistent
format and lumped in this study. Data quality was managed by processes of regulating
time intervals, removing significant gaps, and interpolating remaining gaps. While data
from NCEI are hourly, FAWN’s data are in 15 min intervals and are aggregated into hourly
intervals by summing up precipitation and averaging other measurements. From the raw
data, 0.89% of all time intervals (2.00% of NCEI data and 0.10% of FAWN data) are greater
than 1 h. Among these gaps, 0.03% are over 4 h and are considered too significant to be
included in the analysis. For the remaining gaps (2 h~4 h) with a portion of 0.86% in the
pooled data, the occurrences of the gap are summarized by each location and different gap
lengths. Where a gap of a specific length frequently appears to be more than 100 times in a
location, its impact will be considered unignorable and these gaps will be excluded.

To fill the remaining gaps, the method from Yu et al. [13] is adopted. The cubic (or
Hermite) spline method [23] is used to interpolate the missing points in gaps less than 24 h.
Then, a moving average method with a 24 h window is used to smooth the interpolated
data. For the trivial gaps (between 6 and 24 h), data of 7 days centered on the day of interest
are used to fit the spline method and interpolate these gaps as dry periods [5]. Therefore,
all gaps will be filled by the spline method, which simulates the moving patterns of the
neighbor points and connects the two ends of the gaps smoothly [24].
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After processing, all the time series of the weather observations will be split into a
sequence of PCEs [13] (see Section 3), the conceptual basis of this study, and a sequence of
precipitation events. PCEs with any temporal overlap with the significant gaps identified
at the beginning are removed from further analysis. In this study, an extreme climate
condition is defined as a PCE with a magnitude of CEPC (positive or negative) surpassing
300 hPa (statistically, these extremes are less than 5% on both tails of the distribution of all
CEPCs).

3. Methodologies
3.1. Character Definitions

Air mass movement is the principle of forming precipitation, leading to pressure
change. Thus, the analysis should start by exploring the relationship between pressure
changes and precipitation. In this study, pressure change and precipitation are both
processed on an event basis. The precipitation event is determined by an inter-event dry
period (IntEDP) [24], which has different quantile thresholds in order to avoid the influence
of extreme diminutive events [17,25]. This paper uses 4 h for all cities as the minimum
IntEDP, which is calculated by taking 99.5% as the quantile threshold. PCE is determined
by the deseasonalized air pressure [13], which is the air pressure change lagged by 24 h
(See Equation (1)).

P′(t) = P(t)− P(t− 24) (1)

P′(t) is the deseasonalized air pressure at hour t, and P(t) is the actual air pressure at
hour t. This process helps remove the daily fluctuation of air pressure.

There are two types of PCEs: increasing pressure change events (InPCEs) and decreas-
ing pressure change events (DePCEs) (see Figure 2), defined by the direction of pressure
change. Using the data described in Section 2, the CEPC of InPCE ranges from 0 to 1100 hPa,
and the CEPC of DePCE ranges from −1200 to 0 hPa. CEPC is defined as the cumulative
air pressure change within a PCE (the shadowed area in Figure 2).
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Next, the relationship between air pressure and hourly precipitation within a PCE is
investigated. This analysis is used to study whether the historical hourly precipitation is
related to air pressure on an event basis, by plotting the POP and PD over CEPC. POP is
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referred to as the fraction of rainy PCEs in all PCEs (see Equation (2)). A rainy PCE is a
PCE with precipitation.

POP =
Num_rainy_PCE

Num_PCE
(2)

where Num_rainy_PCE is the number of total PCEs having precipitation, and Num_PCE
is the number of all PCEs. This calculation is performed by binning CEPC with 20 hPa
intervals. For example, when CEPC ranges from −480 hPa to −500 hPa, there are 10 PCEs
in total and 8 of them are rainy. Then, the POP is 8/10 = 0.8.

The calculation of AH follows the process given by Murray et al. [26], which can be
separated into four steps: (1) converting the Fahrenheit temperature to Kelvin temperature;
(2) depending on the temperature, calculating the saturation vapor pressure using the
Murray equation; (3) calculating the partial water vapor pressure based on the relative
humidity and saturation water vapor pressure at the same temperature; And (4) calculating
AH based on partial water pressure and temperature.

3.2. Analysis

It is hypothesized that the stability of the atmospheric system (occurrence of PCEs) is
highly correlated to the formation of weather events, including extremes. To verify this
assumption, first, the frequency of alternating PCEs is graphically interpreted over AMT
under different seasons. Then, the impact of PCE types on PD, POP, and seasonality is
investigated by examining the relationship between different PD percentiles and AMT
under the different scales of CEPC and seasons. The pattern of AH response to precipitation
is also analyzed.

4. Results and Discussion

Figure 3 shows the relationship between PD/POP and CEPC. To characterize the
correlation between POP and CEPC, a dashed local fit line via the loess method [13] is used.
It is noteworthy that only the distribution of the rainy PCEs is represented by the density
plot in the lower chart, while all the dry PCEs align with the x-axis where PD = 0 mm. The
vertical line, where CEPC = 0 hPa, divides the field of POP into two distinct PCE types.
Generally, the POP of DePCE (left region) increases with the absolute value of a CEPC,
while the POP of InPCE rises at a slower rate and with a lower peak. The PCE reaches the
highest frequency where CEPC = −100 hPa and PD = 20 mm (center of the contour). The
trend of PD over CEPC is comparable with POP, which can be separated by InPCE and
DePCE. The PD increases over CEPC magnitude in DePCEs but decreases in InPCEs. Based
on the results above, we found that the POP of InPCE peaks at 40% when CEPC increases
from 0 hPa to 100 hPa, and then decreases to 20% when CEPC reaches 480 hPa. For DePCE,
the POP monotonously increases from 20% to 90% within 0~−400 hPa. Due to the limited
sample size of extreme CEPC for both types, fluctuations are present at the tails on both
ends. However, based on the results from a previous study focusing on NE US [13], DePCE
eventually reaches a POP of 100% as CEPC grows beyond −480 hPa. Similarly, InPCE POP
also flattens out in high CEPC, but at a POP lower than 100%. The association between
POP, PD, and CEPC is prominent, and the falling air pressure appears to be more important
than the increasing pressure in precipitation formation. Given that the atmospheric system
in the subtropical area is relatively more stable than in the temperate zone and frigid zone,
the CEPCs in this study are mostly distributed within the range between −500 hPa and
500 hPa. The extreme DePCE EPCs from −800 to −600 hPa represent a solid indication of
precipitation, corresponding to a drastic POP increase. Physically, extreme DePCE occurs
along with intensive convections, either locally or systematically, which favor the formation
of precipitation. Because the ground observations were collected by point source stations,
the sample size of local convections (e.g., daily thunderstorms in tropical areas) may be
underestimated. Likewise, InPCE, which usually presents to balance a DePCE at the same
time, may receive a marginal portion of PD. In turn, the chance of recording this portion
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is subject to both the direction of precipitation movement and the location of the station.
Therefore, the POP of InPCE is much lower, even for extreme CEPCs.
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Bjerknes et al. [25] and Defant [27] suggest that the occurrence of air circulation and
its corresponding air pressure change could be treated as an indicator of atmospheric
stability, especially for moderate and intensive events. Since precipitation is formed due
to atmospheric instability, it is important to evaluate the impact of temperature on the
atmospheric system. Figure 4 illustrates the monthly frequency of moderate and intensive
PCEs (|CEPC| > 90 hPa) against AMT in two half-years. Figure 4 is used to investigate
whether PCEs associate with AMT. AMT is the average monthly temperature. The points in
the plots represent the monthly aggregation of occurrence of PCE. A local regression line is
added to highlight the trend. The patterns are similar in two half-years in that the monthly
frequency goes down with the increase in AMT. Note that PCE in high temperature could
be more intensive than in low temperature, even though the frequency is low. Based
on the facts derived from Figure 4, there are several findings worth discussing. (1) The
frequency of moderate and intensive PCEs over AMT is depicted graphically in Figure 4. A
decreasing trend in the frequency of PCEs can be observed with an AMT increase. PCEs
occur more frequently in low AMT, which means that an unstable atmospheric system
mainly occurs when the temperature is relatively low. (2) It should be noticed that the
PCEs in low AMT are relatively short and gentle compared with those in high AMT. Since
atmospheric instability is attributed to low AMT, precipitation formation is favored and
has a high chance of occurrence. However, the corresponding PD is relatively low due
to the short and gentle PCEs. (3) On the contrary, high AMT means a stable atmosphere
jeopardizing the formation of precipitation. Once formed, however, the precipitation can
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easily turn intensive and extreme, since the heated and humid air continuously provides
energy and moisture.
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temperature (AMT) in local regression (blue lines).

The seasonal relationship between PD, AMT, and CEPC in different percentiles is
investigated in Figure 5. Of the PD figures, 50%, 75%, and 95% are extracted from the pooled
data for analysis. Other than the four-season partition, the wet season (June to October)
and the dry season (November to May) are selected for discussion. Local regression lines
are plotted for each season as well as the data for the whole year. Horizontally in Figure 5,
the change in precipitation against AMT is subject to the magnitude and the type of PCE.
Generally, PD changes more significantly under intensive CEPC in both directions. CEPC
ranging from −300 hPa to 300 hPa does not provide sufficient power to extract moisture
from the air when precipitation forms. For CEPC magnitudes beyond 300 hPa, either
higher or lower, the change in PD is much more pronounced. Under intensive CEPCs,
the C–C relationship is represented by the data when AMT is greater than 20 ◦C or when
AMT is lower than 14 ◦C. For AMT > 20 ◦C, PD trend lines of all percentiles and both
InPCE and DePCE lay parallel to the 7% rate. Discrepancies exist, however, when AMT
< 14 ◦C. Specifically, a sub-C–C relationship can be observed for DePCE under CEPC <
−300 hPa, and a super C–C relationship is shown for InPCE under CEPC > 300 hPa. This
difference could be due to the mechanism of precipitation formation in different seasons,
as discussed later. In Figure 5, PD shows various trends in different AMT and PCE types
and percentiles. When AMT is higher than 20 ◦C, whether during the wet or dry season,
PD increases at the 7% C–C rate for both intensive InPCE and intensive DePCE in all
percentiles [9]. This is because intensive convections can completely extract moisture from
the air to form precipitation. When AMT is lower than 12 ◦C, PD increases to higher than
7% under intensive InPCE conditions, while the rate for intensive DePCE is lower than 7%
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in all percentiles. The main mechanism of precipitation formation is frontal movement,
specifically cold fronts and warm fronts. The period of AMT < 12 ◦C corresponds to
the spring season, during which the warm front dominates. A warm front is formed by
the advance of a warm moist air mass and the simultaneous slow retreat of cold dry air.
Typically, warm air moves from the southeast to the northwest in the northern hemisphere.
Since warm air has a lower density, it rolls up and over the cold air and can cause light to
moderate precipitation over a large geographic area. In this case, the ground-measured
temperature is usually lower than the warm precipitation, causing air mass to roll up at
high altitude. In other words, the change in PD of AMT < 12 ◦C actually corresponds to a
wider temperature change than that observed from the ground.
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extreme PCEs (<−300 hPa or >300 hPa) that contain a 48 h window centered on the start
of a precipitation event with two dry periods precedent and after the precipitation event.
Such an isolated precipitation event can help reflect the AH response to the precipitation
formation under extreme weather conditions and different seasons. In general, AH has
an obvious dipping and recovering pattern in the wet season, while the magnitude for
CEPC < −300 hPa is slightly larger than CEPC > 300 hPa. In the dry season, the AH
recovery after precipitation is more obvious for CEPC > 300 hPa. Both extreme conditions
show a general decreasing trend of AH after precipitation, which might be caused by cold
front invasions bringing a temperature drop. All conditions have a similar average RH,
which indicates that the humid supply in Florida does not have an obvious seasonality
and does not affect the analysis of AH pattern change. In addition, Figure 6 states that AH
under extreme CEPC responds differently to seasons (wet and dry) and PCE types when
precipitation presents. In the wet season, AH decreases before 6 h of precipitation and
over-recovers after precipitation starts. In the dry season, however, neither the decrease nor
the recovery is as pronounced as in the wet season. Given that RH in all conditions shows
little difference, this change in AH response is mainly due to the difference in temperature
between the two seasons. As per Figure 5, PD is always higher in the wet season than
in the dry season under extreme DePCEs, which is indicated by the difference in the AH
magnitude change in the upper two plots in Figure 6. On the other hand, PD for extreme
InPCEs is on the same level for both seasons (see the plots on the bottom row in Figure 5),
which can also be inferred by the similar magnitude of AH change shown in the bottom
row of Figure 6.
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5. Summary

Generally, this study aims to justify the physical concepts of how weather events are
formed, using evidence from pressure change event (PCE)-based weather data analysis,
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especially for extremes. Data from the Florida Automated Weather Network (FAWN)
and National Centers for Environmental Information from NOAA (NCEI) in Florida are
employed to explore the relationship between the formation mechanism of precipitation
and PCE, with assistance from other types of measurements (e.g., temperature, relative
humidity). Particularly, the results of this study respond to the following questions: (1)
In different types of PCE process, how do precipitation depth (PD) and probability of
precipitation (POP) change with cumulative event pressure change (CEPC)? The weather
data collected by point source weather stations may have a low chance of observing all
precipitation events, especially for increasing pressure change events (InPCE). Therefore,
given the extremes are in a small sample size, such underestimation of actual POP and PD
could be amplified. (2) For different temperatures, could precipitation represent Clausius–
Clapeyron (C–C) under PCE conditions and humidity change patterns?

The following points present our conclusions:

1. The POP and PD are sensitive to the type and magnitude of PCE. For decreasing
pressure change events (DePCE), PD and POP are generally positive to the magnitude
of CEPC, while for InPCE, CEPC amplification corresponds to a decrease in PD and a
stable POP.

2. The formation of precipitation is more likely to occur when the average monthly
temperature (AMT) is low and PCE alternates frequently. During high AMTs, once the
formation of precipitation occurs, precipitation can easily turn intensive and extreme.

3. PD trends at a similar level to the C–C rate (7%) for both intensive InPCEs and
DePCEs when AMT is higher than 20 ◦C. This phenomenon is due to the intensive
convections that extract most of the moisture from the air to form precipitation, when
more moisture can be held by the air.

4. When AMT is lower than 12 ◦C, PD increases at a rate much higher than 7% in
intensive InPCEs. Warm front movement in the spring could be the main cause of
this phenomenon. Lifted warm air mass may carry more moisture than the capacity
corresponding to the ground temperature observations, which means that the C–C
relationship is likely obeyed at high altitude, but that a super C–C rate is observed on
the ground.

5. Actual humidity responds differently to precipitation in different seasons and CEPC.
Generally, more humidity is extracted during the wet season, while its magnitude for
intensive DePCEs is higher than for intensive InPCEs.

The novelty and the unique findings of this work provide a potential method to
explain the mechanism of precipitation, by refining the fundamental associations between
precipitation and other weather parameters to PCE. As such, the results of this study may
be of great value to climate researchers in furthering their understanding of climate change
impacts and enhancing the existing methods of future weather projections.
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List of Acronyms

Acronyms Description
PCE Pressure change event
CEPC Cumulative event pressure change
DePCEs Decreasing pressure change events
InPCEs Increasing pressure change events
IntEDP Inter-event dry period
POP Probability of precipitation
PD Precipitation depth
AMT Average monthly temperature
C–C Clausius–Clapeyron
NOAA National Oceanic and Atmospheric Administration
NCEI National Centers for Environmental Information from NOAA
FAWN Florida Automated Weather Network
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