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Abstract: Nitrogen (N) fertilizer is routinely applied by farmers to increase crop yields. At present,
farmers often over-apply N fertilizer in some locations or at certain times because they do not
have high-resolution crop N status data. N-use efficiency can be low, with the remaining N lost
to the environment, resulting in higher production costs and environmental pollution. Accurate
and timely estimation of N status in crops is crucial to improving cropping systems’ economic
and environmental sustainability. Destructive approaches based on plant tissue analysis are time
consuming and impractical over large fields. Recent advances in remote sensing and deep learning
have shown promise in addressing the aforementioned challenges in a non-destructive way. In this
work, we propose a novel deep learning framework: a self-supervised spectral–spatial attention-
based vision transformer (SSVT). The proposed SSVT introduces a Spectral Attention Block (SAB)
and a Spatial Interaction Block (SIB), which allows for simultaneous learning of both spatial and
spectral features from UAV digital aerial imagery, for accurate N status prediction in wheat fields.
Moreover, the proposed framework introduces local-to-global self-supervised learning to help train
the model from unlabelled data. The proposed SSVT has been compared with five state-of-the-art
models including: ResNet, RegNet, EfficientNet, EfficientNetV2, and the original vision transformer
on both testing and independent datasets. The proposed approach achieved high accuracy (0.96)
with good generalizability and reproducibility for wheat N status estimation.

Keywords: crop nitrogen status; wheat; deep learning; transformer; self-supervised learning; UAV

1. Introduction

Nitrogen is an essential plant nutrient and is vital for plant growth and development.
The application of N fertilizers has revolutionized farming, increasing crop yields and
food production to meet the nutritional needs of billions of people. It is estimated that
global nitrogen fertilizer demand was 110 million tonnes (MT) in 2015 and is projected to be
120 MT in 2020, costing farmers over USD 100 billion per year [1,2]. Optimal application of
N fertilizers enhances soil fertility and increases crop yields. On the other hand, excessive
N inputs are costly for farmers but do not deliver any additional yield benefits, instead
resulting in the pollution of natural ecosystems, increases in emissions of the potent
greenhouse gas nitrous oxide, and reductions in biodiversity [3,4]. Wheat crops invariably
require fertilizer to grow optimally and are the world’s most commonly consumed cereal
grain and one of the worldwide staple foods. About 35–40% of the global population
depend on wheat as their major food crop [5]. Accurate monitoring of the N status in wheat
informs farmer decisions on nitrogen fertilizer application rates and timing. It is therefore
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crucial for the economic and environmental sustainability of cropping systems to support a
secure food supply chain.

Many crop N estimation methods have been proposed which can be broadly divided
into two approaches: destructive and non-destructive. The destructive methods are mostly
based on tissue analysis of plant leaves in the laboratory and are time-consuming and
costly, which is impractical when collecting the data over large areas [3,6]. In contrast,
non-destructive methods perform estimation proximally and remotely of the crop’s N
status, in a timely fashion and without causing damage to the plants.

Recently, with the development of remote sensing technology, the optical sensors
mounted on unmanned aerial vehicles (UAV), aeroplanes, and satellites provide a non-
destructive, rapid, and relatively inexpensive crop N estimation method. These sensors,
such as RGB sensors and multi to hyperspectral sensors, capture the data remotely to
measure the radiation reflected by plants [7]. The optical sensors can provide rich spec-
tral information in different spectrum regions, including the visible region (380–700 nm,
VIS), the near infrared region (700–1300 nm, NIR) and the shortwave infrared region
(1300–2500 nm, SWIR). The spectral information in these regions is considered to indirectly
estimate the biological (e.g., photo- synthetic pigments, chlorophylls) and morphological
(leaf area, canopy density) features of the crop and thus derive the N content and status [3].
In general, the measurements from these sensors provides a cubic data format containing
spatial information in two dimensions (X–Y axis) and abundant spectral information in the
third dimension (Z axis). Depending on the dimensions of the data used, we can classify
the estimation methods into two categories: spectral analysis and spatial analysis.

The spectral analysis methods in remote sensing applications assume that the spectral
information of each pixel can be used to measure the objectives, such as the N content
of the crop [8]. One of the most commonly used spectral analysis methods is to use
vegetation indexes (VI) based on specific wavelengths to predict the crop N content and
status, such as Normalized Difference Vegetation Index (NDVI) [9] and canopy chlorophyll
content index (CCCI) [10]. However, the indirect determination of N content of crops
from remotely sensed data is considered a complex problem, which is affected by various
influential factors such as ambient lighting conditions and variations amongst the types of
crops. The VI methods based on specific wavelengths are considered sensitive and lack
generalizability [11]. Machine learning has shown the effectiveness of solving nonlinear
problems from multiple sources [12], and in recent years has been increasingly used for
crop N estimation. In [13,14], the author used three machine learning algorithms (Random
Forest (RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANNs)) to
estimate rice nitrogen based on all available spectral information, with the random forest
(RF) demonstrating high accuracy and strong generalization performance.

With advancements in remote sensing, the resolution of the data, including the spatial
and spectral, has been significantly improved. The variation in spectral features between
neighbouring pixels increases as the spatial resolution is improved [15]. The spatial in-
formation in the finer spatial resolution data can be used to measure the structure and
health condition of the crop; these are considered essential attributes for characterizing
the N status [16]. However, conventional spectral-based VI methods have difficulty in
analysing high spatial resolution data, with few works using spatial information for crop N
estimation [16]. Accurate estimation of crop N content incorporating spatial information
remains a challenge.

Over the past few years, with the emergence of graphic processing units (GPU) [17],
deep learning (DL) methods, have dominated computer vision tasks and are considered
superior to pre-existing methods for extracting spatial features from images [18]. They
are rapidly being used for crop N estimation. In the work [19], the authors proposed a
DL classification model for N status prediction in coffee plants. Sethy et al. [20] used six
leading DL architectures to predict nitrogen deficiency on rice crops. In the work [21], the
DL method has been used to classify and predict early N deficiencies during the growth of
the tomato plant.
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However, directly using DL methods to estimate crop N still suffers from the following
problems. Firstly, most existing DL structures are designed to capture spatial information
with no specific module for spectral information learning, which is important for crop
N status estimation. Secondly, the DL models are data-hungry in nature, which require
large datasets (labelled data) for model training to achieve good performance and avoid
over-fitting. Finally, DL algorithms have a high computational complexity, which do not
scale well with remote sensing products that are usually of a large size.

In this work, to overcome the aforementioned issues, we propose a self-supervised
spectral–spatial attention-based transformer network (SSVT) for automatic and accurate
crop N status estimation. Our network is inspired by the state-of-the-art vision transformer
(ViT) structure [22], which allows us to capture the local to long-range spatial informa-
tion from images. To the best of our knowledge, this is the first work that explores the
transformer network combined with self-supervised learning for accurate crop N status
prediction. Our contributions include the following.

1. A novel spectral–spatial attention-based vision transformer is proposed, in which
both the spectral and spatial information are considered. A Spectral Attention
Block (SAB) is proposed to learn spectral-wise features such as colour information.
Meanwhile, a Spatial Interact (SIB) is introduced after SBA to learn corresponding
spatial information.

2. A local-to-global self-supervised learning (SSL) method is proposed to pretrain the
model on the unlabelled images to resolve the data-hungry paradigm in DL model
training and improve the model’s generalization performance on independent data.

3. A linear computational complexity is achieved using the cross-covariance matrix
instead of the original gram matrix operation in the attention block. It changes the
complexity of the transformer layer from quadratic to linear, which makes it possible
for the model to handle large size images.

2. Related Work
2.1. Non-Destructive Crop N Estimation Methods

Over the past two decades, remote sensing technology has been considered one of the
most promising methods to provide a non-destructive way in which to estimate crop N
content and status in fields and wider environments [23]. The principle behind the technol-
ogy is that by using optical sensors (e.g., RGB, multi to hyperspectral sensors) mounted
on UAVs, aeroplanes, and satellites, accurate information about the morphological and
physiological condition of the crops can be measured, which are considered to be related to
crop N content [8]. These sensor measurements can provide rich spectral information in dif-
ferent spectrum regions, including the visible region (380–700 nm, VIS), the red edge region
(690–730 nm), the near infrared region (700–1300 nm, NIR), and the shortwave infrared
region (1300–2500 nm, SWIR). The spectral information in these regions is considered to
measure the biological (e.g., photo-synthetic pigments, chlorophylls) and morphological
(leaf area, canopy density) features of the crop and thus derive the N content and status [3].

For instance, the measurements from RGB sensors provide the spectral/colour infor-
mation in visible regions including red, green, and blue wavelengths. They have been
used to measure the crop physiological features such as leaf chlorophyll, carotenoids, and
anthocyanins content, which are closely related to leaf nitrogen content [24,25]. The leaf
colour chart (LCC) is an early stage and commonly used method to determine the N status
of crops by using the colour information [26]. The LCC has five categories, ranging in
colour from yellow to green. It determines the nitrogen content of crops based on the
degree of green colour of rice leaves. The multi to hyperspectral sensor measurements
provide a broader range of spectral information, including the red edge, NIR, and SWIR,
which have been used to measure not only the biological features, such as the absorption
features of proteins, but also the morphological features such as the area and density of the
leaf and canopy [27,28].



Remote Sens. 2022, 14, 1400 4 of 23

Generally, the remote sensing imagery captured by the optical sensors provides a cubic
data format containing spatial information in two dimensions (X–Y axis) and abundant
spectral information in the third dimension (Z axis). Depending on the dimensions of the
data used, we can classify the estimation methods into two categories: spectral analysis
and spatial analysis.

The spectral analysis approaches are mainly based on the spectral information of
each pixel to distinguish, identify, or measure objectives. To date, based on the abundant
spectral information, many studies have been developed to estimate Crop N from remote
sensing data, which can be broadly classified into three types: empirical models, mech-
anistic models, and combination of both as hybrid models. Empirical models are also
called data driven models using statistical and machine learning approaches [12–14]. The
mechanistic based models are also called physically-based models using radiative transfer
modelling (RTM) [29–31]. However, the mechanistic based models usually require many
environmental parameters that make them difficult to implement. The physical modelling
of the spectral signal of leaf and canopy N content has been discussed controversially and
have not been fully examined [32]. Hybrid models are the combination of mechanistic and
empirical models. A comprehensive survey of crop N estimation from remote sensing data
can be found in [3].

In this paper, we will be mainly focusing on empirical models. The most widely
used empirical methods are the vegetation index (VI)-based methods focusing on specific
bands using linear regression methods. These bands are chosen to estimate N status based
on their sensitivity to the chlorophyll content, leaf area, and canopy density, such as the
green wavelength (550 nm), red wavelength (675 nm), red edge wavelength (720 nm),
and NIR wavelength (905 nm) [33–35]. Once validated, these methods produce linear
indicator indices from the selected bands to measure the N status of the crops. In the
work [36], a greenness index (GI) using RGB wavelength of the colour image was proposed
to estimate the amount of N in the plant. In [9], the Normalized Difference Vegetation
Index (NDVI) was used to estimate N status of corn and soybean in the United States.
Glenn et al. [10] introduced a canopy chlorophyll content index (CCCI) to measure and
predict canopy nitrogen in wheat. However, the VI-based methods only utilized specific
bands relevant to crop N; the rest of the spectral information was not exploited, especially
for the multi to hyper spectral sensor measurements where a mass of information was
ignored. These types of methods are sensitive to the crop types and the growing stages,
and lack generalizability [11]. During the last decade, machine learning (ML) approaches
have shown the effectiveness of solving complicated, nonlinear problems from multiple
sources [12] and have been increasingly used for crop N estimation in recent years. In [7],
several ML algorithms such as Principal Components Regression (PCR), Partial Least
Squares Regression (PLSR), and Stepwise Multiple Linear Regression (SMLR) were used to
extract useful features to estimate leaf N content from from all the available wavelengths
simultaneously. In the research [13], simple nonlinear regression (SNR), backpropagation
neural network (BPNN), and random forest (RF) regression were used to determine the
rice N nutrition status with RGB images. In works [14,37], the authors used support vector
machine (SVM), multiple linear regression (SMLR), and Artificial Neural Networks (ANNs)
to estimate rice nitrogen nutrition index with UAV RGB images. The work [38] used ANNs
and RF to predict the biotic stress of winter wheat. A review research [11] indicated that ML
approaches would result in more cost-effective and comprehensive solutions for a better
crop N status assessment.

However, with the development of remote sensing technologies, the spatial resolution
of the data has been significantly improved. As the spatial resolution of the data increases,
the consistency of the spectral information between pixels decreases, leading to a reduction
in the performance of the conventional spectral analysis methods [15]. Moreover, the spatial
information in the finer spatial resolution data can be used to measure the structure and
health condition of the crop; these are considered essential attributes for characterizing the
N status [16]. Currently, only a small amount of hand-crafted spatial information, such as



Remote Sens. 2022, 14, 1400 5 of 23

canopy cover, are used in N status estimation [16,39–41]. Therefore, accurately estimating
crop N content incorporating spatial information remains a challenge.

Over the past few years, convolutional neural networks (CNN) have dominated
computer vision tasks [17]. Unlike standard hand-crafted feature learning methods, the
CNN, as a filter bank, can automatically extract spatial features from a local receptive field
in images [18]. Azimi [42] proposed a 23-layered CNN to measure the crop stress level in
plants due to nitrogen deficiency and found that CNNs outperform most machine learning
methods in fast and accurate identification of stress in plants. Lee [43] proposed a hybrid
global–local feature extraction model to extract spatial features of the leaves to perform
plant classification. Their results showed the strength of detecting spatial features using
CNNs as compared to hand-crafted features. Meanwhile, it was found that traditional
CNNs could only extract local spatial information [44] and failed to capture long-range
global spatial information. Therefore, a new analysis method that can capture both spectral
and spatial information from remote sensing imagery for crop N estimation is important.

2.2. Vision Transformer

Recently, Vision Transformer (ViT) [22] has attracted increasing attention in computer
vision tasks due to its capability to capture long-range spatial interactions as well as
introducing less inductive bias, compared to widely-used convolutional neural networks
(CNNs). It has been considered to be a solid alternative for CNNs. The essence of ViT is to
use a self-attention scheme [45] to capture long-range dependencies or global information,
focusing on spatial information.

There are four main parts in the transformer encoder Multi-Head Self Attention Layer
(MSP), Multi-Layer Perceptrons (MLP), Layer Norm, and Residual connections introduced
in CNN evolution. The MSP is the core of the transformer. It allows the model to integrate
information globally across the entire image. It is used to concatenate the multiple attention
outputs linearly to expected dimensions. The multiple attention heads help learning local
and global dependencies in the image. MLP contains two fully connected layers with
Gaussian Error Linear Unit (GELU) as an essential part of the transformer that stops
and drastically slows down rank collapse in model training [46]. Layer Norm is the
normalization method in the NLP area instead of Batchnorm in vision tasks. It is applied
before every block as it does not introduce any new dependencies between the training
images. This helps to improve training time and generalization performance. Residual
connections are applied after every block as they allow the gradients to flow through the
network directly without passing through nonlinear activations.

However, the ViT network cannot be used to estimate Crop N status directly. The ViT
has the ability to extract spatial information of an image, but it can not extract spectral
information, which has been proven to contain the most important features related to the
crop N status. Moreover, the ViT has a quadratic computational complexity to the image
size, which limits its application on large images and requires large-scale training datasets
(i.e., JFT-300M) to perform well [47]. The SSL technology, which allows models to be trained
with unlabelled data, is considered to solve this latter problem [48].

2.3. Self-Supervised Learning (SSL)

Acquiring extensive, labelled data for training DL models is challenging. Self-
supervised learning provides an effective way to enable learning from large amounts
of unlabelled data. SSL can be broadly divided into Generative Modelling and Contrastive
learning [48]. Generative Modelling are unsupervised learning tasks that involve automati-
cally discovering and learning the regularities or patterns in input data in such a way that
the model can be used to generate new samples [49]. Unlike generative models, Contrastive
Learning [50] is used to determine which representations attract comparable samples and
which ones repel them. The representations from contrastive self-supervised pretraining
can be used in specific supervised downstream vision tasks. Generally, contrastive SSL
usually consists of three parts: (1) image augmentation, (2) feature extraction/encoder, and
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(3) contrastive loss to quantify the similarity between representations. Image augmentation
creates positive pairs by generating different augmented views of the same image, such
as colour augmentation, image rotation/cropping, and other geometric transformations.
Then, a CNN network is used to encode the augmented images as vector representations.
The Siamese Neural Network [51] is the most widely used neural network architecture to
find the similarity between the representations in contrastive learning. It contains two or
more identical subnetworks. Each sub-network has the same architecture with the same
parameters and weights. Parameter updating is mirrored across both sub-networks. In
general, training in Siamese Neural Network is compared against a positive pair and a
negative pair. The negative vector pair is used for learning in the network, while the
positive pair acts in a regularization role. The negative pairs rely on different images,
which are hard to define. An evolutional work (BYOL) retains the Siamese architectures
but eliminates the requirement of negative samples [52]. BYOL proposed a momentum
training that rolling weight updates as a way to give contrastive signals to the training.
Recent methods such as SwAV [53], MoCo [54], and SimCLR [55] with modified config-
urations have produced results comparable to the state-of-the-art supervised method on
the ImageNet public dataset. However, most SSL methods are mainly based on standard
convolutional networks. The SSL for vision transformer models are new. In this work,
inspired by BYOL, we proposed a local-to-global SSL for the vision transformer network.

3. Method and Materials
3.1. Dataset Description

In this work, we have collected the data at a controlled wheat field located near
Ashford, south-eastern UK (51.156N, 0.876E) (Figure 1). We adopted a 4× 4 factorial design
in the controlled field experiment, with four randomly allocated N treatments replicated
within four blocks, totalling 16 plots of 16 m2 (4 m × 4 m). The plots were established prior
to the first fertilizer application. The four treatments were low (80 kg N ha −1 yr−1), medium
(160 kg N ha−1 yr−1), and high (240 kg N ha−1 yr−1) fertilizer rates, with unfertilized
control. These values were chosen because they were representative of application rates
commonly used by arable farmers. Five applications were used to add N fertilizer to the
plots every three weeks between February–June 2021.

Figure 1. (a) Experimental layout, with plots randomly allocated into four treatments, split into four
blocks. Treatments were high (green), medium (blue) and low fertilizer rates (red), and an unfertilized
control (yellow). (b) Images collected from different plots with different treatments.

Two types of digital camera images were collected at the canopy scale, via near-ground
sensing and UAV-based remote sensing, from these plots during all the wheat growing
stages, including Tillering and Stem Extension, Heading and Flowering, and Ripening and
Maturity. A Sony Xperia 5 with a 12-megapixel Exmor RS CMOS was used to collect the
near-ground images with a focal length of 26 mm. A DJI MAVIC pro with 12.35-megapixel
CMOS was selected to capture the images from the air with a focal length of 26 mm. The
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detailed monitoring schedule is shown in Table 1. Figure 2 shows the sample images. A
total of 1449 field near ground images are used in this work. The image size is 4032 × 3024.
The UAV flight heights are from 10 m to 30 m. The data are georeferenced by the GPS
location provided from a drone and orthorectified by approximate nearest neighbours
algorithms. This work is performed in the open-sourced software OpenDroneMap [56].
The detailed parameters are shown in Table 2. Two spatial resolutions of the mosaic images
are produced, 0.1 and 0.3 cm, respectively.

Table 1. Monitoring schedule and Data collection summary.

Growing Stage Date Field Image Collection Drone

Tillering & Stem Extension
21-March 160 X
2-April 163 X
9-April 177 X

Heading & Flowering
6-May 166 X

14-May 177 X
24-May 175 X

Ripening & Maturity
7-June 177 X

22-June 177 X
28-June 175 X

Table 2. OpenDroneMap detailed parameters.

Parameter Value

Camera-lens Auto
Cameras DJI MAVIC pro
Matcher algorithm Fast Library for Approximate Nearest Neighbors
Gps-accuracy 10 m
Fast-orthophoto True
Orthophoto-resolution 0.1 and 0.3 cm
Cloud based geotiff True

Figure 2. The collected images. The left one is collected near the ground. The right one is collected
from the drone.

3.2. Method

In this work, we have proposed a deep learning based framework to accurately
estimate the nitrogen status of wheat from remote sensing datasets. This framework
consists of two main parts: the spectral–spatial attention vision transformer (SSVT) and a
local-to-global self supervised learning method.

3.2.1. Spectral–Spatial Attention Vision Transformer (SSVT)

A transformer network named SSVT is developed to accurately estimate the nitrogen
status of wheat, capable of capturing both spatial and spectral features from large UAV-
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based digital aerial imagery. The proposed conceptual architecture is shown in Figure 3.
The design rationale is three-fold:

1. As shown in previous research [11], spectral information plays a vital role in deter-
mining nitrogen status at leaf and canopy scales. In this work, the spectral-based
attention block is proposed to learn spectral-wise features such as colour information.

2. To learn the spatial information, a spatial interaction block is introduced after the
spectral-based attention block.

3. To address the quadratic computing complexity of the ViT, the covariance matrix is
used to replace the gram matrix, which can help reduce computational complexity
from the quadratic complexity (O(n2)) to linear complexity (O(n)) where n represents
the number of input patches.

The input images are first split into patches and flattened into vectors using a linear
projection operation. Then, each vector is regarded as a sequence and fed into the trans-
former encoders. A class token is added to represent an entire image that can be used for
classification. It is actually a vector that is learned during gradient descent. In this work, we
add the class token in the last encoder block, which only lets encoders’ attention mechanism
perform between images. Each encoder consists of two core components, including (1)
spectral–spatial attention block, which consists of spectral-based and spatial interaction
blocks, and (2) Multi-Layer Perceptron (MLP).

Figure 3. The structure of the proposed spectral–spatial attention vision transformer (SSVT).

Spectral–Spatial Attention Block

In this work, to address the spectral and spatial information in the transformer encoder,
we proposed a spectral–spatial attention block (this is different from the Multi-Head Self
Attention Layer in the original vision transformer network). The spectral–spatial attention
block consists of two main parts: Spectral Based Attention (SBA) and Spatial Interaction
Block (SIB).

Spectral Based Attention (SBA)

The SBA module adopts an attention mechanism with Query, Key, and Value. In
this work, to decrease the computational complexity of the scaled dot-product attention
used by a transformer, cross-covariance is proposed to replace the matrix operation in the
self-attention function. Given the packed matrix representations of queries Q ∈ Rn×d, keys
K ∈ Rn×d , and values V ∈ Rn×d, the cross-covariance attention is given by:

SBA (Q, K, V) = AXC(K, Q)V = So f tMax

(
K̂>Q̂

τ

)
V (1)

where n denotes the number of patches and d denotes the dimensions of keys (or queries)
and values, which means the number of pixels in each patch. AXC(K, Q) denotes an
attention matrix, So f tMax is applied in a row-wise manner. Where the attention weights
AXC are calculated using a cross-covariance matrix. K̂>Q̂ is the cross-covariance matrix
size of d× d. In [57], the author found that controlling the data range in attention strongly
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enhances the stability of training; here, Q̂ and K̂ denoted the normalized matrices Q and K.
The inner products are scaled before the So f tmax by the τ which is a learnable parameter
that allows for a more precise or consistent distribution of attention weights. The new
AXC(K, Q) operates along the dimensions of input vector d, which denoted the spectral
information of the image, rather than along the amount of the patches n. Each output
embedding is a convex combination of its corresponding embedding in V’s d features.
The computational cost is O(d2n) which has a linear computational computing complexity
of input size. Then, residual connection is used around each module followed by Layer
Normalization to generate a deeper model [58]. For instance, each encoder block (H′) can
be written as:

H′ = LayerNorm ( SBA(x) + x) (2)

Spatial Interaction Block (SIB)

As SBA only focuses on spectral information, and not the spatial information between
patches, a Special Interaction Block (SIB) is therefore introduced to enable explicit commu-
nication between patches. The SIB is built with two depth-wise 3× 3 convolutional layers
with Batch Normalization and ReLU non-linearity in between [59]. The output of the SIB
can be written as:

S = LayerNorm
(

H′+

Conv 2
(

BatchNorm
(
ReLU

(
Conv 1

(
Conv 1

(
H′
)))))) (3)

Multilayer Perceptron (MLP)

A multilayer perceptron is a particular case of a feedforward neural network where
every layer is a fully connected layer. As is common in transformer models, an MLP is
added at the end of each encoder block, which contains two fully connected layers. While
the SBA block restricts feature interaction within groups and the SIB cannot allow feature
interaction, the MLP allows interaction across all features. The output of MLP (F) can be
written as:

F = LayerNorm (S + Fc2(ReLU(Fc1(S)))) (4)

3.3. Local-to-Global Self-Supervised Learning

In this work, to solve the data-hungry issue of deep learning models training, SSL is
used to pretrain the proposed SSVT with unlabelled images. Vision transformer is good
at capturing long-range global spatial information. However, it fails to capture the local
spatial information of small patches. To address this problem, we have proposed a local-to-
global SSL method in which both local and global augmentations are performed to provide
both global and local views of the input. The SSL consists of two main steps: the image
augmentation and model training.

First, a random high-intensity image augmentation is used on the input images. The
image augmentation technique is widely used for supervised and unsupervised training
to improve the model’s generalizability. It perturbs and modifies the data and keeps the
output invariant, allowing the model to extract the most valuable features for classification.
In this work, three types of image enhancement are first used for the input, including
random colour augmentation, random rotate/flip, and random erasing. The random colour
augmentation consists of brightness/contrast/saturation modifying, colour jittering, Gaus-
sian blur, and solarization. Figure 4 shows the three types of random image augmentation.
This image augmentation strategy is also used for the supervised training.
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Figure 4. Image augmentations demonstration.

Then, we perform global and local augmentation on the same image to obtain both
global and local views. The global views have an image size of 224 × 224. We assume that
it contains the global context of the image. The small crops are called local views that have
an image size of 96 × 96. It covers less than 50% of the global view. We assume that it
contains the local context. Then two views are fed into the SSL network. Figure 5 shows
the SSL framework. All local views are passed through the student network, while the
global views are passed through the teacher network. It encourages the student network to
interpolate context from a small crop and the teacher network to interpolate context from a
bigger image.

Figure 5. The flowchart of the self-supervised learning.

The SSL network learns through a process called ’self-distillation’ proposed by the
paper ‘Be Your Own Teacher’ [60]. There is a teacher and student network both using the
proposed model SSVT. They have the same configuration with the same parameters and
weights. The teacher is a momentum teacher in that all the weights are frozen and updated
by students’ weights (θs) through an exponentially moving average. The update rule for
the teacher’s weights (θt) is:

θt ← λθt + (1− λ)θs (5)

with λ following a cosine schedule from 0.996 to 1 during training. The cross-entropy loss
is used to make the two distributions the same, just as in knowledge distillation.

Loss = −PTeacherlogPStudent (6)

Centring [53] is used to prevent the model from predicting a uniform distribution
along all dimensions or dominated by one dimension regardless of the entry. The teacher’s
raw activations (At(x)) have their exponentially moving average (c) subtracted from them.
The centre c is updated with an exponential moving average. The algorithm is shown in
Algorithm 1.

At(x)← At(x) − c (7)
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Algorithm 1 Local-to-Global SSL algorithm

Require:
x_batch: One batch images;
T: Teacher Network;
S: Student Network;

1: set T.params = S.params;
2: set T.Frozen() # Frozen Teacher’s params;
3: for x in x_batch do # One batch training
4: x1 = Globalaug(x) # Global view with regular augmentation
5: x2 = Localaug(x) # Local view with regular augmentation
6: t1, t2 = T(x1), T(x2)
7: s1, s2 = S(x1), S(x2)
8: loss = L(t1, s2)/2 + L(t2, s1)/2 # L(a, b) = −a log b
9: loss.backward() # Back-propagate

10: Update(S.params) # Student params update by SGD
11: T.params = λ ∗ T.params + (1− λ) ∗ S.params # Teacher params update by knowl-

edge distillation
12: end for

3.4. Model Evaluation
3.4.1. Experimental Design

To evaluate the performance of the proposed SSVT, we have conducted three types
of experiments: (1) Performance evaluation of SSVT for automated crop N prediction;
(2) Ablation Study; and (3) Evaluation of the generalizability of the proposed model using
independent datasets.

Performance Evaluation of SSVT for Automated Crop N Prediction

To evaluate the performance of the proposed SSVT for Crop N prediction, we first train
the model based on the configuration (Section 3.4.3) with two different input sizes. The
performance of the model including precision, recall and F1-score (Section 3.4.2) for each
class and overall accuracy are reported. Then, we compare the proposed SSVT with five
state-of-the-art DL models. Two commonly used CNN based architectures, ResNet [61] and
EfficientNet [62], with their state-of-the-art versions RegNet [63] and EfficientNetV2 [64]
along with ViT are selected for the performance comparison.

Ablation Study

In this case, two ablation studies are set to evaluate: (1) the performance of the
proposed SSVT with and without SSL; (2) the impact of the spectral–spatial attention block.

The Performance of the Proposed SSVT with and without SSL

In this work, a local-to-global SSL method is proposed to pretrain the model on
the unlabelled image generated from the drone. We evaluate the performance of the
proposed SSVT trained from SSL and trained from scratch to show the impact of the SSL on
model generalization.

The Impact of the Spectral–Spatial Attention Block

This work proposes the spectral–spatial attention block to replace the self-attention
in the original ViT, making the attention module attend over the spectral and spatial
information. In this case, we evaluate the effect of the proposed model, compared to the
original vision transformer (the ViT-small with a similar number of parameters is selected
in this work).
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Evaluation of the generalizability of the Proposed Model Using Independent
Drone Datasets

In this case, to evaluate the generalizability of the proposed SSVT model, we have
evaluated the trained model on independent datasets. The images are captured from
the drone in every growing stage, including Tillering and Stem Extension, Heading and
Flowering, and Ripening and Maturity.

3.4.2. Evaluation Metrics

Accuracy, Precision, Recall, F1 score, and the Confusion matrix are selected for the
accuracy assessment to evaluate model performance. Accuracy is the most intuitive per-
formance measure, as it is simply a ratio of correctly predicted observations to the total
observations. The Precision measures the fraction of true positive detections, and the Recall
measures the fraction of correctly identified positives. The F1-score considers both the
Precision and the Recall to compute the score. The study establishes the classification
matrices which Precision, Recall, and F1-score calculated with the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1-score =
Recall× Precision

Recall + Precision× 2
(11)

where True Positives (TP) are the correctly predicted positive values. True Negatives (TN)
are the correctly predicted negative values. False positives and false negatives occur when
the actual class contradicts the predicted class. False Positives (FP) mean the predicted
class is yes when the actual class is no. False Negatives (FN) mean predicted class in no
when actual class is yes.

3.4.3. Experimental Configuration

This work aims to develop a new method for accurately estimating N status in crops
(i.e., wheat in this case) based on crop images at the canopy scale. There are four types of N
treatments, including High, Medium, Low, and Control, our task is to classify the images
into these four categories automatically. Figure 1b shows images collected from different
plots with different treatments. We randomly cropped them into 224× 224 patches for the
drone images and generated the unlabelled images for SSL. In this work, 4,800,000 images
are generated. The SSL training uses the AdamW optimizer and a batch size of 64, dis-
tributed over 3 GPUs (GeForce RTX 2080 Ti). The learning rate is linearly ramped up during
the first ten epochs as 1× 10−3. After this warmup, we decay the learning rate with a
cosine schedule. The weight decay also follows a cosine schedule from 0.04 to 0.4.

The detailed configuration of the proposed SSVT and ViT is shown in Table 3. It has
12 encoder layers. The dimension of keys is 384. To achieve the best performance of the
model, we have tested it with two input sizes. As remote sensing data, the larger input
covers a larger area and more spatial features can be covered. One input size is 224× 224,
which is the default input size for most deep learning algorithms. The other is 384× 384,
which is 1.5 times of the default size.

Table 3. The transformer model configuration.

Model Patch Size Layer Dimension Param (M)

ViT 8 12 384 21.67
SSVT 8 12 384 25.87
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The general network structure of selected models for comparison can be summarized
as Figure 6a), which consists of a stem, followed by the body part, and head classifier
(average pooling followed by a fully connected layer) that predicts output classes. The
body part is composed of four stages that operate at progressively reduced resolution, and
each stage consists of a sequence of identical blocks. The identical blocks of each model are
shown in Figure 6b–e. For direct comparisons and to isolate benefits resulting from net-
work design, the configuration of the models is based on the trained parameters, in which
20 million parameters are selected as the baseline in this work. Based on this, the ResNet
with 50 layers, EfficientNet_B5, RegNetY-4.0G, and EfficientNetv2_small are selected
for comparison.

Figure 6. General network structure and detailed block structure for CNN models.

For the supervised training on SSVT and the selected models for comparison. We first
transfer the weights learned from SSL training to initialize the model. AdamW optimizer is
used for 100 epochs using a cosine decay learning rate scheduler and 20 epochs of linear
warm-up. A batch size of 64, a lower initial learning rate of 1 × 10−4, and a weight decay
of 0.05 are used for model training. The augmentation and regularization strategies used
in this training to avoid over-fitting include conventional image augmentation mentioned
in Section 3.2, random-size cropping, data mix-up [65], and label-smoothing [66] regular-
ization. We used five-fold cross-validation in this study. The dataset is divided into five
groups at random, with four groups (80% of dataset) utilised for training and the remaining
groups used for testing each time. The average of the accuracies on the testing set over all
folds is used to evaluate the classification performance. All models used in this paper are
developed using Pytorch 1.6 and the image augmentation are based on the open-sourced
image augmentation library Albumentations [67].

4. Result
4.1. Performance Evaluation of SSVT for Automated Crop N Prediction

In this case, we report the performance of the proposed SSVT for automated crop
N prediction with two input sizes (Table 4). With the input image size of 224× 224, the
accuracy of the proposed model reaches 0.962. With the input image size of 384× 384, the
accuracy of the proposed model reaches 0.965, which is slightly higher. For the rest of the
evaluations and comparisons, we select 224× 224 as the input size.

4.2. Ablation Study
4.2.1. The Performance of the Proposed SSVT with and without SSL

In this case, we train the model with initialized weights based on labelled data. The
classification performance of the proposed model without SSL is reported in Table 6 and
Figure 7. Without the pretrained weights from SSL, the proposed SSVT cannot converge
correctly. The Accuracy of the proposed model is only 0.836. As shown in Figure 7, the
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model without SSL performs well on N status (Control). However, it performs unsatisfacto-
rily on other statuses, including High, Low, and Medium. Conversely, the model trained
with SSL weights performs well on all N statuses.

Table 4. The proposed model performance comparison with different input sizes under four
N treatments.

Image Size 224× 224

Types of N Treatments Control Low Medium High

Precision 0.949 0.992 0.985 0.923
Recall 0.936 0.992 0.98 0.941
F1-score 0.943 0.992 0.982 0.932
Accuracy 0.962

Image Size 384× 384

Precision 0.973 0.991 0.982 0.917
Recall 0.924 0.989 0.981 0.964
F1-score 0.948 0.99 0.982 0.94
Accuracy 0.965

Meanwhile, we have compared our proposed model with the five most widely used
CNN models. The results are shown in Table 5. With the lowest flops and the most
parameters, EfficientNet reaches an accuracy of 0.95. The proposed model has intermediate
parameters and the highest flops. The performance outperforms other approaches.

Table 5. The performance comparison of the proposed SSVT with the existing conventional models.

Param (M) GFLOPs (GMac) Accuracy (%)

ResNet_50 23.52 4.12 0.945
EfficientNet_B5 28.35 2.4 0.95
RegNetY-4.0G 20.6 4.1 0.951
EfficientNetv2_small 20.18 2.87 0.949
ViT 21.67 4.24 0.944
SSVT 25.87 4.71 0.962

Figure 7. The Confusion matrix of the classification results achieved by the proposed SSVT
(a) without and (b) with self-supervised learning
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Table 6. Model performance without self-supersized learning for the four N treatments.

Model SSVT w/o SSL

Types of N treatments Control Low Medium High

Precision 0.937 0.898 0.738 0.784
Recall 0.939 0.844 0.774 0.789
F1-score 0.938 0.87 0.756 0.787
Accuracy 0.836

4.2.2. The Impact of the Spectral–Spatial Attention Block

In this case, to evaluate the effect of the proposed spectral–spatial attention block
on vision transformer, we report the model performance of the proposed model and the
original ViT. The results are shown in Table 7, demonstrating that our proposed model
with spectral–spatial attention block has better classification performance for crop N status
estimation than that of ViT.

Table 7. Model performance comparison with the proposed model with SBA and the original ViT
(four types of N treatment: Control, Low, Medium, and High).

Model ViT

Types of N treatments Control Low Medium High

Precisio 0.925 0.956 0.931 0.969
Recall 0.994 0.975 0.944 0.865
F1-score 0.959 0.965 0.938 0.914
Accuracy 0.944

Model SSVT

Precision 0.949 0.992 0.985 0.923
Recall 0.936 0.992 0.98 0.941
F1-score 0.943 0.992 0.982 0.932
Accuracy 0.962

4.3. Evaluation of the Generalizability of the Proposed Model Using Independent Datasets

To evaluate the generalizability of the proposed SSVT model, we evaluate the trained
model on independent drone datasets captured at every growing stage, including Tillering
and Stem Extension, Heading and Flowering, and Ripening and Maturity. The performance
of the trained model on each growing stage are reported in Figure 8.

Compared to the model’s accuracy based on the ground field data, the accuracy of
proposed model on independent drone data is slightly decreased. The accuracy in Tillering
and Stem Extension, Heading and Flowering, and Ripening and Maturity is 0.939, 0.926,
and 0.933, respectively. However, the performance of ResNet on independent drones
dropped significantly. Compared to its accuracy on ground field data, it dropped by 0.07,
0.049, and 0.033, respectively, in each growing stage. Figure 9 shows the N status estimation
result on drone images captured at the early growing stage (Tillering and Stem Extension).
In the early stages of crop growth, all characteristics are not prominent. The estimated result
of ResNet shows many misclassifications. The result of our proposed model is more precise
and more accurate. The result shows the good generalizability of our proposed model.



Remote Sens. 2022, 14, 1400 16 of 23

Figure 8. The model performance on independent drone datasets captured throughout all grow-
ing stages.

Figure 9. The nitrogen status estimation result on drone images captured at the tillering and stem
extension stage.

5. Discussion

In this work, we propose a new deep learning-based method for accurately estimating
the nitrogen status of wheat using images from UAV imagery named SSVT. Three experi-
ments are designed to evaluate the performance of the model. Our discussions are based
around the experiment results.

5.1. Performance of SSVT for Automated Crop N Prediction

In the first experiment, we have evaluated the accuracy of the model and compared it
with the existing state-of-the-art deep learning models including ResNet, its latest version
RegNet, and EfficientNet v1 and v2. The results demonstrate that our proposed model
achieves an overall accuracy of 0.962. Under the similar parameters (20–30 millions), the
classification accuracy of the proposed method outperforms the comparative structures. In
general, the performance of model estimation on the nitrogen status of crops using RGB dig-
ital images might be affected by several factors, such as inconsistent image brightness and
white balance in multiple observations, the shadow of crops and the soil background [68].
To avoid the effect of shadows on images, all the data in this work are taken at 11–12 AM to
reduce the shadow of the plants and ensure sufficient light conditions. Moreover, we have
performed high-intensity image colour augmentation for model training, including bright-
ness/contrast/saturation, modifying, colour jittering, and solarization (Figure 4). This is
considered effective in improving the generalisability and robustness of the model [69],
thus allowing it to maintain performance under different lighting conditions.

For the impact of soil background, the typical method to remove the effect is to
segment the soil from the image, as shown in Figure 10a,b. However, automatically
identifying and segmenting crops from soil correctly in the high-resolution image is one
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of the most challenging problems in precision agriculture[70,71]. In this work, a simple
comparison experiment is performed to evaluate the performance using original and
segmented images. The crop is segmented by a dynamic colour threshold through manual
visual interpretation on each image. The F1-scores for each class of the models’ performance
are shown in Figure 10c. The model using the segmented images does not improve the
model’s performance, and the results demonstrate that the proposed model has the ability
to remove the effects of background from complex images.

Figure 10. (a) is the original image and (b) is the segmented image without soil. (c) shows the model
performance with original and segmented image.

To deeply investigate the reasons for the result to remove the background of our
proposed SSVT, we visualize the attention map from the last block of the trained model
to explain the decision-making area. The attention maps are shown in Figure 11. The
middle column is the attention map of the ResNet model, and the right column is the
map of the proposed SSVT. The images in the first two lines are captured in the field, and
the attention maps show that the two models highlight the plant area from the first two
lines. This result can explain why the soil background does not affect the deep learning-
based model’s performance on crop N status estimation. The last two lines show the
attention area on UAV images. The attention map of the proposed SSVT distinguishes well
between regions with different N statuses. The attention map of ResNet also distinguishes
between different regions, but not as clearly as the proposed SSVT. This leads to the
higher accuracy of our proposed SSVT on independent drone data. Our third experiment
evaluates the generalizability of the proposed model using independent UAV datasets. The
results demonstrate that our proposed model outperforms the existing models in every
growing stage.

It is unfair to perform the direct comparison between existing wheat nitrogen
predict methods due to the use of different datasets and analysis methods (spectral
analysis). In this case, we have only indirectly compared our model with five existing
methods [37,72–75]. The results are shown in Table 8, showing that the proposed SSVT
outperforms other approaches. This result may be due to two possible reasons. Firstly,
most existing methods used only the spectral information, whereas our method utilizes
both spectral and spatial features, enhancing the data usage. Secondly, our method uses
a deep network to extract features from all the data, which is considered to be superior
to traditional handcrafted features.
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Figure 11. Visualization of the attention map for ResNet and proposed SSVT. The middle column
represents the attention map of ResNet. The right column represents the attention map of SSVT.

Table 8. Comparative performance of the classifier vs. five competitors on wheat Nitrogen prediction.

References Modality Objective Accuracy

[72] (VI)-based methods Nitrogen use efficiency 0.85
[73] (VI)-based methods Nitrogen nutrition index 0.86
[74] Artificial Neural Network (ANN)/Support Vector Regression (SVR) Leaf nitrogen accumulation 0.86
[75] Random Forest Chlorophyll content 0.89
[37] Random Forest Nitrogen nutrition index 0.94
Proposed method SSVT Nitrogen status 0.96

5.2. Prospects and Future Work

In this work, there are three main innovations of the proposed framework including
(1) the SSL for model training with unlabelled datasets; (2) a novel spectral–spatial attention-
based vision transformer network; and (3) the computational complexity optimization on
transformer network.

The first is the SSL for model training with unlabelled datasets. In the second ex-
periment, we evaluate the impact of the SSL. The result shows that the proposed model
does not converge well when we train the model from init weight. The accuracy is only
0.836. However, when we trained the model with the weights from SSL, the model con-
verged well and achieved the best performance. Figure 12a shows the loss trend in SSL,
which shows the model converges correctly. It indicates that the model can extract the
similar features from the different views (‘local’ and ‘global’ views) of the same image. In
Figure 12b, we visualize the features extracted from the labelled data based on the model
trained with SSL by the t-SNE (van der Maaten Hinton, 2008). Although there are points
that remain integrated with other points belonging to other classes, various clusters are
easily recognized by different N statuses. This result explains why SSL can help the model
train without labelled data. The proposed SSL is generic, which can be applied to other
applications with limited labelled datasets. Particularly, remote sensing applications often
have large amounts of data but lack annotation. We believe our approach will significantly
contribute to the remote sensing field through SSL from unlabelled data.
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Figure 12. (a) is the loss converge trend on self-supervised learning, (b) is t-SNE visualization of the
model trained with the proposed SSL.

The second innovation is that the proposed SSVT is capable of simultaneously cap-
turing both spatial and spectral based features for accurate nitrogen diagnosis. In the
experiment, we evaluate the performance of the proposed method compared to the existing
vision transformer networks, focusing on spatial features only. The results indicate that,
by adding the SBA and SIB we proposed, our model achieves better accuracy. The SSVT
is also a generic network. In this paper, we have used it on RGB datasets and achieved
satisfactory results. We believe it can be applied to multi- to hyper-spectral datasets and
we will deliver this work in the future.

The third innovation is the computational complexity optimization. The deep learning-
based methods typically have millions of parameters, resulting in massive computational
consumption. The original ViT has quadratic computational complexity to the image size
due to the self-attention operation, which limits its usage on large images. In this work,
the cross-covariance matrix is used to replace the gram matrix operation in the attention
module. It changes the complexity of the transformer layer from quadratic to linear, which
makes it possible for the model to handle large size images. We calculate and report the
GPU usage of three models with increased input image size. We start from the commonly
used size of 224× 224 and then gradually and linearly increase the size of the input image
(336, 448, 560, . . . . . . ). The most widely used CNN model, ResNet with 50 layers, and
the original ViT, are selected for comparison. The inference GPU memory usage of the
ResNet, the original VIT, and the proposed SSVT are shown in Figure 13. Our proposed
SSVT has linear computational complexity with the size of the input image, which makes
it possible to scale to a much larger image size (1600 x 1600 with 16GB GPU memory and
1344× 1344 with 12 GB GPU memory). The original VIT has quadratic computational
complexity to the image size, which can only handle images with a size of 896× 896 in 16
GB GPU memory and 784× 784 in 12 GB GPU memory. Meanwhile, the proposed model
has better computational efficiency and utilization than the CNN based model (ResNet).

Figure 13. Inference GPU memory usage of ResNet, original ViT, and proposed SSVT.
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In this paper, we proposed a novel SSVT for accurately estimating the nitrogen status of
wheat. The fertiliser application rates were chosen to be realistic based on low to high rates
used by extensive and intensive farmers. This was so as to include the ranges of possible
values which could be observed on different farms. Additionally, fertiliser application is
not uniform, particularly when it is applied as a solid. This leads to hotspots and variation
within and between fields, even when fertiliser has been applied at the same rate. However,
it should be noted that further work is needed to determine whether our approach will
perform equally well if the ranges of values within a field is diminished, our approach was
able to distinguish between crops growing in treatments which differed by 80 kg ha yr−1.

Our approach provides farmers with a higher frequency and resolution of data than is
currently possible. Typically, farmers rely on a small number of soil samples taken prior to
the growing season to calculate optimal application rates for a whole field or farm. This
is achieved by comparing soil sample values with industry standards (e.g., RB209 [76]).
Using our higher resolution approach, data that has been gathered can be compared with
industry benchmarks to inform farmer decision making on N fertiliser application rates
and locations within the same growing season and within the same field. This may allow
farmers to only apply fertiliser where and when it is needed. Future work could combine
crop yield and quality data with N status data gathered using our approach to review these
guidelines and advise on locally appropriate optimal fertiliser rates.

Although we have conducted a lot of data augmentation on the model training to
improve the model’s generalizability, and the model obtained satisfactory results on in-
dependent data in different growing stages, this is not fully representative of the actual
conditions. We will continuously collect data covering different conditions across different
time windows, areas, and crop types to evaluate the proposed model.

6. Conclusions

We have proposed a novel spectral–spatial attention-based vision transformer (SSVT)
for accurately estimating the nitrogen status of wheat using images from UAV imagery.
The model framework proposes a spectral–spatial attention block consists of SBA and
SIB, which can simultaneously learn both spatial and spectral features for accurate crop
N estimation. The proposed model has been compared with state-of-the-art methods
as well as being evaluated on both testing and independent datasets. The experimental
results show competitive advantages over the existing works in terms of accuracy and
computing performance, and model generalizability. Moreover, as model training requires
massive labelled data, which is time consuming and costly. A local-to-global self-supervised
learning has been introduced to pre-train the model with unlabelled data. We believe this
approach will significantly contribute to the remote sensing field through self-supervised
learning from unlabelled data. Meanwhile, the cross-covariance matrix is used to reduce
the computational complexity of the model from quadratic to linear, which allows the
proposed models to operate on a larger area. As a generic method, in the future, we will
extend it to other data, especially multi- to hyper-spectral data to take advantage of its
ability in both spectral and spatial feature learning.
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