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Abstract: Publicly available land cover maps do not accurately represent shrubs and saplings, an
uncommon but ecologically relevant cover type represented by woody vegetation <4 m tall. This
omission likely occurs because (1) the resolution is too coarse, (2) poor training data are available,
and/or (3) shrub/saplings are difficult to discriminate from spectrally similar classes. We present
a framework for classifying land cover, including shrub/saplings, by combining open-source fine-
resolution (1 m) spectral and structural data across a large (>6000 km2) mountainous region. We
hypothesized that the combination of spectral (imagery) and structural (LIDAR) data would allow
for discrimination of shrub/sapling cover from other cover types. Specifically, we created training
data using segmented four-band imagery from the National Agricultural Imagery Program (NAIP).
In addition to spectral information from imagery, we used topographic information (elevation,
slope, and aspect) and a LIDAR-derived canopy height model to classify land cover within a pixel-
based random forests framework. To assess model accuracy, we used image interpretation and an
independent sample of validation points. Due to the fine resolution of predictor rasters across such
a large geographic region, we classified five subregions (counties) separately. We also compared
the landscape metrics calculated for our custom classification at fine (1 m) and coarse resolution
(resampled to 30 m) to metrics calculated with National Land Cover Data (NLCD). We achieved an
overall accuracy of 89% and >80% accuracy for each land cover class. The LIDAR-derived canopy
height model was consistently ranked as the most important predictor of vegetative land cover classes.
Compared with our custom classification, NLCD underrepresented pasture/grassland by up to 10%
and overrepresented forest up to 30%. There was no correlation between percent shrub/sapling
cover in our custom classification and NLCD, suggesting that NLCD is not reliable for applications
concerned with this ecologically relevant cover type.

Keywords: shrub; LIDAR-derived canopy height; NAIP imagery; land cover classification;
Appalachian

1. Introduction

Land cover classification maps are essential in a wide range of applications, includ-
ing land use planning, resource inventory, tracking landscape changes, and ecological
research [1]. Existing, publicly available land cover datasets, including the National Land
Cover Database ([2]; hereafter NLCD), are intended for broad use and necessarily have
shortcomings when used for specific applications. The agencies creating land cover classifi-
cations are limited by time and resources in the scope of what they can produce and must
therefore prioritize certain scales and land cover classes that will be valuable to the greatest
number of users. For example, the NLCD covers the entire continental United States at a
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30 m resolution. Although this may be effective for large-scale applications, such as analyz-
ing variation in land cover across states or ecoregions, NLCD may not capture fine-scale
details necessary for other applications. Additionally, such a coarse-resolution dataset
may be spatially mismatched or incompatible with ecological processes or management
applications of interest [3,4].

Custom classifications are therefore a necessity for projects that require knowledge of
less common land cover classes and/or fine-scale resolution spatial datasets, but custom
classifications can require significant expenditure of resources. Creating accurate land
cover classification maps often involves expensive hyper-spectral data [5], which poses a
challenge for conservation and management applications where budgets are often limited
and/or where focal areas are large. Recently, open source and freely available four-band
imagery (red, green, blue, and near-infrared) has been successfully used in many classifi-
cations [6–9], and such imagery is increasingly available with relatively high spatial and
temporal resolution (i.e., ≤1 m and collected every few years) for the entire continental
United States through the National Agricultural Imagery Program (hereafter NAIP). De-
spite the promise of NAIP imagery for custom classification, different acquisition dates
and times of day within an area of interest and a limited ability to discriminate between
spectrally similar cover classes, such as different types of vegetation (i.e., shrub/saplings
and trees), continue to be a challenge [10].

The shortcomings of four-band imagery can be overcome by incorporating additional
data to inform land cover classifications [11]. Object-based image analysis (OBIA), texture
metrics, and LIDAR-based canopy height models can add useful information to help dis-
tinguish land cover classes. OBIA groups spectrally similar neighboring pixels through
image segmentation and can reduce noise and assist in clarifying edges between classes,
especially at finer scales (e.g., [12]). For these reasons, object-based methods have all but
replaced pixel-based land cover classification, but due to their computational demands
are rarely carried out at large, regional extents [13]. Using segmented images as inputs in
a pixel-based classification framework [14,15] presents a solution whereby image objects
(and their similar spectral properties) inform classification, but computational demands
are lessened because the image objects are not the units of classification. Texture metrics
describe the variation in a user-defined window around each pixel, and have been shown
to improve classification accuracies [7]. Lastly, using LIDAR data to incorporate informa-
tion about canopy height (i.e., through a LIDAR-derived canopy height model) can aid
in discriminating lower-growing deciduous saplings and shrubs from spectrally similar
tree cover [16,17], and LIDAR data has recently become available for large geographic
regions [18,19].

Despite these advances, early successional cover types (shrub and saplings) have
proven to be particularly elusive to isolate and classify from remotely sensed imagery,
especially across large spatial extents. Early successional cover types are defined here as
low-growing (~0.5–4 m) woody vegetation that tends to stay low growing throughout
its life (e.g., shrubs such as Rubus spp., Vaccinium spp., etc.) or that will eventually grow
out of the low growing stage through succession (e.g., young forests of deciduous trees
such as Acer spp., Quercus spp., etc.). Due to the relatively small radius of individual
shrubs/saplings, they are typically not captured in land cover maps with large (>1 m)
pixel size. Further, because shrubs and saplings are spectrally similar to mature forest in
mesic temperate regions, efforts to classify them have been more common and successful
in arid [12] or arctic [20] landscapes. Indeed, young trees (saplings) are spectrally identical
to older age classes of trees, making them very difficult to discriminate based on spectral
features alone. Until recently, LIDAR data have been unavailable for large geographic
regions and/or prohibitively expensive for many broad-scale studies. For these reasons,
studies that do not require distinction between mature trees and shrub/saplings have
grouped these two classes together [21].

Shrub and saplings are ecologically relevant cover types, providing critical habitat
for wildlife and impacting the carbon storage potential of forests, and their lack of repre-



Remote Sens. 2022, 14, 1364 3 of 19

sentation in land cover maps is a major obstacle in ecological research. Early successional
shrublands and young forests are ephemeral by nature and due to a loss of natural distur-
bance regimes are in decline across the northeast and mid-Atlantic regions of the United
States [22]. Correspondingly, species dependent on these habitats have been declining
throughout these regions as well [23]. There is a strong desire to manage for these species
with declining populations, but this is difficult without accurate data on availability of
the shrub/sapling cover upon which they depend. Likewise, assessment of forest carbon
sequestration relies on accurate data on disturbance and forest age classes [24], which are
not often available, especially at fine resolution and across large extents [25]. Availability
of broad-scale (county to regional) maps that accurately represent shrub/sapling cover
alongside mature forest and pasture/grassland would facilitate landscape scale research
and management of priority species and forest carbon stocks.

We hypothesize that combining spectral (imagery) and structural (LIDAR) data will
allow for improved discrimination between shrub/sapling cover and mature tree cover
across a five-county region of the central Appalachian Mountains of Virginia, USA. Stud-
ies that combine LIDAR and multi-spectral imagery to classify land cover have typically
occur at smaller spatial extents, and do not attempt to discriminate shrubs/saplings from
mature tree cover [20,26–28]. There is a need for a land cover classification that includes
shrub/sapling cover in this region for ongoing research and management of the Golden-
winged Warbler (Vermivora chrysoptera), a migratory songbird with rapidly declining popu-
lations that depends on early successional habitat, as well as other shrubland-dependent
species of conservation concern such as the Indigo Bunting (Passerina cyanea) and Northern
Bobwhite (Colinus virginianus). In this region, Golden-winged Warblers often breed in
high-elevation abandoned farmland or low-intensity grazed pastures where they require a
complex mosaic of shrubs/saplings, herbaceous vegetation, and forests to successfully nest
and rear offspring [29,30]. A map that accurately delineates shrub/sapling cover in this
region will be useful in predicting the distribution of several species of conservation need,
obtaining more accurate estimates of population size for focal species, and identifying and
prioritizing areas for habitat restoration or maintenance. Existing land cover classifications
do not adequately describe the shrub/sapling cover, and in fact, the shrub/sapling cover
class is often missing entirely.

To produce this custom land cover classification, we used segmented four-band im-
agery from the National Agricultural Imagery Program (NAIP) and a LIDAR-derived
canopy height model within a pixel-based random forests classification framework. Our
primary objective was to accurately represent shrub/sapling cover alongside more com-
mon cover types (e.g., mature forest, pasture, and human development) with at least 80%
accuracy across all cover types. We compared land cover percentages for our custom classi-
fication to NLCD and a Virginia-specific fine resolution land cover map—Virginia Land
Cover Data (VLCD, [31]). We also calculated composition landscape metrics (percent cover)
for our land cover map at fine (1 m) and coarse (resampled to 30 m) resolution around
randomly placed points in open areas with a mix of pasture/grassland and shrub/sapling
cover. Lastly, we compare these same composition landscape metrics to the publicly avail-
able 30 m resolution NLCD to see if they are correlated and quantify the information gained
about shrub/sapling cover in our custom land cover classification.

2. Materials and Methods
2.1. Study Area

Using a system representative of the region’s heterogeneous terrain and ecosystems,
our goal was to create a de novo classification that includes seven ecologically relevant
classes: shrub/sapling, pasture, human infrastructure (buildings and roads), bare ground,
water, and evergreen and deciduous/mixed forest. We focused our classification in five
counties in southwestern Virginia—Smyth, Tazewell, Russell, Washington, and Bland
(Figure 1)—that cover >6000 km2 with cover types representative of the broader southern
and central Appalachian regions. The counties are mountainous, with a mean elevation of
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760 m range (403–1746 m) and ridges running primarily southwest to northeast. George
Washington and Jefferson National Forests comprise ~20% of the landscape, and many
mountain ridges are primarily forested. Forests are primarily oak-hickory and to a lesser
extent mixed oak-pine on dryer slopes with spruce along the highest ridges [32]. Past
and present coal mining activity occurs in a narrow portion of northwestern Russell
and Tazewell Counties. Based on NLCD data, 64% of the region is forested and 25% is
pasture/grassland; agricultural production occurs primarily in the valleys where much
of the land is used for hay and livestock production. Shrub/sapling cover tends to occur
along the forested edges of pasture and expand into pastures when grazing pressure is low,
as well as in regenerating timber harvests.
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Figure 1. NAIP imagery from the five-county focal region in southwestern Virginia, USA collected
in April 2016. The brown areas show forested ridges and the green areas primarily show agricul-
ture/grasslands. White areas indicate regions where imagery was collected in a different season
(October/November) that were excluded prior to classification. Red shading in lower inset indicates
location within the state of Virginia, USA.

2.2. Predictor Raster Acquisition and Processing

We acquired 1 m resolution orthoimagery collected through NAIP as a four-band (red,
green, blue, and near-infrared) spectral image collected during April 2016. NAIP imagery
is typically collected during the agricultural growing season such that it represents ‘leaf-on’
imagery, but only trees in the lowest elevations of this mountainous region have begun
to leaf out in April. Images were collected on either April 18 or 24; though portions were
removed prior to classification from the northern and southern extremes of our study area
because they were collected in a different season (Figure 1). Because images across such
a large region are collected on different days and times of day, there can be within-class
variations in spectral properties, variable viewing geometry, and illumination [33]. Despite
these challenges, NAIP imagery has been successfully used for land cover classification and
feature extraction [33–35]. We also acquired 1 ft resolution orthophotography through the
Virginia Base Mapping Program (hereafter VBMP) [31]. This is a three-band image (RGB)
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and was collected via flyover with a digital camera during the winter ‘leaf-off’ period of
2016 (January). Using imagery from different seasons is helpful in land cover classifications
because seasonal patterns can be used to differentiate cover types [36,37]. We resampled
the VBMP imagery to 1 m resolution and aligned it with NAIP imagery. For one of the focal
counties (Washington), VBMP imagery was not available for a large portion of the county
so we carried out all classification steps but excluded VBMP imagery. This provided a test
for the necessity of including both ‘leaf-on’ and ‘leaf-off’ imagery to accurately classify
shrub/sapling cover.

We performed image segmentation separately on both NAIP and VBMP imagery using
the mean-shift segmentation tool in ArcGIS Pro (version 2.7). Segmentation groups nearby
cells sharing similar spectral characteristics and has been shown to reduce graininess in
final classifications [12]. Spectral detail, spatial detail, and minimum segment size must be
set during segmentation, and we selected values for these parameters that best identified
image objects (roads, houses, clumps of shrub/saplings, patches of forest, etc.) in the
landscape. We consistently used a spatial detail value of 14 and minimum segment size
of 8, and we selected spectral detail values of 17 or 18 for each county, based on visual
inspection of resulting image segments. Segmentation produces a three-band raster where
each cell in an image object has the same values for each spectral band. Because NAIP has
four bands, we used green, blue, and NIR bands for segmentation because they were most
distinct from each other (Figure 2).
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Figure 2. Flow diagram showing the steps from raw datasets (blue) to final predictor layers for
the Random Forest Classification model (purple). For one county (Washington) the VBMP imagery
portion of the diagram was omitted (see text).

We created two additional raster layers from the VBMP and NAIP imagery. Normal-
ized difference vegetation index (hereafter NDVI), which characterizes vegetation “green-
ness”, was calculated from NAIP imagery and may help to discriminate shrub/sapling,
pasture, and forest classes [38]. A texture metric was calculated using the focal statistics
tool in ArcGIS Pro to describe the standard deviation of cells in a 5 × 5 m window using
the red band from the ‘leaf-off’ VBMP image. In a preliminary study [39], this window size
and band were shown to predict the shrub/sapling class better than others from VBMP
and NAIP. Such texture metrics have been shown to effectively predict patchy, shrubby
habitat [40], and visual observation of texture rasters with different window sizes suggested
that the texture of shrub was captured at a 5 m scale.

We acquired 1/3 arc-second (approximately 10 m) resolution elevation data from the
USGS National Elevation Dataset (hereafter NED). We resampled NED to 1 m resolution



Remote Sens. 2022, 14, 1364 6 of 19

using bilinear interpolation and aligned it with NAIP imagery. Because we are working
in a mountainous region, we needed to account for variation in reflectance resulting from
differences in slope and aspect. We calculated the terrain layers of slope and aspect from
our digital elevation model (DEM) using ArcGIS Pro.

We batch downloaded 1 m resolution Light Detection and Ranging (LIDAR) discrete
point cloud data from the United States Geological Survey ftp site (rockytopftp.cr.usgs.gov,
accessed 27 September 2020). LIDAR data were collected in the focal region between
November 2016 and April 2017, and had high density point clouds (often 6–10+ points per
square meter and never <2, and LIDAR base specifications version 2.1 [USGS, 2019b]). We
downloaded compressed LAS files (.laz), and used the lidR package (Roussel et al. 2020) in
R (version 4.0.2, [41]) to process files within subregions of each county and to create a 1 m
resolution canopy height model raster from the LIDAR point cloud using the grid_canopy
function.

These steps resulted in 13 individual raster layers (Figure 2) that we used as predictors
in a pixel-based Random Forest Classification model: three bands (RGB) for the segmented
VBMP; three bands (G, B, and NIR) for the segmented NAIP; the red band from the NAIP
imagery; NDVI, the texture metric, elevation, slope, aspect, and a LIDAR-derived canopy
height model. All rasters were exported as GeoTIFFs for random forest modeling in the R
statistical software. One county (Washington) did not have usable VBMP data, so we used
nine predictor rasters for that county and provided a useful test case for carrying out the
same classification methodology, but with imagery from only one time of year.

The southwestern Virginia region presents some unique problems for classification.
It is mountainous, which creates shadowed regions in aerial imagery that results in the
same land cover classes having different spectral signatures depending on their location
on the landscape. To account for this, we incorporated the aspect of the land surface, or
the direction that the slope is facing, as an input to our classification scheme. We also
subdivided certain land cover classes during training data creation into sun and shade
subcategories (see below). To minimize the impacts of phenological differences in leaf
out in our mountainous study region, and because of high computing demands for high
resolution data, we carried out the land cover classification steps separately for each county
and then mosaicked the resulting land cover maps together.

2.3. Training Data

We created training data using the segmented ‘leaf-on’ and ‘leaf-off’ orthoimagery
described above. Specifically, we used the Training Samples Manager in ArcGIS Pro to
create polygons around areas of known cover types by systematically panning across each
county. Our selection of training data was informed by visual inspection of the input layers
described above and on-the-ground experience conducting bird surveys in the region.
We primarily used the segment picker tool in the Training Samples Manager, such that
polygons corresponded to image segments, but also occasionally selected smaller areas
by drawing polygons when we needed to isolate a cover type that was not identified as
a segmented object (i.e., group of evergreen trees within an otherwise deciduous forest
object). We adapted the NLCD2011 Training schema in ArcGIS by removing wetland and
adding shadow subclasses (i.e., shadow deciduous forest, shadow impervious surface, and
shadow pasture) that were later merged with non-shadow classes of the same cover type.
Some patches of vegetation were difficult to differentiate from forest or shrub/sapling via
visual inspection. In these cases, we consulted the LIDAR-derived canopy height model to
designate training polygons as shrub/sapling when canopy height was ≤4 m and as forest
when canopy height was >4 m. We pixelated the training polygons using the polygon to
raster tool and then the raster to polygon tool so that polygons would line up perfectly
with the predictor rasters. In total, we created 5368 training polygons that covered 1200 ha
and comprised 0.096% of the focal region.

rockytopftp.cr.usgs.gov
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2.4. Random Forest Classification

We used a Random Forests Classification framework [42,43] to classify the different
land cover types of interest. Random Forests is a powerful classification tool that tends to
have a high rate of accuracy, the ability to handle large datasets, and is less computationally
intensive than methods with comparable accuracy [42]. The algorithm is a bootstrapping
ensemble method that operates by averaging a large number of randomly generated
decision trees for a single final model with low variance and high accuracy [43].

Classification was performed using the randomForests [44] and raster [45] packages
in R (version 4.0.2). We extracted mean values for each of the 13 predictor rasters in the
training polygons described above, and used these values as inputs into the random forest
algorithm. Because the random forest algorithm uses bootstrapped samples for generating
each decision tree, we can assess preliminary model performance based on the training
dataset. We assessed which prediction rasters are most important in predicting each cover
type using the variable importance scores from the Random Forest output. We created
a classification raster based on the random forest model using the predict function in
the R raster package [45]. We then informally inspected the land cover classification by
comparing it to the NAIP imagery to preliminarily gauge its performance. If cover classes
were consistently misclassified (e.g., tree shadows in pasture being classified as water), we
created more training data (e.g., created a new class called ‘shadow pasture’ to be later
merged with pasture) in the problem areas and repeated the random forest classification.
Once we were satisfied with the classification based on informal inspection, we carried
out two post-processing steps prior to a formal accuracy assessment. First, we removed
noise from the classification raster using the majority filter function with four neighbors
in ArcGIS Pro. Second, we combined the shadow classes with the major cover type (e.g.,
merged shadow pasture with pasture) by reclassifying the raster. The resulting map had
seven land cover classes: shrub/sapling (woody deciduous vegetation between 0.5–4 m
tall), pasture (includes hayfields, grassland, and cultivated fields), human infrastructure
(roads, buildings, etc.), bare ground (gravel roads and patches of bare soil), water (rivers,
streams, lakes, and ponds), mixed/deciduous forest (woody deciduous vegetation >4 m),
and evergreen forest (woody evergreen vegetation).

2.5. Accuracy Assessment

To assess accuracy of the land cover classification, we followed recent recommenda-
tions in Stehman and Foody [46] for image interpretation using an independent sample
of validation points from those used in training the classification model. We generated a
stratified random sample of 100 validation points per cover type in each county, though
100 points were not always possible for rare cover types (i.e., water). We created a 3 m
buffer around each validation point and extracted the majority land cover type and the
number of cover types in each buffer from the final classified raster. We deleted validation
points with ≥4 cover types within the buffer (19.7% of validation points) because of the
difficulty in discerning the reference cover type in such complex settings (i.e., reference
class ambiguity, [46]). This is especially problematic for high resolution classifications.
Ideally, validation is carried out with imagery that is different and of finer resolution than
the imagery used to develop the classified map; however, this is not always possible when
using high-resolution imagery for classification [46]. The result is that accuracy may be
over-estimated, particularly in areas with significant cover type heterogeneity. The majority
value within each buffer serves as the predicted value for accuracy assessment. A single
observer (LPB) that was naïve to the predicted values determined the actual/reference
land cover based on visual inspection (human interpretation) of the NAIP and VBMP
imagery within the 3 m buffers. The observer would indicate the primary cover type
within the buffer as well as the secondary cover type when two cover types occurred in
similar amounts within the buffer (i.e., the point fell along the edge of a road and a pasture).
We deleted any points where significant changes occurred between the NAIP and VBMP
images (e.g., a timber harvest between January and April 2016), but this only occurred in a
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small number (<5%) of points. Finally, we compared the observer’s primary or secondary
cover type designation to the reference value extracted from the final classified raster to as-
sess accuracy [47]. Specifically, we used the caret package [48] in R to calculate a confusion
matrix and accuracy metrics.

2.6. Comparison with Publicly Available Land Cover Data

To compare our custom land cover map to the widely used NLCD, we calculated com-
position landscape metrics for our custom classification at fine (1 m) and coarse (resampled
to 30 m) resolutions using the landscapemetrics package in R [49] and compared these to
metrics calculated from NLCD (30 m). Specifically, we calculated the percent cover for pas-
ture/grassland, shrub/sapling, and deciduous/mixed forest within a 500 m radius around
randomly placed points within pre-defined areas of early successional habitat—open areas
with a mix of pasture, shrub and sapling cover but in a forested landscape. We placed
points in these areas because a random sample of points across the entire region would
not have effectively captured the less common shrub/sapling cover which is the focus
of this study. For NLCD, we combined deciduous and mixed forest to create one forest
class, and combined pasture and herbaceous cover to create one pasture/grassland class.
NLCD has recently added a transitional forest classes (shrub-forest) that is based on time
since forest clearing and known successional rates for different regions. We combined the
shrub/scrub with this shrub-forest class to create one shrub class. We used linear regression
analysis to assess the correlation between NLCD and both fine- and coarse-resolution
custom land cover.

Land cover output and canopy height models for each county, as well as the R scripts
used for this research, are available on Dryad Data Depository (https://doi.org/10.506
1/dryad.jsxksn0b1, accessed on 6 January 2022). Training data shapefiles and accuracy
assessment points are available upon request from the authors.

3. Results
3.1. Classification Accuracy

The overall accuracy of the final land cover classification across the >6000 km2 focal
region was 89.1%. Producer accuracies (i.e., how often on the ground features are correctly
shown in the classified map) for each individual class were between 81% and 99% and user
accuracies (how often the map classification actually represents what is on the ground)
for each class were between 82% and 95% (Table 1). Though classification accuracy was
generally high, the most common misclassifications included confusion between decid-
uous/mixed and evergreen forest, between bare ground and human development, and
between bare ground and pasture (Table 1). The shrub/sapling class, of primary importance
in this study, had high classification accuracy (≥90%).

The confusion matrices for land cover accuracy for individual counties are provided
in the Supplementary Information (Table S1) and show that when leaf off imagery (VBMP)
is not included in the classification (i.e., Washington County), accuracy was very similar for
all cover types.

3.2. Predictor Importance

The random forest algorithm ranks classification predictor variables based on impor-
tance for discriminating each land cover class (Table 2). The LIDAR-derived canopy height
model ranked as the most important predictor for all vegetative cover types and within
the top three predictors for water and developed land covers. NDVI was the second-most
important predictor, and ranked highly for nearly all cover types. Bands from ‘leaf-on’
imagery (NAIP) tended to rank higher than bands from ‘leaf-off’ imagery (VBMP); how-
ever, the red band for VBMP was in the top three most important predictor variables
for shrub/sapling and evergreen forest (Table 2). Of the three terrain metrics, elevation
consistently ranked higher than slope and aspect, but generally were less informative than
spectral variables and the canopy height model. For the shrub/sapling cover class, the

https://doi.org/10.5061/dryad.jsxksn0b1
https://doi.org/10.5061/dryad.jsxksn0b1
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canopy height model, NDVI, and the red band of the VBMP leaf-off imagery were the three
most important variables. Figure 3 shows side-by-side comparisons of NAIP imagery, the
canopy height model, and our custom classification for two example landscapes in our
study area.

Table 1. Confusion matrix of correctly and incorrectly classified sites across the five-county focal
region. Values represent the number of 3 m radius circles where the majority of classified cells
matches (grey diagonal) or does not match (off diagonal cells) the actual land cover as determined
from visually inspecting NAIP and VBMP imagery. Dec forest is deciduous and mixed forest, and EG
forest is evergreen forest.

Reference

Water Developed Barren Dec
Forest EG Forest Shrub/Sapling Pasture N Users%

water 161 14 3 3 0 1 2 184 0.88
developed 2 367 16 3 0 9 12 409 0.90

barren 0 33 339 3 0 7 32 414 0.82
Dec forest 0 0 2 433 19 3 2 459 0.94
EG forest 0 0 0 77 366 5 1 449 0.82

Shrub/sapling 0 2 2 9 2 326 11 352 0.93
pasture 0 2 6 4 0 11 440 463 0.95

N 163 418 368 532 387 362 500 2730

Pr
ed

ic
ti

on

prod% 0.99 0.88 0.92 0.81 0.95 0.90 0.88 0.8908

Table 2. Mean variable importance rankings from the random forest model for each predictor layer
used in the land cover classification for each land cover type. The top predictor layers for each cover
type (variable importance >20) are highlighted in green. All layers are described in more detail in the
methods. NDVI is the Normalized Difference Vegetation Index, NAIP is the National Agricultural
Imagery Project (collected in April), and VBMP is the Virginia Base Mapping Program (collected in
late October/November).

Predictor
Variable Water Developed Barren Deciduous

Forest
Evergreen

Forest Shrub/Sapling Pasture/Grassland Average

Canopy
height model 29.5 23.2 26.0 68.9 41.5 51.5 41.6 40.3

NDVI 33.5 30.5 19.8 19.9 30.0 30.8 31.6 28.0
NAIP_NIR 22.2 20.0 15.8 18.9 19.5 17.9 31.3 20.8
NAIP_Blue 12.9 33.4 16.8 17.4 15.7 16.9 16.1 18.5

NAIP_Green 6.1 18.9 20.3 17.2 17.0 17.2 24.8 17.4
NAIP_Red 7.2 18.8 20.3 18.2 19.8 16.4 17.4 16.9
VBMP_Red 13.0 15.9 17.7 19.4 20.6 20.1 14.5 17.3

VBMP_Green 7.6 14.8 13.7 15.1 10.8 15.6 18.3 13.7
Elevation 15.0 15.9 9.5 16.7 14.2 14.9 10.3 13.8

VBMP_Blue 11.4 20.5 8.3 16.3 13.2 14.6 11.5 13.7
Slope 19.2 17.6 6.9 8.1 8.2 8.8 9.9 11.2

Texture 19.5 10.0 8.0 10.0 9.2 9.7 9.7 10.9
Aspect 6.9 9.9 9.0 8.0 8.6 4.1 8.2 7.8
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cover classification (right) for two scenes in our study area, the top is a larger extent than the bottom.

3.3. Comparison with Publicly Available Land Cover Data

Compared with NLCD, our 1 m land cover classification more accurately represents
fine-scale features such as ponds and patches of shrubs/saplings, but also captures patches
of forest and pasture/grassland that are obscured by the coarser-resolution NLCD (Figure 4).
Across the extent of our five-county focal region, our land cover classification has some
similarities with the publicly available NLCD and fine-resolution VLCD; however, there are
some important differences (Table 3). Our custom classification under-represents developed
land cover compared with NLCD and over-represents barren land cover compared with
both NLCD and VLCD, but the sum of these often-similar classes is similar among the three
classifications (2.2–6.4%). Our custom classification identifies more evergreen forest and
less deciduous forest than NLCD; some of this may be due to misclassifications between
deciduous/mixed and evergreen forest in our custom classification. However, when we
sum deciduous/mixed and evergreen forest cover, NLCD and VLCD still show ~3–7%
more total forest cover across the focal landscape than our custom classification (Table 3).
At least some of this discrepancy is likely due to the omission of shrub/sapling cover from
the publicly available land cover datasets that is captured in our custom classification.
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Figure 4. Example landscape with scattered shrub/sapling cover as represented by NAIP imagery
(left), a 30 m resolution National Land Cover Data (NLCD, middle), and our 1 m custom classifica-
tion (right).

Comparing land cover maps across entire counties can uncover general trends, but
assessing differences in focal areas can be valuable when a specific and less common cover
type is of interest. We compared composition landscape metrics calculated from NLCD
and our custom classification within 500 m around random points in early successional
habitats that have a mix of pasture, forest and shrub/sapling cover. We found that pasture
cover from NLCD was highly correlated with pasture cover in our fine resolution custom
classification (r = 0.858; Figure 5a) and when our custom classification was resampled to
30 m resolution (r = 0.870; Figure 5b). The same was true for forest cover from NLCD and
forest cover in our fine resolution custom classification (r = 0.825; Figure 5a) and when our
custom classification is resampled to 30 m resolution (r = 0.823; Figure 5b). Despite these
strong correlations, compared with our custom classification, NLCD underrepresented
pasture/grassland cover by ~10% in areas with low pasture cover and over-represents
forest cover by ~10–25%, especially in predominantly forested areas. These differences exist
even when we resampled our custom classification to be the same 30 m resolution as NLCD
(Figure 5b). Further, there is no correlation between NLCD and our custom classification
with regard to shrub/sapling cover (r < 0.1, Figure 5c,d). Our custom classification has
values of 0 to 35% shrub/sapling cover while NLCD has most values < 5% and a few as
high as 11%, and many areas in our custom classification with the highest values for shrub
cover (>20%) have 0% shrub in NLCD.

Table 3. Comparing percent cover from custom classification with two publicly available land cover
classifications—30 m resolution NLCD and 1 m resolution VLCD. For our custom classification and
NLCD, we added a category called All forest that is the sum of deciduous and evergreen forest cover
types for ease of comparison with VLCD that does not distinguish these forest types.

Land Cover
Class Tazewell Smyth Bland Russell Washington Average

Custom
Classification

Water 0.53 0.34 0.32 0.76 0.86 0.56
Developed 2.75 2.02 2.18 2.34 1.60 2.18

Barren 2.04 0.95 2.53 2.16 3.97 2.33
Decid +

mixed forest 56.91 57.27 65.85 46.95 45.01 54.40

Evergreen
forest 2.85 4.66 6.45 9.59 10.06 6.72

All forest 59.76 61.93 72.30 56.54 55.07 61.12
Shrub/sapling 6.10 5.58 3.91 7.46 3.75 5.36
Pasture/grassland 28.82 29.18 18.76 30.74 34.75 28.45
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Table 3. Cont.

Land Cover
Class Tazewell Smyth Bland Russell Washington Average

NLCD

Water 0.06 0.07 0.03 0.34 0.56 0.21
Developed 7.42 5.79 3.20 5.78 7.56 5.95

Barren 0.37 0.60 0.30 0.37 0.50 0.43
Decid +

mixed forest 65.42 66.89 73.33 58.62 58.01 64.45

Evergreen
forest 4.26 1.55 2.93 2.71 1.12 2.52

All forest 69.68 68.44 76.26 61.33 59.13 66.97
Shrub 0.58 0.55 0.53 1.13 0.62 0.68

Pasture/grassland 21.74 24.38 19.50 31.01 31.48 25.62
Wetlands 0.16 0.17 0.17 0.04 0.15 0.14

VLCD

Water 0.23 0.21 0.21 0.56 0.73 0.30
Developed 2.45 1.95 1.21 2.17 2.89 1.95

Barren 0.42 0.02 0.05 0.34 0.09 0.21
Decid + EG

forest 68.51 67.71 77.51 59.34 56.25 68.27

Tree a 5.09 4.73 2.71 5.08 5.81 4.40
Harvested 0.65 0.26 0.32 0.82 0.31 0.51

Shrub 1.03 0.74 0.60 1.36 0.85 0.93
Pasture/grassland 21.34 24.17 17.3 30.25 32.86 23.27

a Includes areas characterized by tree cover of natural or semi-natural woody vegetation that does not encompass
at least an acre in size; this class includes deciduous, evergreen, and mixed foliage types.
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Figure 5. Relationship between percent cover of vegetation types within a 500 m buffer around ran-
domly selected points within areas known to have a mix of pasture/grassland and shrub/sapling Figure 5. Relationship between percent cover of vegetation types within a 500 m buffer around

randomly selected points within areas known to have a mix of pasture/grassland and shrub/sapling
cover in a forested matrix. Percent cover of the following vegetation cover types was calculated from
National Land Cover Data (NLCD) and our custom classification: pasture (yellow, a,b), forest (green,
a,b) and shrub/sapling (orange, c,d). The black line represents a 1:1 correlation; points above this
line are where NLCD under-represents the cover type relative to our custom classification and points
below the line are where NLCD over-represents the cover type relative to our custom classification.
95% confidence intervals are represented by grey ribbons around the trend lines.
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4. Discussion

The land cover classification framework presented here exceeded initial goals of at
least 80% accuracy for each land cover class and accurately represents shrub/sapling cover
at a fine resolution across a large focal region (>6000 km2). This is significant because
shrub/sapling is an ecologically important cover type that is nearly absent in publicly
available NLCD data for the eastern United States, and recent efforts to classify shrub cover
have proved challenging [50,51]. Shrubs make up 21.7% of the NLCD land cover in the
conterminous United States, but this cover type is primarily concentrated in the arid western
states [52] where shrubs are spectrally different from other cover types (i.e., sage (Artemisia
spp.) compared to trees and grasses). The framework we present here relies on freely
available data through the United States Department of Agriculture (NAIP) and the United
States Geological Survey (high-resolution LIDAR; [53]). Because our custom classification
relies on LIDAR-derived canopy height models in addition to spectral properties of cover
types from satellite imagery, we were able to identify shrubs that would otherwise appear
spectrally similar to forests and be classified as such. Our findings also show that accurate
representation of shrub/sapling cover is not completely dependent on the grain of the
classified map; our classification resampled to 30 m resolution still represented shrub cover
better than NLCD.

A LIDAR-derived canopy height model was the most important predictor (i.e., it had
the highest variable importance value in our random forest model) for all vegetation cover
types and was the second and third most important predictor for water and developed cover
types, respectively. This makes sense considering the fact that these different cover types
are defined in part by their relative heights; trees are taller than shrubs/saplings which are
taller than pasture/grassland, and previous studies have shown LIDAR to improve the
accuracy of classifying of shrubs [50]. Our study also showed that LIDAR-derived canopy
heights overshadowed any benefits of using imagery from different seasons to discriminate
vegetation cover types. Specifically, the limited availability of leaf-off imagery in one of
our focal counties provided a test for the necessity of including both ‘leaf-on’ and ‘leaf-off’
imagery to accurately classify shrub cover. Both image types were expected to provide
important spectral information to discriminate trees from shrub/saplings through seasonal
differences in reflectance. However, LIDAR data proved able to discriminate between
these and other cover types without the two different seasons of imagery. This finding is
significant because acquisition of high-resolution data across large focal regions involves
significant time and effort. We recommend that future efforts rely primarily on freely
available leaf on imagery (i.e., NAIP) and high-resolution data on vegetation structure (i.e.,
LIDAR) to accurately classify shrub/sapling cover alongside other major cover types.

Despite the importance of the LIDAR-derived canopy height model, spectral informa-
tion was still important in helping to discriminate different cover types, especially those
with LIDAR heights < 0.5 m. The value of NDVI in discriminating vegetation cover types
from non-vegetative cover types and in discriminating different vegetation cover types over
space (biomass and health) and time (phenology) is well established [54–59]. This study fur-
ther demonstrates the value of NDVI as it was the first or second most important predictor
for all cover types except barren areas. Other spectral predictors (NAIP Red, Blue, Green,
and VBMP Blue) were among the top three predictors that helped to discriminate between
cover types with low LIDAR heights (<0.5 m). For example, water, pasture/grassland, bare
soil, and roads are all at the ground level but show different spectral properties that are
even discernable in imagery with low spectral resolution, such as the freely available NAIP
imagery [7]. Indeed, the use of LIDAR-derived height data helps to mitigate the challenge
of working with low spectral resolution NAIP imagery while still taking advantage of the
high spatial resolution spectral information and wide availability across the conterminous
US [60].

A non-trivial challenge of classifying a shrub/sapling cover type is their ephemeral
nature; saplings and shrubs often rapidly grow into closed-canopy forests. Mine lands,
high intensity grazed lands, and some very high elevation areas are exceptions to this as
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their heavily compacted soils and/or harsh climate slow the rate of succession and result
in the persistence of shrub/saplings for many decades. Disturbance-prone systems such as
flooded riparian areas are another dynamic system that has been a focus of classification
studies [61,62]. Climate change is impacting disturbance regimes globally [63] and high
temporal resolution of remotely sensed imagery is needed for understanding how biodi-
versity and landscape processes will be affected [64,65]. Therefore, collection of remotely
sensed imagery and canopy height data with high temporal resolution is necessary to facili-
tate frequent updates to publicly available regional and national land cover classification
maps. Landsat and NAIP imagery are collected with a high temporal resolution (16 days
and 3–5 years, respectively) that is compatible with modeling disturbance-prone systems
with shrub/sapling cover; however, LIDAR data have only recently become available
for many parts of the conterminous US and it is uncertain how often these data will be
updated. For small focal areas, LIDAR data collected via unmanned aerial vehicles is a
good option [66–68]; however, natural resource management efforts typically require large
extents that make such collection methods less viable. The multitude of uses for LIDAR
data to model dynamic systems at large spatial extents—from detecting and modeling
flooding, landslides, shrub expansion, and coastal erosion, to assessments of forest canopy
structure, forest carbon stocks, and wildlife habitats—make it a priority to collect with high
temporal resolution. Recently, a global canopy height map was developed by combining
Landsat imagery and LIDAR data from Global Ecosystem Dynamics Investigation (GEDI)
and allows for production of annual forest height maps [18], though the spatial resolution
is too coarse (30 m) to capture small features such as individual shrubs and saplings.

4.1. Comparison with Publicly Available Land Cover Data

It is well established that coarse grained data do not accurately represent the complex-
ity of small features on the landscape [69–71], yet our study demonstrates that grain is not
the only factor explaining the poor representation of shrub/sapling cover in NLCD. Even
after resampling our land cover classification to 30 m resolution, shrub/saplings were still
represented significantly more than in publicly available maps with fine and coarse reso-
lution (VLCD and NLCD, respectively), and it more accurately represents the vegetation
cover types present on the landscape. If we had observed a significant loss of shrub/sapling
cover from our resampled classification, that would suggest that shrubs are typically dis-
tributed in isolated and small clumps. In reality, many species of shrub/saplings in our
system (Rubus spp., Cretaegus spp., and Robinia pseudoacacia) tend to exist in large clumps in
abandoned and lightly grazed pastures; likewise, regenerating saplings following timber
harvests also grow in large clumps that would be captured with coarse resolution data.
However, we did observe a reduction in shrub cover by ~5% when we resampled to a
coarser resolution map indicating that some shrubs and saplings do occur in small, isolated
clumps and will be lost from coarse grained maps.

Although grain is not the primary factor explaining the poor representation of shrub/
saplings in NLCD, the absence of information on vegetation height likely is. Publicly
available land cover maps such as NLCD rely on time series Landsat multi-spectral imagery
and do not incorporate canopy height information into their classification methodology [72].
Time series Landsat data should allow for the detection of forest disturbances that occur
between consecutive images and, coupled with expert knowledge of forest succession
in different regions, can infer the presence of transitional forest classes [72]. However,
misclassification errors between shrub/sapling and herbaceous and between shrub/sapling
and forest are common in NLCD [72], likely due to the spectral similarity of these cover
types. Our study corroborates this and shows that the shrub-forest transition class does not
accurately represent shrub/sapling cover in our focal region in the Appalachian Mountains.
Increased availability of global canopy height data [18], albeit at coarser resolution (30 m)
than used here, will hopefully result in a more accurate representation of shrub/saplings in
future releases of NLCD data and similar maps in other countries. Even coarse resolution
canopy height data will capture larger patches of shrubs and regenerating timber harvests
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and be a significant improvement over the current NLCD. The loss of information about
small patches of shrub/sapling cover due to coarse resolution vegetation structure data
may be acceptable depending on the goals of the study. For example, if the amount of
shrub/sapling cover at large spatial extents (entire states or multi-state regions) is of interest,
then working with 30 m resolution data may be necessary to decrease computer processing
time and power required. Range-wide distribution models for shrub-dependent species
or continental scale models of forest impacts on carbon budgets are examples of such
large-scale applications where coarse resolution data would be preferred. If, however, the
spatial configuration/arrangement of shrub/saplings, even small clumps, is of interest,
then maintaining fine resolution data (1 m) will be necessary and the spatial extent of
analyses will have to be limited to smaller areas (e.g., a county or locality).

4.2. Limitations

This study used LIDAR to create a canopy height model that captures the top of
canopy height only and does not include information about the presence or structure of
vegetation in the forest understory. Understory vegetation, including shrubs, saplings,
and herbaceous cover, is important ecologically as it contributes to wildlife habitat [73],
forest microclimate [74], and carbon stocks [75]. However, the high variation in sampling
density of LIDAR point clouds make it difficult to accurately predict understory vegetation
structure, though efforts to make this possible are ongoing [76]. Future efforts to represent
shrub/sapling cover in land cover classification maps should consider the inclusion of
understory woody vegetation as well; forests with a woody understory would be a different
class than forests without a woody understory.

The accuracy of our land cover classification may be over-estimated, especially in
areas with a complex mosaic of cover types. One of the challenges of working with high
resolution (1 m) data is the difficulty in assessing the accuracy of every pixel. As a result,
regions of several pixels (in our case 3 m buffers) are used for validation and there will
inevitably be variation in cover types within some of these regions leading to reference class
ambiguity [46]. We used recommended methods for dealing with this ambiguity; however,
we deleted the most heterogeneous validation points (≥4 cover types within 3 m buffer)
because we were not confident in our ability to assign a reference class based on visual
interpretation of imagery in these complex areas. Because these accounted for ~20% of our
validation points, we expect that the true accuracy of our classification is not as high as
reported. That said, to our knowledge, this is the first effort to classify shrub/sapling cover
across a large geographic area in the mountainous and mesic eastern United States, and our
classification is a significant improvement over NLCD and other land cover classifications
in its representation of shrub/sapling cover.

Due to limitations in funding, we were not able to assess the accuracy of our classified
map through ground truthing, yet we are confident in our findings for two reasons. First,
we conducted bird surveys in early successional habitats throughout the focal region in 2018
and 2019 and are familiar with the distribution and growth form of shrubs and saplings in
this system. The motivation for this study resulted from our desire to model bird-habitat
relationships for shrub-dependent species, and the lack of suitable land cover data with an
accurate representation of shrub/saplings to meet our objectives. Second, we were confi-
dent in our ability to visually interpret actual land cover during our accuracy assessment
from the high resolution NAIP and VBMP imagery, and followed the recommendations of
Stehman and Foody [46] to carry out a rigorous accuracy assessment. By removing complex
areas (i.e., those with ≥4 cover types within our 3 m buffer) from our accuracy assessment
we may be ignoring some mis-classifications of very small objects (<3 m), but accuracy
assessment is not possible on a per-pixel basis with high-resolution (1 m) classifications.
Had we used OBIA to classify land cover rather than a pixel-based classification of seg-
mented imagery, there would likely be fewer complex accuracy points removed from our
assessment. Proposed future improvements to the SegOptim package [77] may make this
possible for studies such as ours with large extents and high resolution.
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5. Conclusions

In this study, we present a fine-resolution land cover classification framework that
utilizes publicly available spatial data to accurately identify shrubs in a heavily forested,
mountainous region of the eastern United States where shrub/sapling cover is typically
under-represented in publicly available land cover datasets. A LIDAR-derived canopy
height model enabled discrimination of spectrally similar shrub/saplings and trees and
was the most important predictor of all vegetative cover types. Spatial resolution was
not the only factor explaining the poor representation of shrub cover in NLCD; when we
resampled our land cover classification to 30 m resolution, shrubs were still represented
significantly more than in NLCD. These findings point to the need for fine spatial and
temporal resolution canopy height data to accurately identify shrub/sapling cover due to
their patchy distribution, ephemeral nature, and ecological importance. We demonstrate a
reproducible framework for creating accurate custom land cover classifications that can
be used to improve our understanding of ephemeral and complex systems such as early
successional habitats with a mix of pasture/grassland and shrub/sapling cover types.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14061364/s1, Table S1: Confusion matrices for each of the
five counties.

Author Contributions: Conceptualization, E.S. and L.B.; Methodology, E.S., L.B. and B.L.; Validation,
L.B.; Formal Analysis, L.B. and B.L.; Data Curation, E.S.; Writing—Original Draft Preparation, E.S.,
L.B. and B.L.; Writing—Review & Editing, L.B. and B.L.; Visualization, L.B. and B.L.; Supervision,
L.B.; Project Administration, L.B.; Funding Acquisition, L.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was carried out with funds provided by the Virginia Department of Wildlife
Resources (EP2815408) through a Federal Aid in Wildlife Restoration grant from the U.S. Fish and
Wildlife Service.

Data Availability Statement: Land cover output and canopy height models for each county, as well
as R scripts used for this research are available on Dryad Data Depository (https://doi.org/10.506
1/dryad.jsxksn0b1, accessed on 6 January 2022). Training data shapefiles and accuracy assessment
points are available upon request from the authors.

Acknowledgments: We are grateful to V. Thomas for guidance with downloading and processing
LIDAR data and to S. Harding, S. Rogers, A. Balmer, N. Novak, and C. Gough for thoughtful input
on an earlier version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. With, K. Essentials of Landscape Ecology; Oxford University Press: Oxford, UK, 2019; ISBN 978-0198838395.
2. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the

2011 national land cover database for the conterminous United States—Representing a decade of land cover change information.
Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [CrossRef]

3. Grêt-Regamey, A.; Weibel, B.; Bagstad, K.J.; Ferrari, M.; Geneletti, D.; Klug, H.; Schirpke, U.; Tappeiner, U. On the effects of scale
for ecosystem services mapping. PLoS ONE 2014, 9, e112601. [CrossRef] [PubMed]

4. Rioux, J.F.; Cimon-Morin, J.; Pellerin, S.; Alard, D.; Poulin, M. How land cover spatial resolution affects mapping of urban
ecosystem service flows. Front. Environ. Sci. 2019, 7, 93. [CrossRef]

5. Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [CrossRef]
6. Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring urban tree cover using object-based image analysis and public domain

remotely sensed data. Remote Sens. 2011, 3, 2243–2262. [CrossRef]
7. Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using random forest. Remote Sens. Lett. 2014, 5,

112–121. [CrossRef]
8. Gonçalves, J.; Henriques, R.; Alves, P.; Sousa-Silva, R.; Monteiro, A.T.; Lomba, Â.; Marcos, B.; Honrado, J. Evaluating an

unmanned aerial vehicle-based approach for assessing habitat extent and condition in fine-scale early successional mountain
mosaics. Appl. Veg. Sci. 2016, 19, 132–146. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14061364/s1
https://www.mdpi.com/article/10.3390/rs14061364/s1
https://doi.org/10.5061/dryad.jsxksn0b1
https://doi.org/10.5061/dryad.jsxksn0b1
http://doi.org/10.1016/S0099-1112(15)30100-2
http://doi.org/10.1371/journal.pone.0112601
http://www.ncbi.nlm.nih.gov/pubmed/25549256
http://doi.org/10.3389/fenvs.2019.00093
http://doi.org/10.1093/jpe/rtm005
http://doi.org/10.3390/rs3102243
http://doi.org/10.1080/2150704X.2014.882526
http://doi.org/10.1111/avsc.12204


Remote Sens. 2022, 14, 1364 17 of 19

9. Davies, K.W.; Petersen, S.L.; Johnson, D.D.; Davis, D.B.; Madsen, M.D.; Zvirzdin, D.L.; Bates, J.D. Estimating juniper cover from
national agriculture imagery program (NAIP) imagery and evaluating relationships between potential cover and environmental
variables. Rangel. Ecol. Manag. 2010, 63, 630–637. [CrossRef]

10. Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Zégre, N.P.; Yuill, C.B. Comparison of NAIP orthophotography and rapideye satellite
imagery for mapping of mining and mine reclamation. GIScience Remote Sens. 2014, 51, 301–320. [CrossRef]

11. Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary datasets improve accuracy of object-based land
use/land cover classification in heterogeneous savanna landscapes. Remote Sens. Environ. 2019, 233, 111354. [CrossRef]

12. Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV)
imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [CrossRef]

13. Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J.
Photogramm. Remote Sens. 2017, 130, 277–293. [CrossRef]

14. Aguirre-Gutiérrez, J.; Seijmonsbergen, A.C.; Duivenvoorden, J.F. Optimizing land cover classification accuracy for change
detection, a combined pixel-based and object-based approach in a mountainous area in Mexico. Appl. Geogr. 2012, 34, 29–37.
[CrossRef]

15. Salehi, B.; Zhang, Y.; Zhong, M. A combined object- and pixel-based Image Analysis Framework for Urban Land Cover
classifiation of VHR Imagery. Photogramm. Eng. Remote Sens. 2013, 79, 999–1014. [CrossRef]

16. Martinuzzi, S.; Vierling, L.A.; Gould, W.A.; Falkowski, M.J.; Evans, J.S.; Hudak, A.T.; Vierling, K.T. Mapping snags and understory
shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 2009, 113, 2533–2546. [CrossRef]

17. Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Hermosilla, T. Estimation of biomass and volume of shrub vegetation using LiDAR
and spectral data in a Mediterranean environment. Biomass Bioenergy 2012, 46, 710–721. [CrossRef]

18. Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.;
Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021,
253, 112165. [CrossRef]

19. U.S. Geological Survey. The National Map—New Data Delivery Homepage, Advanced Viewer, Lidar Visualization: US. Geological Survey
Fact Sheet 2019–3032; U.S. Geological Survey: Reston, VA, USA, 2019; Volume 2.

20. Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. High-resolution mapping
of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sens. Environ. 2016, 184, 361–373.
[CrossRef]

21. Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland-urban interface: A comparison of pixel- and
object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [CrossRef]

22. Askins, R.A. Sustaining biological diversity in early successional communities: The challange of managing unpopular habitats.
Wildl. Soc. Bull. 2001, 29, 407–412. [CrossRef]

23. King, D.I.; Schlossberg, S. Synthesis of the conservation value of the early-successional stage in forests of eastern North America.
For. Ecol. Manage. 2014, 324, 186–195. [CrossRef]

24. Besnard, S.; Carvalhais, N.; Arain, M.A.; Black, A.; De Bruin, S.; Buchmann, N.; Cescatti, A.; Chen, J.; Clevers, J.G.P.W.; Desai,
A.R.; et al. Quantifying the effect of forest age in annual net forest carbon balance. Environ. Res. Lett. 2018, 13, 124018. [CrossRef]

25. Ciais, P.; Dolman, A.J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P.J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.;
et al. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system.
Biogeosciences 2014, 11, 3547–3602. [CrossRef]

26. Singh, K.K.; Vogler, J.B.; Shoemaker, D.A.; Meentemeyer, R.K. LiDAR-Landsat data fusion for large-area assessment of urban land
cover: Balancing spatial resolution, data volume and mapping accuracy. ISPRS J. Photogramm. Remote Sens. 2012, 74, 110–121.
[CrossRef]

27. Hartfield, K.A.; Landau, K.I.; van Leeuwen, W.J.D. Fusion of high resolution aerial multispectral and lidar data: Land cover in the
context of urban mosquito habitat. Remote Sens. 2011, 3, 2364–2383. [CrossRef]

28. Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of urban woody vegetation cover using multispectral imagery
and LiDAR. Urban For. Urban Green. 2018, 29, 248–260. [CrossRef]

29. Buehler, D.A.; Roth, A.M.; Vallender, R.; Will, T.C.; Confer, J.L.; Canterbury, R.A.; Swarthout, S.B.; Rosenberg, K.V.; Bulluck,
L.P. Status and conservation priorities of Golden-winged Warbler (Vermivora chrysoptera) in North America. Auk 2007, 124,
1439–1445. [CrossRef]

30. Albrecht-Mallinger, D.J.; Bulluck, L.P. Limited evidence for conspecific attraction in a low-density population of a declining
songbird, the Golden-winged Warbler (Vermivora chrysoptera). Condor 2016, 118, 451–462. [CrossRef]

31. WorldView Solutions, Inc. Technical Plan of Operations: Virginia Statewide Land Cover Data Development; WorldView Solutions:
Richmond, VA, USA, 2016.

32. Rose, A.K. Virginia’s forests, 2001. In Resource Bulletin SRS-120; US Department of Agriculture Forest Service, Southern Research
Station: Asheville, NC, USA, 2007; 140p. [CrossRef]

33. Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Ramezan, C.A.; Morgan, A.N.; Pauley, C.E. Large-area, high spatial resolution land
cover mapping using random forests, GEOBIA, and NAIP orthophotography: Findings and recommendations. Remote Sens. 2019,
11, 1409. [CrossRef]

http://doi.org/10.2111/REM-D-09-00129.1
http://doi.org/10.1080/15481603.2014.912874
http://doi.org/10.1016/j.rse.2019.111354
http://doi.org/10.1109/TGRS.2008.2009355
http://doi.org/10.1016/j.isprsjprs.2017.06.001
http://doi.org/10.1016/j.apgeog.2011.10.010
http://doi.org/10.14358/PERS.79.11.999
http://doi.org/10.1016/j.rse.2009.07.002
http://doi.org/10.1016/j.biombioe.2012.06.023
http://doi.org/10.1016/j.rse.2020.112165
http://doi.org/10.1016/j.rse.2016.07.026
http://doi.org/10.1016/j.compenvurbsys.2007.10.001
http://doi.org/10.1109/MILCOM.2011.6127455
http://doi.org/10.1016/j.foreco.2013.12.001
http://doi.org/10.1088/1748-9326/aaeaeb
http://doi.org/10.5194/bg-11-3547-2014
http://doi.org/10.1016/j.isprsjprs.2012.09.009
http://doi.org/10.3390/rs3112364
http://doi.org/10.1016/j.ufug.2017.12.001
http://doi.org/10.1093/auk/124.4.1439
http://doi.org/10.1650/CONDOR-15-217.1
http://doi.org/10.2737/SRS-RB-120
http://doi.org/10.3390/rs11121409


Remote Sens. 2022, 14, 1364 18 of 19

34. Li, X.; Shao, G. Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern USA.
Remote Sens. 2014, 6, 11372–11390. [CrossRef]

35. Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of sampling and cross-validation tuning strategies for regional-scale
machine learning classification. Remote Sens. 2019, 11, 185. [CrossRef]

36. Li, N.; Lu, D.; Wu, M.; Zhang, Y.; Lu, L. Coastal wetland classification with multiseasonal high-spatial resolution satellite imagery.
Int. J. Remote Sens. 2018, 39, 8963–8983. [CrossRef]

37. Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of land cover, forest, and tree species classes with Ziyuan-3 multispectral
and stereo data. Remote Sens. 2019, 11, 164. [CrossRef]

38. Defries, R.S.; Townshend, J.R. Ndvi-Derived Land Cover Classifications At a Global Scale. Int. J. Remote Sens. 1994, 15, 3567–3586.
[CrossRef]

39. Schold, E.K. Using a Custom Landscape Classification to Understand the Factors Driving Site Occupancy by a Rapidly Declining
Migratory Songbird. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2018.

40. Timm, B.C.; McGarigal, K. Fine-scale remotely-sensed cover mapping of coastal dune and salt marsh ecosystems at Cape Cod
National Seashore using Random Forests. Remote Sens. Environ. 2012, 127, 106–117. [CrossRef]

41. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2020; Available online: https://www.R-project.org/ (accessed on 6 January 2022).

42. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27,
294–300. [CrossRef]

43. Breiman, L. Random forests. Random For. 2019, 45, 5–32. [CrossRef]
44. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22.
45. Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. R Packag. Version 2.7-15. 2018. Available

online: http://CRAN.R-project.org/package=raster (accessed on 6 January 2022).
46. Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231,

111199. [CrossRef]
47. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and

assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]
48. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
49. Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate

landscape metrics. Ecography 2019, 42, 1648–1657. [CrossRef]
50. Koetz, B.; Morsdorf, F.; van der Linden, S.; Curt, T.; Allgöwer, B. Multi-source land cover classification for forest fire management

based on imaging spectrometry and LiDAR data. For. Ecol. Manag. 2008, 256, 263–271. [CrossRef]
51. Ayhan, B.; Kwan, C. Tree, shrub, and grass classification using only RGB images. Remote Sens. 2020, 12, 1333. [CrossRef]
52. Dewitz, J. National Land Cover Database (NLCD) 2016 Products (version 2.0, July 2020); Data Release; U.S. Geological Survey: Seattle,

WA, USA, 2019. [CrossRef]
53. Thatcher, C.A.; Lukas, V.; Stoker, J.M. The 3D Elevation Program and Energy for the Nation; Fact Sheet; United States Geological

Survey: Seattle, WA, USA, 2020. [CrossRef]
54. Loveland, T.R.; Merchant, J.W.; Ohlen, D.O.; Brown, J.F. Development of a land-cover characteristics database for the conterminous

US. Photogramm. Eng. Remote Sens. 1991, 57, 1453–1463.
55. Hunt, E.R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from

NDVI. Int. J. Remote Sens. 1994, 15, 1725–1730.
56. Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack

damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [CrossRef]
57. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series.

Remote Sens. Environ. 2010, 114, 106–115. [CrossRef]
58. Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural

features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [CrossRef]
59. Soubry, I.; Doan, T.; Chu, T.; Guo, X. A systematic review on the integration of remote sensing and gis to forest and grassland

ecosystem health attributes, indicators, and measures. Remote Sens. 2021, 13, 3262. [CrossRef]
60. Maxwell, A.E.; Warner, T.A.; Vanderbilt, B.C.; Ramezan, C.A. Land cover classification and feature extraction from National

Agriculture Imagery Program (NAIP) Orthoimagery: A review. Photogramm. Eng. Remote Sens. 2017, 83, 737–747. [CrossRef]
61. Van Iersel, W.; Straatsma, M.; Middelkoop, H.; Addink, E. Multitemporal classification of river floodplain vegetation using time

series of UAV images. Remote Sens. 2018, 10, 1144. [CrossRef]
62. Morgan, B.E.; Chipman, J.W.; Bolger, D.T.; Dietrich, J.T. Spatiotemporal analysis of vegetation cover change in a large ephemeral

river: Multi-sensor fusion of unmanned aerial vehicle (uav) and landsat imagery. Remote Sens. 2021, 13, 51. [CrossRef]
63. Newman, E.A. Disturbance Ecology in the Anthropocene. Front. Ecol. Evol. 2019, 7, 147. [CrossRef]
64. Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.;

et al. Bringing an ecological view of change to landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [CrossRef]
65. Pazúr, R.; Price, B.; Atkinson, P.M. Fine temporal resolution satellite sensors with global coverage: An opportunity for landscape

ecologists. Landsc. Ecol. 2021, 36, 2199–2213. [CrossRef]

http://doi.org/10.3390/rs61111372
http://doi.org/10.3390/rs11020185
http://doi.org/10.1080/01431161.2018.1500731
http://doi.org/10.3390/rs11020164
http://doi.org/10.1080/01431169408954345
http://doi.org/10.1016/j.rse.2012.08.033
https://www.R-project.org/
http://doi.org/10.1016/j.patrec.2005.08.011
http://doi.org/10.1201/9780429469275-8
http://CRAN.R-project.org/package=raster
http://doi.org/10.1016/j.rse.2019.05.018
http://doi.org/10.1016/j.rse.2014.02.015
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1111/ecog.04617
http://doi.org/10.1016/j.foreco.2008.04.025
http://doi.org/10.3390/rs12081333
http://doi.org/10.5066/P96HHBIE
http://doi.org/10.3133/fs20193051
http://doi.org/10.1016/j.rse.2006.03.012
http://doi.org/10.1016/j.rse.2009.08.014
http://doi.org/10.1016/j.rse.2011.01.009
http://doi.org/10.3390/rs13163262
http://doi.org/10.14358/PERS.83.10.737
http://doi.org/10.3390/rs10071144
http://doi.org/10.3390/rs13010051
http://doi.org/10.3389/fevo.2019.00147
http://doi.org/10.1890/130066
http://doi.org/10.1007/s10980-021-01303-w


Remote Sens. 2022, 14, 1364 19 of 19

66. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11,
138–146. [CrossRef]

67. Almeida, D.R.A.; Broadbent, E.N.; Zambrano, A.M.A.; Wilkinson, B.E.; Ferreira, M.E.; Chazdon, R.; Meli, P.; Gorgens, E.B.; Silva,
C.A.; Stark, S.C.; et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obs.
Geoinf. 2019, 79, 192–198. [CrossRef]

68. Leipe, S.C.; Carey, S.K. Rapid shrub expansion in a subarctic mountain basin revealed by repeat airborne lidar. Environ. Res.
Commun. 2021, 3, 071001. [CrossRef]

69. Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002,
17, 761–782. [CrossRef]

70. Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [CrossRef]
71. Wagner, H.H.; Fortin, M.J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 86, 1975–1987. [CrossRef]
72. Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall methodology design for the

United States national land cover database 2016 products. Remote Sens. 2019, 11, 2971. [CrossRef]
73. Lesak, A.A.; Radeloff, V.C.; Hawbaker, T.J.; Pidgeon, A.M.; Gobakken, T.; Contrucci, K. Modeling forest songbird species richness

using LiDAR-derived measures of forest structure. Remote Sens. Environ. 2011, 115, 2823–2835. [CrossRef]
74. Stickley, S.F.; Fraterrigo, J.M. Understory vegetation contributes to microclimatic buffering of near-surface temperatures in

temperate deciduous forests. Landsc. Ecol. 2021, 36, 1197–1213. [CrossRef]
75. Johnson, K.D.; Domke, G.M.; Russell, M.B.; Walters, B.; Hom, J.; Peduzzi, A.; Birdsey, R.; Dolan, K.; Huang, W. Estimating

aboveground live understory vegetation carbon in the United States. Environ. Res. Lett. 2017, 12, 125010. [CrossRef]
76. Venier, L.A.; Swystun, T.; Mazerolle, M.J.; Kreutzweiser, D.P.; Wainio-Keizer, K.L.; McIlwrick, K.A.; Woods, M.E.; Wang, X.

Modelling vegetation understory cover using LiDAR metrics. PLoS ONE 2019, 14, e0220096. [CrossRef]
77. Gonçalves, J.; Pôças, I.; Marcos, B.; Mücher, C.A.; Honrado, J.P. SegOptim—A new R package for optimizing object-based image

analyses of high-spatial resolution remotely-sensed data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 218–230. [CrossRef]

http://doi.org/10.1890/120150
http://doi.org/10.1016/j.jag.2019.03.014
http://doi.org/10.1088/2515-7620/ac0e0c
http://doi.org/10.1023/A:1022995922992
http://doi.org/10.1023/B:LAND.0000021711.40074.ae
http://doi.org/10.1890/04-0914
http://doi.org/10.3390/rs11242971
http://doi.org/10.1016/j.rse.2011.01.025
http://doi.org/10.1007/s10980-021-01195-w
http://doi.org/10.1088/1748-9326/aa8fdb
http://doi.org/10.1371/journal.pone.0220096
http://doi.org/10.1016/j.jag.2018.11.011

	Introduction 
	Materials and Methods 
	Study Area 
	Predictor Raster Acquisition and Processing 
	Training Data 
	Random Forest Classification 
	Accuracy Assessment 
	Comparison with Publicly Available Land Cover Data 

	Results 
	Classification Accuracy 
	Predictor Importance 
	Comparison with Publicly Available Land Cover Data 

	Discussion 
	Comparison with Publicly Available Land Cover Data 
	Limitations 

	Conclusions 
	References

