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Abstract: LiDAR (Light Detection And Ranging) technology is an important means to obtain three-
dimensional information of trees and vegetation. However, due to the influence of scanning mode,
environmental occlusion and mutual occlusion between tree canopies and other factors, a tree point
cloud often has different degrees of data loss, which affects the high-precision quantitative extraction
of vegetation parameters. Aiming at the problem of a tree laser point cloud being missing, an
individual tree incomplete point cloud restoration method based on local features of the point cloud
is proposed. The L1-Median algorithm is used to extract key points of the tree skeleton, then the
dominant direction of skeleton key points and local point cloud density are calculated, and the point
cloud near the missing area is moved based on these features to gradually complete the incomplete
point cloud compensation. The experimental results show that the above repair method can effectively
repair the incomplete point cloud with good robustness and can adapt to the individual tree point
cloud with different geometric structures and correct the branch topological connection errors.

Keywords: LiDAR; individual tree; incomplete point cloud; tree skeleton; local feature; L1-Median
algorithm

1. Introduction

The 3D information of vegetation is an important part of digital forestry, which pro-
vides important data guarantees for vegetation carbon storage, biomass and ecological
assessment. Under the background of rapid development of big data and artificial intelli-
gence, active remote sensing technology represented by LiDAR has gradually become an
important means for vegetation 3D information acquisition and forest resources investiga-
tion. It provides technical support for forest resource investigation and ecological process
detection and analysis at different scales [1–6]. LiDAR technology is characterized by the
fast acquisition of spatial data, a high degree of automation, high precision and a large
amount of data [7]. With the help of this technology, high-precision spatial information of
individual trees and small-scale forests can be quickly obtained, and then the segmentation
of individual tree canopy structures [8–10] and tree structural reconstructions [4,11], and the
extraction of individual tree vegetation information [12,13] can be performed. For example,
Terrestrial Laser Scanning (TLS) can quickly extract vegetation parameters, such as tree
volume, leaf area index and gap fraction, providing key parameters for forest ecological
evaluation investigation [14]. In addition, TLS can also be used to evaluate the height of
individual trees and leaf area density [15]. In addition to individual tree/forest vegetation
parameter extraction, high-precision and high-density tree point cloud is also widely used
in high-precision extraction and reconstruction of branch structure [16], which can provide
important data and model support for digital forestry and digital city construction.

However, restricted by factors, such as laser scanning mode and environmental occlu-
sion, the LiDAR point cloud of individual trees/forests is often missing, to varying degrees.
For example, (1) limited by the scanning resolution, the complex layered branch structure
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inside the canopy often has the situation that the thin branches in the center of the canopy
are blocked by the thin branches in the outer layer; (2) affected by the scanning point cloud
density and scanning distance, different trees/different parts of the same tree due to its
distance inconsistency, often result in a point cloud density that is not uniform, which to a
certain extent, can be seen as an incomplete point cloud. In addition, the point cloud near
the missing area also has problems, such as drastic density changes; (3) the thin branch
point cloud inside the canopy is usually missing in a large range due to the self-occlusion of
branches/leaves and the external occlusion of pedestrians/billboards during the scanning
process; (4) compared with the time-consuming and labor-intensive multi-station scanning,
single-station scanning is simple and efficient, but the data loss of a point cloud obtained
by single-station scanning is more serious. Usually, only the tree point cloud facing the
scanning device can be obtained, and a large number of missing point clouds exist on the
side away from the scanner.

The absence of point clouds usually has an adverse impact on the extraction of veg-
etation parameters and the abstract expression of branches. For example, the individual
tree point cloud based on airborne LiDAR, due to its lack of twigs and trunks inside the
tree canopy, often produces large data deviations in large-scale ecological studies of forest
biomass and volume, which brings difficulties to practical analysis and application. In
addition, in the practical application of individual tree 3D reconstruction, the lack of re-
gional point clouds will further aggravate the difficulty of high-precision 3D reconstruction
of individual trees. If the incomplete point cloud is ignored and the model is directly
constructed, problems, such as the wrong connection of branch topology and inconsistency
of branch radius with the true value will often occur. In order to ensure the realism and
fidelity of the model, point cloud repair for the missing area is one of the simplest and most
direct strategies to solving the problem of high-precision model reconstruction in the case
of missing parts of point clouds. Figure 1 shows the scenarios that may occur when there
are missing data in the bifurcated branch structure region of an individual tree. It can be
seen that when the branch point cloud is complete, the branch skeleton can be extracted
correctly and completely, and the branch topological connection is correct, as shown in
Figure 1a,c. However, when the point cloud inside the branch, especially the point cloud at
the junction, is missing, the extracted skeleton may have topological connection errors, as
shown in Figure 1b,d. In this case, if the skeleton/tree 3D model is constructed directly
without data repair, problems, such as branch topology errors and radius calculation errors
will often occur, affecting the accuracy of tree skeleton extraction and model reconstruction.
Therefore, it is important to construct a branch point cloud enhancement algorithm based
on the acquired tree point clouds to maintain the tree skeleton topology and tree model
realism.

To solve the problem of missing parts of a tree point cloud, many authors have
proposed data enhancement and recovery methods for tree point clouds, which can be
roughly divided into the following three categories: (1) Repairing missing parts of point
clouds based on point cloud features, usually using point cloud local features, such as
normal vector [17], curvature factor [18], reflection intensity [19], point cloud density and
normal information [20]. For example, repairing the incomplete point cloud based on
structure-aware global optimization algorithms [21], based on point cloud local density
information [22], and based on point cloud normal information [23]. The branch point
cloud repaired by this method is often more consistent with the natural growth pattern
of vegetation, but the time cost is high. (2) Multi-source data fusion for missing parts of
point cloud data enhancement, such as improving point cloud data based on backpack
LiDAR scanning [24] or multi echo-recording mobile laser scanning [25]. Although these
methods are direct and convenient, it brings problems, such as multi-source data fusion and
registration. (3) Based on prior knowledge or modeling algorithms, such as methods based
on first reconstructing the branch model/fitting the branch cylinder and then completing
the missing point cloud [7,26]. These methods can obtain relatively complete branch detail
information, but the branch radius will violate the natural growth rules, and the subsequent
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completion needs further prior constraints to ensure the realism of the branch point cloud
reconstruction model.

Figure 1. Schematic diagram of topological connection of bifurcation structure of the branch. (a) True
trunk skeleton; (b) Structural fracture of branches; (c) True trunk skeleton line; (d) Missing branches
causes skeleton errors. In the figure, black lines are skeleton lines, a1 and a2 are branches, red dots in
(c,d) are skeleton points, and the red frame is the region where parts of the point cloud are missing.

Therefore, in order to ensure the reliability of vegetation parameter extraction and
ecological analysis and the accuracy of branch reconstruction, it is important to explore a
high-precision point cloud restoration algorithm that conforms to the tree structure rules.
Considering the disadvantages of long recovery time of algorithms based on point cloud
density and normal information, and the disadvantages of the lack of realism based on an
a priori strategy, this paper adds constraints on tree structure direction and proposes an
iterative point cloud optimization algorithm based on local point cloud weight density and
skeleton point dominant direction. The algorithm realizes the repair and enhancement of
the incomplete point cloud of an individual tree through iteration and obtains the point
cloud of an individual tree branch that matches the geometry of the real tree. The repaired
and enhanced tree point cloud can lay an important data foundation for the subsequent
extraction of vegetation parameters and ecological analysis, as well as the reconstruction of
branch structure with high accuracy and correct topological connection.

2. Tree Point Cloud Restoration

The process framework of the repair algorithm in this paper is shown in Figure 2.
Firstly, the L1-Median algorithm [27] is used to extract the median points of the individual
tree point cloud as the initial skeleton key points. Then, the initial skeleton key points
are combined with the original individual tree point cloud, which is used to calculate the
local weight density of the incomplete point cloud and the dominant direction of each
skeleton key point. They are then used as a reference for point cloud repair optimization.
The repair process draws on the point cloud movement strategy of the local awareness
global optimization algorithm; the force and contraction constraints of each point are added
to make the adjacent points in the missing area move to the missing branches along the
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constraint distance. Since there is no heterogenous point cloud involved in the restoration
process, the total amount of point cloud of repaired branches remains unchanged, so
the point cloud density will gradually decrease with the extension of branches, and the
density change is closer to the natural rules of vegetation growth. Finally, we iterate
the process of “skeleton point extraction—point cloud superposition—local point cloud
feature calculation—input point cloud spatial position optimization”. When the force and
contractive constraint of each point near the missing area reach equilibrium, the iterative
process stops and the missing repair is completed.

Figure 2. The process of incomplete point cloud repair optimization.

2.1. Extraction of Initial Skeleton Key Points

Studies on tree skeleton extraction based on LiDAR point cloud can be roughly divided
into the following three categories: (1) Skeleton extraction based on clustering algorithms,
such as the clustering algorithm based on horizontal data sets [28,29], i.e., making horizontal
slices at a certain distance in the Z dimension, followed by clustering the point clouds
within the horizontal slices to form skeleton points. There are also extraction methods
based on K-means clustering of tree skeleton points [30,31]. (2) Skeleton extraction based
on graph theory methods, such as tree skeleton extraction based on octree structure [32,33].
(3) Laplacian operator-based skeleton extraction methods [5,34].

2.1.1. Random Sampling of Original Point Cloud

Considering that the skeleton extraction involved in this paper only serves to calculate
the local features and repair of a point cloud, and does not require high spatial geometric
accuracy, the L1-Median algorithm proposed in reference [27] is selected as the skeleton key
point extraction method. Since there is often a discrepancy in cloud density between twigs
and main branches, direct skeleton extraction based on the L1-Median algorithm is prone
to shrinkage inconsistency, that is, skeleton extraction is completed with a large number
of skeleton points with higher density, while skeleton points of twig are not effectively
extracted. In order to prevent such a situation, this paper refers to the iterative shrinkage
method in reference [27], which firstly identifies the labeled skeleton branch points, then
selects suitable bridging points from the non-branch points to connect the branch points
with the non-branch points, and finally gradually expands the neighborhood values to
achieve the growth and merging of branches. Specifically, the original individual tree point
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cloud is first randomly sampled to obtain a set of sampled points, and the set of points is
marked as non-branching points.

2.1.2. Point Cloud Skeleton Extraction

After random sampling of the original point set, the tree skeleton key points are ex-
tracted based on the L1-Median algorithm with iterative shrinkage. Specifically, a scattered
individual tree point cloud that is undirected, unevenly distributed, and contains noise and
outlier points is used as input, denoted as Q = {qj}j∈J, and the output of the algorithm is a
one-dimensional curve skeleton point. In order to extract the initial skeleton point of an
individual tree point cloud, this paper transforms the initial skeleton point location problem
into a location problem of finding a set of optimal point sets X = {xi}i∈I, where point set
X is a set of point with the minimum Euclidean distance from the point cloud in its local
neighborhood. The formula for a point xi in the point set X is as in Equation (1) [22,27]:

xi= argmin
X

∑
i∈I

∑
j∈J
‖ xi − qj ‖ θ(‖ xi − qj ‖) + R(X) , (1)

where the first term is to calculate the spatial position of the optimal point set X in the input
individual tree point set Q; the second term R(X) is a regular term with conditions attached,
which mainly serves to generate a repulsive force when the local branch skeleton is formed
and imposes a penalty on the position of point xi to ensure the uniform distribution of the
skeleton point positions. I is the index point set of point set X and J is the index point set of
point set Q. θ is a fast decaying function, whose definition is shown in Equation (2):

θ = e−r2/(h/2)2
, (2)

where h is the local support radius and it defines the size of the supporting local neighbor-
hood for L1-medial skeleton construction.

In order to prevent the appearance of non-uniform distribution situations, such as
point clusters, it is proposed to add a conditional regular term R(X) to apply a repulsive
force during the generation of local skeleton points, so as to avoid point offset due to
iteration when the initial skeleton points extracted by the L1-Median algorithm are already
at the appropriate positions, and to ensure the uniform distribution of the initial skeleton
points.

The classical weighted Principal Component Analysis (PCA) is used to detect the
distribution of the point cloud near the individual tree branch skeleton structure. For a
point xi in the point set X, the eigenvalues and eigenvectors of a 3 × 3 weighted covariance
matrix are calculated as shown in Equation (3):

Ci = ∑
i,∈I\{i}

θ(‖ xi − xi′ ‖)(xi − xi′)
T(xi − xi′). (3)

To conditionally apply the repulsion force, we define our regularization function as in
Equation (4) [27]:

R(X) =∑
i∈I

γi ∑
i′∈I\{i}

θ(‖ xi − xi′ ‖)
σi ‖ xi − xi′ ‖

, (4)

where γi is the balancing constant of the optimal point set X, σi is the directionality degree
of xi within a local neighborhood, and its calculation formula is as in Equation (5):

σi= σ(xi) =
˘2

i
˘0

i + ˘1
i + ˘2

i
, (5)

where ˘0
i , ˘1

i , ˘2
i are the eigenvalues of point xi, where ˘0

i ≤ ˘1
i ≤ ˘2

i forms an orthogonal
system, which is the principal component of the point set. The closer σi is to 1, the smaller
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˘1
i and ˘0

i are compared to ˘2
i ; and hence, the more points around xi are aligned along the

direction of the tree skeleton.
After determining the regular term R(X), this paper calculates the L1-median point xi,

αij =
θ(‖xi−qj‖)
‖xi−qj‖

, βii′ =
θ(‖xi−xi′‖)
‖xi−xi′‖2 . When the energy gradient value is 0, the fixed coefficient

at each point should satisfy Equation (6) [27]:

∑
j∈J

(xi − qj)αij − γi ∑
i′∈I\{i}

xi − xi′
σi

βii′ = 0. (6)

At this point, the parameter µ is defined, and µ satisfies Equation (7) [27]:

µ =
γi ∑i′∈I\{i} βii′

σi ∑j∈J αij
, ∀ i ∈ I. (7)

In order to avoid the xi coefficient matrix being singular, let 0 ≤ µσi < 1/2, and the L1
median point xi is solved iteratively at the same time. Note, that the median point set in the
current iterate Xk =

{
xk

i

}
, k = 0, 1, · · · , then the point set

{
xk+1

i

}
generated in the next

iterate is as shown in Equation (8):

xk+1
i =

∑j∈J qjα
k
ij

∑j∈J αk
ij

+ µσk
i

∑ i′∈I\{i}

(
xk

i−xk
i′

)
βk

ii′

∑ i′∈I\{i} βk
ii′

, (8)

where αk
ij =

θ(‖xk
i−qj‖)

‖xk
i−qj‖

, j ∈ J; βk
ii′ =

θ(‖xk
i−xk

i′‖)
‖xk

i−xk
i ′‖

, i′ ∈ I\{i}; σk
i = σ

(
xk

i

)
.

Since σk
i ∈ (0, 1] can adaptively adjust the repulsive force based on the point domi-

nant direction. In this paper, only the control parameter 0≤ µ < 1/2, can control the penalty
strength of the overall individual tree point cloud during the iterative shrinkage process.

This paper iteratively shrinks the set of sampling points according to the initial neigh-
borhood value. The initial contraction radius is set according to the initial neighborhood
radius, as shown in Equation (9) [22,27]:

h0 = 2dbb/ 3
√
|J|, (9)

where h0 is the initial neighborhood value, dbb is the diagonal length of the input Q’s
bounding box and |J| is the number of points in Q.

2.1.3. Searching Key Points in Skeletons

To identify branch points in the set of labeled sampling points, this paper calculates the
directional metric σi for all non-branch points and eliminates outlying points based on the
k-nearest neighbor algorithm (the default k value set is 6). Meanwhile, the corresponding
threshold value is set for σi. Based on the experience of reference [22], it is set that when
σi > 0.9, the point xi is identified as a candidate branch point, and it is determined that
all points in the neighborhood of point xi have the same directional distribution at this
time. Then the labeled branch points are further identified based on the candidate branch
points. In this paper, the point corresponding to the maximum σ value is labeled as seed
point x0, and all candidate branch points in its neighborhood are traversed from point
x0. Specifically, this paper calculates the distribution direction of point xi based on PCA
and searches for candidate branch points in the vicinity of point xi along the direction.
The search process for branch points is terminated when there are no points within the
neighborhood that satisfy condition (10):

cos
(
∠
( →

XiXi−1,
→

XiXi+1

))
≤ −0.9, (i = · · · ,− 1, 0, 1, · · ·). (10)
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The new iteration process selects the largest σi value from the remaining candidate
branch points as the new seed point and iterates until all candidates have been processed.

In the process of searching for branch points, if a fixed value h0 is used as the neighbor-
hood radius for searching, there are often some branch points that are incorrectly marked as
non-branch points, thus causing some regions of branch skeletons to be missing. Therefore,
an adaptive neighborhood radius value h is needed to better adapt to the variation of
the different individual tree structures and avoid the phenomenon of over-shrinkage and
under-shrinkage. Based on the assumption that the individual tree point cloud gradually
becomes less dense along the skeleton structure from the root to the end of the branch, we
gradually increase the size of the h value during the shrinkage iterations, while eliminating
the branch points that have been marked. At each iteration, the neighborhood value is to
be increased by ∆h, and the equations are as follows:

hi = hi−1 + ∆h, (11)

∆h = h0/4. (12)

2.2. Local Feature Calculation of Point Cloud (Calculation of Dominant Direction and Local Point
Cloud Weight Density)

Based on the extracted L1-Median initial skeleton key points, the dominant direction
and local point cloud weight density of skeleton key points in the individual tree point
cloud were defined, and the adjacent correlation points of the missing area were guided to
move along the dominant direction, and the individual tree incomplete point cloud was
gradually repaired.

Specifically, based on the assumption that each branch extends in a unique direction,
the extension direction of the branch to which each point belongs is defined as the dominant
direction of the point, and the dominant direction of the initial skeleton point is used to
represent the dominant direction of the points in the neighborhood of the skeleton point.
Firstly, the k nearest neighbors of the initial skeleton point i are obtained based on the
k-nearest neighbor algorithm [35], and the dominant direction of these k nearest neighbors
are defined to be the same as the dominant direction of the initial skeleton point i. The sub-
nodes of the initial skeleton point can be divided into three cases: (1) contains only a single
sub-node, i.e., this initial skeleton point is the internal point of the branch; (2) contains two
or more sub-nodes, i.e., this initial skeleton point is the branch bifurcation point; (3) does
not contain sub-nodes, i.e., it is a branch end skeleton point. When the initial skeleton
point is located inside the branch, the dominant direction of the initial skeleton point i is
calculated schematically as shown in Figure 3a. Where the red nodes i, j, and k represent
the initial skeleton points, the yellow, blue, and green nodes represent the original point
cloud (different colors represent the nearest neighbors of different skeleton points), and
the green line represents the dominant direction of skeleton points i and j. The dominant
direction of the skeleton point is the direction that the initial skeleton point i points to its
unique child node j. This direction also represents the dominant direction of the k points in
the neighborhood of point i (the points indicated in yellow in the figure). When the initial
skeleton point is located at the branch bifurcation point, at this time, based on the single
child node dominant direction calculation method, the dominant direction is calculated
for each initial skeleton point of the branch route in turn, and the calculation schematic
is shown in Figure 3b, where the red node is the initial skeleton point and the green line
represents the dominant direction of the point. In the case of Figure 3b, this paper first
calculates the dominant direction of all skeleton points on branching route a, and then
calculates the dominant direction of all skeleton points on branching route b based on the
bifurcated skeleton point i. When the initial skeleton point is located at the end of the
branch, the traversal iteration ends at this point, and the dominant direction of the end
skeleton point is set to be the same as the dominant direction of its parent node.
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Figure 3. Calculation of the dominant direction of the initial skeleton point. (a) Single child node;
(b) Multi child nodes.

After determining the dominant direction of the initial skeleton point, the point cloud
is guided to move according to the dominant direction of the key point. Drawing on the
idea of structure-aware global optimization [21], this paper analogizes point clouds as
particles with electric power. Then these particles move freely according to the dominant
direction, and the repair of the point cloud in the missing region is completed when the
particles reach force equilibrium and stop moving. For the above purpose, it is assumed
that each point in these discrete point clouds is a particle with the same kind of charge.
They repel each other, so the particle at the end of the branch point cloud will be repelled
by its forward particle and move. However, these particles cannot be moved arbitrarily,
because the branches have directions, so it is necessary to obtain the direction of each
branch, and then let these particles move along the direction of this branch extension. Next,
it is necessary to define the force between the particles to control the range of motion
of these particles, and Fr is defined to express the repulsive force of each particle by the
surrounding particles. The direction of this force follows the extension direction of the
branch, which is the projection of the repulsive force of the surrounding particles on this
particle in the extension direction of the branch, either in the same direction as the extension
of the branch or in the opposite direction. However, if there is only a repulsive force, the
particle at the end will always move in the direction of the branch extension and will not
stop, so a binding force Fs is needed to prevent the point from deviating significantly from
the original position of the point. The direction of this force should be from the current
position to the original position of the point. The farther the point deviates from its original
position, the stronger the force should be, similar to a spring force. A particle is subjected
to the joint action of these two forces, and when the particle finally stops moving, the two
forces should be equal in magnitude and opposite in direction, so that the particle is in a
state of force equilibrium. When all the particles stop moving, the missing part is repaired
by these particles.

To quantify the force equilibrium state of the particles (point cloud), a constraint is
imposed on the moving distance of the points, and the local point cloud weight density dj of
the key points of the skeleton is defined, and the calculation formula is as in Equation (13):

dj= 1/vi, (13)

where vi is the average distance of all points connected to the skeleton point i of the key
point.

The local point cloud weight density can ensure that the tree point cloud moves within
a small range, following the vegetation growth law conditions. For example, in the area
with a larger local point cloud weight density, it indicates that the point cloud is closer
to its skeleton key point, the point cloud density is higher, and the distance to be moved
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becomes larger accordingly. Accordingly, in the region where the local point cloud weights
are less dense, the neighboring points are farther away from the skeleton key points, the
point cloud is sparser, and the distance to be moved becomes smaller accordingly.

2.3. Iterative Repair Optimization

After obtaining the dominant direction and local weight density of the point, in order
to further quantify the balancing condition, the idea of gravitational and repulsive force
construction is borrowed from reference [21] to define the action force and contractive
constraint of the method point in this paper, where the formula of the action force Fr(i) is
shown in Equation (14):

Fr(i) = ∑
j∈Ωj

OT
i

didj

‖ Pi − Pj ‖2

(
Pi − Pj

)
Oi, (14)

where di and dj are the local weight density of point I and point j, Pi and Pj are, respectively,
the space coordinates of point i and point j after iteration contraction, Oi is the dominant
direction of point i, and T is the transpose operator.

The contractive constraint Fs(i) can be calculated as Equation (15):

Fs(i)= ϕ(Ui − Pi), (15)

where Ui is the initial spatial position of point i, ϕ =
∑ j∈Ωjdjdi

1
m ∑m

1 vi
log2(ci+1)i, which is an

adjustment factor to prevent the point cloud at the end of the branch from moving widely
due to low local weight density, so the ϕ value will be larger at the missing location and
smaller at the end of the branch. m is the number of all L1-Median skeleton key points, and
ci is the sum of Euclidean distances of all child nodes of point i in the L1-Meidan skeleton
structure.

Through the above optimization process, the incomplete individual tree point cloud is
iteratively repaired and optimized. When the point force and contraction constraints reach
balance, the iterative process terminates and the incomplete point cloud is repaired.

2.4. Repair Effect Evaluation

To further evaluate the restoration effect of tree point clouds, this paper quantitatively
evaluates the point cloud repair optimization results with the help of the final modeling
effect based on the quantitative analysis model in the literature [36]. Specifically, an
individual tree with good point cloud integrity was selected as the study object, and a 3D
tree model was constructed based on this point cloud data, which was recorded as the
reference individual tree model. Then, some branch point clouds were manually removed,
and the point cloud data of the individual tree after each iteration was output through
the above iterative restoration process. To quantify the repair effect of each iteration, the
individual tree point cloud generated after each iteration was constructed as a 3D individual
tree model and recorded as a validation individual tree model. For the constructed 3D
model, the TLS point cloud generation process was simulated: specifically, the laser beam of
the 3D laser scan was simulated using PBRT (Physically-Based Ray Tracing) software [37],
and the field of view was set to the same value as that of the scanner to obtain the point
cloud, which was set to −60◦–90◦. The reconstructed individual tree model was placed at
a distance so that the simulated beam could scan the entire tree. Three laser scans were
simulated at azimuths of 0◦, 120◦, and 240◦ around the individual tree, and the distance
between the camera and the tree model was kept constant. Each simulated scan produces
a raster image. For each pixel of the raster image, the simulated scan emits a laser beam
to ensure the relative integrity of the simulated point cloud generation, and finally, the
simulated point cloud is aligned to generate a 3D point cloud of an individual tree. For
the simulated generated individual tree point cloud, this paper continues to compare the
differences between the point clouds in the two forms to verify the differences between the
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reference individual tree model and the validated individual tree model. In other words,
the simulated individual tree point cloud is rasterized and a 3D raster (voxel) of size 0.2 m
is created in the point cloud space enclosing the box, and then the simulated individual
tree point cloud is put into the voxel and the number of points in each voxel is recorded.
Finally, the number of simulated transformed points in the voxels with points is counted to
obtain the difference between the individual tree model to be validated and the reference
individual tree model. To facilitate comparison, the differences between the number of
points are further normalized and the mean and standard deviation of these differences are
counted.

3. Results and Discussion
3.1. Experimental Data

In order to verify the reliability and effectiveness of the point cloud restoration al-
gorithm proposed in this paper, Leica C10 and Faro X330 3D laser scanners were used
to obtain part of individual tree point cloud data for experimental analysis. In order to
reduce the influence of leaves on the acquisition of branch point clouds, all individual
tree point clouds in the experiment were collected in winter or early spring, and the trees
contained only a few leaves. In order to test the above algorithm, the individual tree
data with obvious branch point cloud missing were selected for experimental analysis.
Table 1 lists the relevant information of three individual trees used in the point cloud repair
optimization experiment, including tree species, scanner adopted, scanning distance and
the number of points of an individual tree point cloud.

Table 1. The information of experiment individual tree.

Tree Species Ginkgo biloba Platanus acerifolia Cerasus serrulata Robinia pseudoacacia

Scanner Faro X330 Leica C10 Leica C10 Faro X330
Scanning distance/m 8 22 16 5

Scanning mode Single station Single station Single station Single station
Number of points 265,428 24,326 30,804 228,398

3.2. Individual Tree Initial Skeleton Extraction

In order to explore the appropriate number of sampling points, this paper conducts
experiments and analyses on a different number of sampling points N. Figure 4 shows the
effect of extracted L1-Median initial skeleton points of Cerasus serrulata tree with a different
number of sampling points. Among them, Figure 4a shows the original individual tree point
cloud of the obtained Cerasus serrulata tree. Figure 4b–f shows the initial skeleton of Cerasus
serrulata tree extracted at 5%, 10%, 15%, 20% and 25% of the total number of sampling points,
respectively. Moreover, it can be seen that the skeleton structure of the extracted generated
Cerasus serrulata tree is gradually improved with the increase of sampling proportion, while
the skeleton structure changes less when the proportion of sampling points exceeds 20%,
and at this time, with the increase of the number of sampling points, the time cost of
extracting the initial skeleton points increased significantly. Therefore, the sampling points
with 20% of the number of individual tree point clouds were finally selected and marked
as non-branching points to participate in the subsequent iterative shrinkage calculation.

To determine the appropriate µ value, the L1-Median initial skeleton point extraction
with different µ values is tested in this paper. Figure 5 shows the effect of L1-Median
initial skeleton points extracted under different values of penalty strength µ. When the
value is less than 0.3, more twig skeleton points are not effectively extracted, and the
extracted initial skeleton points can only abstract the trunk and branches with a thicker
radius, which will obviously affect the subsequent local point cloud feature calculation
and thin branch incomplete point cloud repair. When the value of µ is greater than 0.35,
the difference between the initial skeleton points of individual tree extracted based on
L1-Median extraction and those extracted with µ = 0.35 is small. However, with the same
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settings of other parameters, the number of iterations and time complexity of the algorithm
increases significantly as the value of µ increases. For example, the time spent to extract the
skeleton points under µ = 0.4 is nearly twice the time spent under µ = 0.35, and the number
of iterations is significantly higher: under µ = 0.35, the iteration shrinks 87 times, while
under µ = 0.4, the iteration shrinks 174 times. Moreover, as can be seen from Figure 5, the
initial skeleton point locations are similar for the two threshold settings. Therefore, µ = 0.35
was finally selected as the default threshold for the L1-Median algorithm with conditional
regularization term.

Figure 4. L1-Median initial skeleton points extracted at different sampling points. (a) Initial point
clouds; (b) N–5%; (c) N–10%; (d) N–15%; (e) N–20%; (f) N–25%.

Three typical individual trees with different geometric and topological features were
selected: Ginkgo biloba, Platanus acerifolia and Cerasus serrulata. Their initial skeletons were
extracted using the method described in Section 2.1, and the initial parameter settings of
skeleton point extraction were shown in Table 2. Figure 6 shows the original point clouds
of Ginkgo biloba, Platanus acerifolia and Cerasus serrulata, respectively. Part (b) is the extracted
initial skeleton point and skeleton structure, where the red points are the initial skeleton
points and the green lines are the skeleton lines. In addition, the part in the red frame in
the figure is the missing part of the point cloud caused by external factors.

Table 2. The initial parameter setting of three individual tree initial skeleton point extraction.

Tree Species
Parameter Sampling Points ¯ h0 ∆h K

Initial value 1000 0.35 2dbb/ 3
√
|J| h0/4 6

Ginkgo biloba 20,000 0.35 0.1707 0.043 8
Platanus acerifolia 5000 0.35 0.8992 0.2248 6
Cerasus serrulata 6000 0.35 0.3996 0.0999 6

Note: µ is the parameter defined in Equation (6), h0 is the initial neighborhood value, dbb is the diagonal length
of the input Q’s bounding box and |J| is the number of points in Q, Q is the original input individual tree point
set. ∆h is the decreasing value of h in each iteration. K is the number of points selected by k-nearest neighbor
algorithm.
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Figure 5. The initial skeleton points extracted under different penalty strength µ values, the blue
points are the initial skeleton points, and the gray points are the original point cloud. (a) Initial point
clouds; (b) µ = 0; (c) µ = 0.1; (d) µ = 0.2; (e) µ = 0.3; (f) µ = 0.35; (g) µ = 0.4.

In order to facilitate the selection and calculation of branch points, the sampling points
in the test were rounded according to the calculation method of sampling points in this
section.

The experimental results show that the L1-Median initial skeleton point extraction
algorithm has the ability to deal with trees with different geometric structures. Figure 6a,c
shows that this algorithm has good applicability to tree structures of different complexity.
Figure 6b shows a Platanus acerifolia with the missing trunk point cloud, sparse canopy
branch point cloud and a little noise. Although the L1-Median algorithm can obtain the
approximate skeleton point position, the incomplete point cloud also greatly affects the
topological connection between skeleton points. As shown in the red frame, the skeleton
point connection appears with different degrees of fracture (Figure 6a right part) and wrong
connection (Figure 6b, right part) at the point cloud loss. Compared with the traditional
skeleton point extraction algorithm, the L1-Median algorithm has good robustness to input
point cloud quality and good applicability to an individual tree with different geometric
structures. Compared with the graph theoretic methods, such as Minimum Spanning
Tree (MST), which extract skeleton points mostly along the individual tree surface, the
L1-Median algorithm can directly obtain points that approximate the center of the local
individual tree point cloud. Although the skeleton point extraction process loses some
time efficiency, it ensures that the initial skeleton points are distributed roughly along the
extension direction of the central axis of the tree branches. It is beneficial to the local feature
calculation of point clouds and the research of incomplete point cloud repair in this chapter.
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Figure 6. The initial skeleton points extracted by L1-Median algorithm. (a) Ginkgo biloba; (b) Platanus
acerifolia; (c) Cerasus serrulate. The left column is the original point cloud, the right column is the
initial skeleton structure. The red frame is the incomplete point cloud caused by the blocking of street
lights and vehicles, the red dots are the skeleton points, and the green lines are the skeleton lines.

In order to verify that the L1-Median algorithm can deal with the arbitrary change
of point cloud density, the point cloud of the Cerasus serrulata tree with missing data was
randomly thinned and the initial skeleton points were extracted by the thinned points.
Figure 7 shows the extraction results of skeleton points under the conditions of 100%,
70%, 50% and 30% dilution of the original point cloud. As can be seen from Figure 7,
with the decrease of point cloud density, the backbone skeleton structure is still well
maintained. Because the main skeleton structure of the Cerasus serrulata tree is relatively
similar. After thinning treatment, the removal of a large number of twig point clouds affects
the connection performance between skeleton points (red frame content), resulting in a
change of topological connection relationship in some regions, but the overall structure is
similar. The results show that the L1-Median initial skeleton point extraction algorithm is
robust to point density changes.
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Figure 7. The reconstructed tree models using the different density of point clouds. (a) Initial point
clouds; (b) 100%; (c) 70%; (d) 50%; (e) 30%.

3.3. Individual Tree Point Cloud Repair
3.3.1. Qualitative Evaluation

The point cloud data of Ginkgo biloba, Platanus acerifolia and Cerasus serrulata trees
with large data missing in the previous section are adopted, and the point cloud spatial
location optimization and iterative repair algorithm are used to repair and optimize the
incomplete point cloud. Figure 8 shows the point cloud restoration results of Ginkgo biloba,
Cerasus serrulate and Platanus acerifolia. Among the three individual trees, the ginkgo tree
point cloud density was large, but due to the shielding of street lights and billboards, part
of the branch point cloud was missing and showed regular strips. The point cloud and
skeleton topology of the missing parts could be well restored based on the point cloud
repair optimization algorithm. The point cloud skeleton of Cerasus serrulata trees was
relatively clear, but the point cloud density was low. Optimization and iterative restoration
could recover some of the branch point clouds at the fracture, but the effect of point cloud
restoration was not obvious due to the sparse point cloud of canopy twigs, and the skeleton
lines of some twigs could not be accurately extracted. The quality of the initial point cloud
of Platanus acerifolia was poor, the position of the initial skeleton points obtained deviated,
and the skeleton structure was poor. After optimization and iteration repair, the overall
skeleton structure was well maintained, and some incomplete point clouds were restored
to a certain extent, but the deviation of the initial skeleton points also caused the calculation
error of the dominant direction of the iteration. Therefore, part of the point cloud moved
in the wrong direction, resulting in great differences between the skeleton structures. The
experimental results shown in Figure 8 show that the iterative point cloud repair algorithm
proposed in this paper can effectively deal with a small number of incomplete point clouds
and recover the point cloud data of some missing branches. For trees with a clear skeleton
structure, the location of adjacent point clouds can be adjusted and iteratively optimized to
make the optimized tree point cloud density more uniform than before optimization, and
the method has good robustness.

In order to further verify the robustness of the iterative repair algorithm for the
incomplete point clouds, a Robinia pseudoacacia tree with good point cloud integrity was
selected to manually delete part of the branch point cloud of the individual tree, and then
compare the individual tree skeleton before and after the deletion of the point cloud. In
this section, the 4.4 m–4.7 m area of Robinia pseudoacacia canopy was selected for manual
point cloud deletion, which has more branches and more complex geometry inside the
area. After deleting the point cloud, a 0.3 m-wide strip point cloud was missing from the
original Robinia pseudoacacia individual tree. Figures 9a and 9d, respectively, represent
the original tree point cloud and the tree point cloud after removing some branch points,
and Figure 9b,c and Figure 9e,f, respectively, represent the extracted skeleton structure
based on the original tree point cloud and the tree point cloud after deleting points. From
the content of the red frame in Figure 9f, it can be seen that after deleting the points, the
branch skeleton topology shows obvious connection errors due to the incomplete point
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cloud. Figure 9g is the optimized tree point cloud, and Figure 9h,i is the extracted skeleton
structure, comparing Figure 9a,c with Figure 9g,i shows that after the point cloud iterative
repair optimization algorithm, most of the point clouds of branches are effectively repaired.
The skeleton structure of the individual tree main branch obtained before deletion and
after repair and optimization is similar, while some twigs are deleted together with the
over-sparse point cloud in the process of deletion so that the subsequent optimization
process is not successfully repaired. The similar skeleton before and after point deletion
shows that the iterative repair optimization algorithm in this paper can effectively deal
with the incomplete point clouds and recover the point cloud data at the missing branches.
Moreover, at the same time, the optimized point cloud is used to construct the tree skeleton
to approximate the skeleton structure under the complete point cloud. The repaired and
optimized individual tree point cloud can effectively abstract the real skeleton structure
and realize the high-precision reconstruction of tree mode.

Figure 8. Schematic diagram of point cloud restoration of Ginkgo biloba, Cerasus serrulata and Platanus
acerifolia.

3.3.2. Quantitative Evaluation

To further evaluate the recovery effect of tree point clouds, this paper constructs a
reference individual tree model based on Robinia pseudoacacia tree point clouds, and a
validated individual tree model based on the point clouds generated by each iteration of
optimization after manually deleting some branch point clouds. Figure 10 describes the
differences between the individual tree model to be verified constructed by the optimization
point cloud of the first, second and last iterations and the reference individual tree model.
The mean and standard deviation of the differences between individual tree model to be
validated and reference model are shown in Table 3.
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Figure 9. Comparison of Robinia pseudoacacia tree point clouds before and after deleting points. (a) is
the original point cloud, (b,c) is the extracted skeleton structure; (d) describes the tree point cloud
after deleting some points, (e,f) is the extracted skeleton structure; (g) represents the tree point cloud
after iterative repair, (h,i) is the extracted skeleton structure.

Figure 10. Point cloud distribution difference between the reconstructed model in each iteration and
the reference individual tree model. (a) First iteration; (b) Second iteration; (c) Last iteration.
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Table 3. Differences between individual tree models to be validated and reference models.

First Iteration Second Iteration Last Iteration

Mean (m) −0.0067 −0.0054 −0.0036
Standard Deviation (m) ±0.189 ±0.176 ±0.167

In order to verify the skeleton reconstruction accuracy after branch repair in the
incomplete point cloud area, this paper used the repair-optimized individual tree point
cloud, reconstructed its skeleton structure and calculated the radius of the skeleton point to
represent the radius of the branch at that skeleton point. The results are shown in Table 4.
It can be seen from the results that for the four restored individual trees, the branches
with a clear structure and dense point clouds were basically restored effectively, while the
incomplete point clouds were poorly restored in the branches with sparse point clouds
and small radii. In addition, due to the high position of some tree branches, it is difficult
to accurately measure their branch radius. In the experiment, only the branches near the
main trunk with missing points were used as the experimental objects, and their radii
were determined by measuring the branch circumferences several times. From the radius
comparison results, it can be seen that the radius of the repaired branch is smaller than that
of the original branch. This is because the neighboring points in the missing area move
towards the missing area during the point cloud restoration process, which leads to the
gentle change of point cloud density in the local area of the branch. Moreover, the density
of the restored point cloud is lower than that of the scanned point cloud, which eventually
causes the radius of the restored branch to be smaller than that of the real tree.

Table 4. Branch accuracy after repair and optimization.

Tree Species
Number of Branches Branch Radius/cm

Missing Branches Repaired Branches True Branch Repaired Branch

Cerasus serrulata 46 27 2.2 1.9
Platanus acerifolia 19 15 9.4 8.8

Robinia pseudoacacia 33 29 5.3 4.6

3.3.3. Comparison with Other Methods

To further illustrate the effectiveness of the algorithm in this paper, the Ginkgo biloba
point cloud data used in reference [21] were used to compare the effect of the point
clouds restored by the algorithm in this paper, the structure-aware global optimization
algorithm [21] and the joint modeling algorithm [38]. Considering that it is difficult to
analyze the advantages and disadvantages of the three methods directly based on the
restored tree point clouds from a subjective vision and that the structure-aware global
optimization algorithm and the joint modeling algorithm do not show intermediate skeleton
point outputs. Therefore, the point cloud iteratively restored skeleton points were initially
topologically connected and the initial skeleton structure of the tree was constructed
to facilitate the comparison of the three methods. Figure 11 shows the skeleton point
extraction results for the Ginkgo biloba point cloud with a part missing under the three
methods. The content of the red frame in Figure 11 shows the enlarged geometric details
of the branch skeleton, from which the differences in details of the three methods in
reconstructing the skeleton based on the restored point cloud can be seen. Livny’s joint
modeling algorithm reconstructs the branch point cloud directly based on the point cloud
of the overlapping part of the tree, but due to the lack of fine segmentation, the branch
point clouds of other individual trees also participate in the skeleton construction, so there
are some extra branch skeletons that do not belong to the tree. Wang’s structure-aware
global optimization algorithm can recover the branch point clouds with large missing data,
and the reconstruction process retains more thin branch skeletons and global features, but
a little skeleton extension and topological connections have errors. The algorithm in this
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paper can recover the incomplete point clouds of individual trees with clear branch features,
but some twig point clouds are not recovered and optimized.

Figure 11. Comparison of Ginkgo biloba tree point cloud restoration and skeleton extraction results.
(a) Tree point clouds; (b) Our method; (c) The method of Livny; (d) The method of Wang.

In terms of iterative repair, this paper focuses on extracting the balance method
of the point force and contraction constraints, so as to repair incomplete point cloud.
The algorithm is able to recover part of the incomplete point cloud of branches well for
trees with clear skeleton structures. The tree skeleton constructed by using the repair-
optimized individual tree point cloud is consistent with the real skeleton structure and can
achieve high precision modeling of the tree model, but it is slightly weaker than the other
two algorithms in the optimization of canopy twig detail repair.

4. Conclusions

To address the problem of missing partial point clouds in the field of three-dimensional
point clouds of individual trees, this paper proposes an iterative restoration optimization
algorithm based on local features of point clouds. The research focuses on the extraction of
key points of individual tree skeletons from point clouds, the calculation of local features,
and iterative restoration optimization. For individual trees with clear skeleton structures
and simple branch geometry, the algorithm is able to extract more accurate skeleton key
point locations and the restoration optimization effect is similar to that expected. However,
for individual trees with complex crown branch structures, the point cloud quality at the
fine branch level is poor and the restoration effect is lacking. The next step of the study is
to consider coupling multi-source data with a priori knowledge of vegetation growth rule
constraints to explore restoration methods for fine branches and branch ends.
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