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Abstract: Tiller are an important biological characteristic of wheat, a primary food crop. Accurate
estimation of tiller number can help monitor wheat growth and is important in forecasting wheat
yield. However, because of leaf cover and other factors, it is difficult to estimate tiller number and the
accuracy of estimates based on vegetation indices is low. In this study, a gradual change feature was
introduced to optimize traditional prediction models of wheat tiller number. Accuracy improved
in optimized models, and model R2 values for three varieties of winter wheat were 0.7044, 0.7060,
and 0.7357. The optimized models improved predictions of tiller number in whole wheat fields.
Thus, compared with the traditional linear model, the addition of a gradual change feature greatly
improved the accuracy of model predictions of wheat tiller number.

Keywords: winter wheat; tiller number; vegetation index; gradient feature; regression models

1. Introduction

Wheat is widely cultivated on a global scale as a major food crop [1], providing the
main source of calories for humans [2]. Similar to most gramineous plants, wheat produces
tillers, which develop from axillary buds on the mother bud [3]. The emergence, devel-
opment, and survival of tillers are very important biological characteristics of wheat [4].
Wheat is highly adaptable to different environments and can self-regulate population size.
Tillering can have positive or negative effects on wheat yield, but reasonable tillering is
positively associated with wheat yield [5]. Tillering of wheat is affected by external factors,
and the proper application of nitrogen (N) fertilizer can significantly affect tillering and
promote tillering yield [6]. The number of tillers also increases with an increase in planting
density [7]. The suitable application of phosphorus fertilizer also promotes wheat tillering.
It is essential to understand changes in tiller development to properly manage wheat culti-
vation. Currently, tiller numbers are primarily determined in manual field investigations,
which are costly in terms of manpower and material resources, and are also inefficient.

In recent years, wheat tiller numbers have been estimated using different techniques.
Liu et al. [8] used image recognition to improve the efficiency of determining wheat
populations. Tiller numbers in a wheat field were counted in pre-winter, turning green,
and jointing growth stages, and canopy images of corresponding sample sections of wheat
were obtained by smartphone and UAV. According to correlation analysis between canopy
coverage and tiller number in the three stages, image recognition is a feasible approach to
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estimate tiller number in a wheat field. However, in that study, only the single element of
canopy coverage was considered, and the experimental sites were all wheat fields with
striped sowing. Other factors of possible influence were not thoroughly studied, and as a
result, the method has low adaptability. Wu et al. [9] randomly selected two to three points
in different test plots during the critical growth period of wheat and scanned the wheat
canopy with an active multispectrometer. The mean value measured in each plot was used
as the spectral value, and the corresponding range was selected to determine the tiller
number in each plot. The mean value was used as the tiller number in each plot to establish
models to predict the wheat tiller number, which was followed by verification. Both
NDVI and RVI models successfully predicted the wheat tiller number, although the NDVI
model could better detect wheat growth dynamics. However, the approach needs further
validation in different ecological regions and with different wheat varieties. Shan et al. [10]
used cameras to take vertical photos of a wheat population at the jointing stage at a fixed
height, while simultaneously measuring the total tiller number within the camera frame.
In analysis of photos, a threshold value of 2g-r-b factor of a color brightness value was set
to separate background from wheat, and then, a 24-bit true-color image was converted
to a 256-color bitmap. LoG operator was used to detect edges and extract the number
of edge pixels. After training, there was no significant difference between the BP neural
network fitting effect and the measured value in estimating the total stem number of wheat.
Although this method is suitable for specific varieties and growth periods, wider application
requires further study. Li et al. [11] collected wheat images using ordinary cameras. Image
segmentation was used to process the wheat images. Whole wheat was extracted, and the
stem part of the wheat was removed by morphological processing. The two subtractions
resulted in images containing stems. After edge detection, discontinuous stalks were
obtained by using Hough linear transformation. Collinear segments were connected into
a line segment by filling gaps, and the number of line segments detected was used to
indicate the wheat tiller number. Flowers et al. [12] simultaneously measured tiller density
and obtained aerial images, which were all taken on cloudless days. The data set was
processed to calculate the relative tiller density of each location. A relative near-infrared
and relative tiller density were used to predict tiller density, and rainbow-color aerial
photos successfully predicted the wheat tiller number. However, in that study, data were
from wheat fields with good management of weeds, pests and diseases, and plant nutrition,
which can confuse tiller density with NIR digital counts. Phillips et al. [13] used real-time
spectral reflectance sensors to collect data in the same direction in each planted row and also
measured differences between vertical and parallel movements. Reflectance measurements
of bare land or natural background were collected at each site, and a corrected NDVI was
calculated using the measured reflectance values. A single regression equation between
tiller density and modified NDVI was derived after compensating for light interference
caused by clouds, shadows, and sun angle. With the equation, optical sensors could
accurately predict wheat tiller density. Yuan et al. [14] designed a new ALHC algorithm
based on manual measurement of tiller number in two 1-m row segments and collection of
ground-based lidar measurement data. The AL algorithm recognizes gaps between wheat
stems and performs clustering segmentation. When tillers are too close to one another, the
hierarchical algorithm cannot distinguish tillers. Therefore, to complete automatic counting
of wheat tillers, the HC algorithm calculates the number of tillers in each cluster. However,
this method is greatly affected by planting density. With an increase in planting density,
accuracy decreases, and leaves are also wrongly identified as tillers in the clustering step.
Boyle et al. [15] obtained RGB images of plants at 0◦, 45◦, and 90◦ through NPCC and
estimated wheat tiller number by using the Frangi algorithm. Scotford et al. [16] estimated
the wheat tiller number by combining the coefficient of variation of normalized differential
vegetation index (NDVI) with the composite vegetation index measured by ultrasonic
sensor height output.
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In conclusion, estimating the wheat tiller number has been investigated in many
previous studies, and they have contributed greatly to the optimization of models to
estimate the wheat tiller number. Estimating the wheat tiller number is different from
estimating leaf area and biomass, and the same vegetation index or coverage may not
be appropriate for completely different tiller states. Considering the challenges posed by
the complexity of tillering in wheat, we designed a gradient vegetation feature based on
estimates of coverage and vegetation indices in order to improve the accuracy of tiller
number estimates. We classified the wheat coverage and vegetation index, obtained the
micro-scale variation of the wheat coverage and vegetation index, and used it as a new
variable to optimize the prediction model. Gradient characteristics were used to develop a
high-precision model to estimate tiller number. With accurate estimates of tiller number,
less fertilizer was applied in the place with a higher tiller number, and more fertilizer was
applied in the places with a lower tiller number to promote the tiller number of wheat, so
that field management could be improved.

2. Materials and Methods
2.1. Field Experiments

From 2019 to 2020, winter wheat field tests were conducted in Yizheng City (32◦16′ N,
119◦12′ E), Jiangsu Province, China (Figure 1). The climate in the area is north subtropical
monsoon. The type of soil in this area is loamy soil. Initial (2019) soil nutrient analyses
were as follows: 87.22 mg/kg hydrolytic nitrogen, 30.16 mg/kg available phosphorus,
121.35 mg/kg available potassium, and 2.5% organic matter. In 2020, the soil contained
121.36 mg/kg hydrolytic nitrogen, 32.53 mg/kg available phosphorus, 118.97 mg/kg avail-
able potassium, and 2.3% organic matter. The within-field variability of soil fertility had
little effect on the experimental results. Experimental variables, including variety and N
fertilizer and density treatments, are shown in Table 1. The weather on the measurement
day was sunny, and the UAV flew for a short time from 10:00 to 11:30 to ensure sufficient
and stable sunlight. The UAV was battery-powered with autonomy for about an hour and
a half. The number of wheat tillers was recorded in field investigations.
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Table 1. Winter wheat varieties and nitrogen fertilizer and density treatments in three different
experiments (Zhenmai12: Strong gluten wheat; Yangmai16: the gluten wheat; Ningmai13: Weak
gluten wheat).”Replicates” represent three Replicates of the experiment.

Experiment Varieties Nitrogen
Fertilizer Density Replicates

1 Zhenmai12 (P1) 0 kg/ha (N1) 150 × 104 ha−1 (M1) 3
125 kg/ha (N2) 225 × 104 ha−1 (M2)
225 kg/ha (N3) 300 × 104 ha−1 (M3)
375 kg/ha (N4)

2 Yangmai16 (P2) 0 kg/ha (N1) 150 × 104 ha−1 (M1) 3
125 kg/ha (N2) 225 × 104 ha−1 (M2)
225 kg/ha (N3) 300 × 104 ha−1 (M3)
375 kg/ha (N4)

3 Ningmai13 (P3) 0 kg/ha (N1) 150 × 104 ha−1 (M1) 3
125 kg/ha (N2) 225 × 104 ha−1 (M2)
225 kg/ha (N3) 300 × 104 ha−1 (M3)
375 kg/ha (N4)

2.2. Data Acquisition
2.2.1. Multispectral UAV Image Acquisition and Processing

In the wheat overwintering period, DJI Phantom 4 multispectral spectral images were
obtained. The route length was 2958 m, and there were 24 main routes. The UAV flew
20 m above the experimental site at a constant speed of 1.7 m/s with a pitch angle of 90◦,
and the shooting interval was 2 s. The heading overlap rate was 75%; the side overlap rate
was 70%; The main technical parameters of the platform are as follows: hover accuracy:
vertical: ±0.1 m, horizontal: ±0.3 m; The UAV can fly for 27 min with a pair of batteries.
There are six 1/2.9-inch CMOS, including one color sensor for visible light imaging and five
monochrome sensors for multispectral imaging. 2.08 million effective pixels for a single
sensor (total 2.12 million pixels). The image resolutions were 21,082 pixels and 41,520 pixels.
the total flight area was 1.39 ha, and 874 photos were taken. Images were obtained in the R
band (600–700 nm), G band (500–600 nm), B band (350–500 nm), NIR band (800–1300 nm),
and red edge band (700–760 nm). DJI Terra was used for image mosaic and multispectral
image preprocessing. MATLAB was used for image processing.

2.2.2. Determination of Winter Wheat Tiller Number

The test field contained 108 plots, and two collection points were selected in each plot.
Each point was marked with a 50 cm × 50 cm white box and included two rows. Wheat
tiller number in the box was counted from one end. Data were recorded from a total of
216 points.

2.2.3. Feature Extraction

The ExG + Otsu method [17] was used to remove the background of the wheat field,
and the ratio of wheat pixel number to total pixel number was used to represent wheat
coverage (WC), which was calculated as follows:

WC =
sumArea

50 cm× 50 cm
(1)

where sumArea represents the number of wheat pixels and height × width represents the
total pixel value.

The technical roadmap for this research is shown in Figure 2, with the following
steps outlined:

(1) Data acquisition and preprocessing: a UAV obtained multispectral orthophoto images
of the test site, and the images were then corrected and spliced.
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(2) Selection and structure of vegetation index: vegetation indices sensitive to tiller
number were identified, the UAV multispectral range was selected to obtain images,
and coverage and gradient characteristics were determined.

(3) Analysis and comparison: vegetation indices and coverage were analyzed with wheat
tiller number and results were compared after optimization of gradient special diagnosis.

(4) Estimation of wheat tiller number in the whole field: models that provided good
estimations were used to predict wheat tiller number in the whole field.
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2.2.4. Analysis of Characteristics

Under the same N application level, tiller number per unit area increased with an
increase in planting density. In addition, the number of tillers per unit area increased
with an increase in N fertilizer at the same density. With an increase in tiller number,
the coverage also increased. Therefore, it is theoretically feasible to estimate wheat tiller
number based on the coverage.

Under the same N application level, with an increase in density, the overlapping
rate of wheat tillers per unit area also increased and there was no significant difference
in wheat coverage under different density treatments. As a result, the number of wheat
tillers per unit area estimated by coverage was lower than the measured value (Figure 3).
Nitrogen fertilizer has a significant effect on the leaf area of wheat, and increasing N
fertilizer application at the same density also increases the wheat leaf area [18], thus there
was significant difference in wheat coverage under different nitrogen treatments. As a
result, the wheat tiller number estimated by coverage was higher than the measured
value (Figure 4).
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With NDVI, for example, a positive value indicates there is vegetation coverage, and
the greater the vegetation coverage is, the greater the value [19]. In theory, it is feasible
that NDVI can be used to estimate wheat tiller number. With an increase in N fertilizer
application, NDVI values also increase [20]. As a result, there was no significant difference
in NDVI between the high-N fertilizer and low-density treatment and the low-N fertilizer
and high-density treatment (Figure 5). Therefore, NDVI is not accurate enough to predict
the wheat tiller number.
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2.2.5. Selection of Vegetation Indices

Regression analysis was used to select vegetation indices. Coverage, NDVI, and RVI
were selected because of their good Regression with tiller number. The NVDI and RVI were
determined as follows:

NDVI = (RNIR − RR)/(RNIR + RR) (2)

RVI = RNIR/RR (3)

where RNIR is the near-infrared reflectivity and RR is the red band reflectivity.

2.3. Gradient Feature

To better estimate wheat population tiller numbers, we designed a population gradient
feature. When the growth process is the same, it is assumed that all tillers are evenly
distributed, and the higher the population coverage is, the higher the number of tillers.
However, when the number of tillers is the same but the distance between tillers is different,
the more loosely arranged the tillers are, and the higher coverage (Figure 6). The degree
of overlap of tiller leaves affects the vegetation index of a population. For example, the
NDVI value increases with an increase in degree of overlap. However, different N contents
of leaves seriously affected this relation (Figure 7). As a result, NDVI cannot accurately
evaluate the degree of overlap of tiller leaves.
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Images obtained by UAV were cut into regions of 50 cm × 50 cm (Figure 8A). The
Otsu algorithm was used to extract wheat seedling area and calculate the vegetation index
of that wheat seedling area (Figure 8B). According to the vegetation index, wheat seedling
area was divided into four types: NDVI minimum Region A, sub-small Region B, large
Region C, and largest Region D. The mean values (VmA, VmB, VmC, VmD) and areas
(VaA, VaB, VaC, VaD) of the four regions were respectively calculated. The coefficient of
variation of the vegetation index (CVI) was calculated to obtain the gradient characteristics.
The classification criteria are shown in Figure 8C, and the classification effect is shown
in Figure 8D.
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2.4. Modeling
2.4.1. Linear Regression Model

Linear regression was used to analyze relations between vegetation indices and wheat
tiller number, and the models established were used to predict wheat tiller number. Linear
regression is a statistical method that is widely used to determine the interdependent
quantitative relation between two or more variables. A regression is expressed in the form
y = W’x + e, where the error follows a normal distribution with a mean value of 0 [21].

2.4.2. Gradient Feature Optimization Model

The CVs of the mean values of the four regions of NDVI and RVI were determined
(Figure 9). The CVs of the mean values of the four regions of RVI (Figure 9B) sharply
increased between the larger region and the largest region. This result was observed
because RVI changes significantly under high vegetation coverage, indicating that wheat
tiller coverage was high in the largest region. The trend in variation among the smallest
region, the smaller region, and the larger region was stable, indicating that wheat tiller
coverage was low in the smallest region, the smaller region, and the larger region. The
correlation between RVI and leaf area index (LAI) is high [22], and therefore, the mean
value of RVI in low-coverage areas can be a good measure of leaf area. The CVs of the
mean values of the four NDVI regions (Figure 9A) did not change significantly between the
larger region and the largest region, because the change in NDVI was not obvious when
there was high vegetation coverage.

In summary, we considered the CVs of the RVI means of the largest region and the
larger region to measure the tillering coverage of the largest region and the CVs of the
smallest region and the larger region to measure the tillering coverage in other areas. The
RVI mean of the low-coverage area represented the LAI that was used to optimize the
constructed model.



Remote Sens. 2022, 14, 1338 10 of 17
Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. Coefficients of variation of (A) NDVI and (B) RVI among subregions. 

2.5. Statistical Analysis 
To establish models, the 216 data points were divided into three groups according to 

three varieties of winter wheat (Table 1). The determination coefficient (R2) was used to 
evaluate the models, RMSE to evaluate model accuracy, and normalized root mean square 
error (nRMSE) to describe model accuracy. The RMSE and nRMSE were calculated as fol-
lows: 

RMSE = ∑ (𝑦 − 𝑦 )  (4)

nRMSE = 

∑ ( )  
  

(5)

where 𝑦  and 𝑦  are respectively the measured value and the estimated value of the 
model, n is the sample size, and 𝑦𝚤 is the average value of measurement. 

3. Results 
3.1. Estimation of Tiller Number in Wheat 
3.1.1. Unitary Linear Regression Analysis 

Coverage and mean values of NDVI and RVI of the wheat regions were calculated, 
and measured tiller numbers of the three wheat varieties were used to construct unitary 
regression models (Figure 10). The trend in variation of wheat tiller number was con-
sistent, and in all varieties, tiller number increased with increasing coverage, mean NDVI, 
and mean RVI. The regressions with coverage better estimated the number of tillers than 
those with mean values of NDVI and RVI, and the highest R2 value was 0.7 for variety 3 
(Figure 10C). The regressions between RVI and wheat tiller number had the lowest R2 
values. RVI was not suitable for tiller number estimation. 

The three agronomic parameters did not adequately reflect wheat tiller number, 
based on the coefficients of determination for regressions between the three parameters 
and wheat tiller number of the three varieties. Coverage did not adequately reflect wheat 
tiller number because of the influence of LAI and coverage of wheat. Although NDVI 
could reflect LAI and coverage of wheat, it did not adequately reflect the wheat tiller num-
ber under conditions of high LAI, low LAI, and high coverage. Plant cover greatly affected 
RVI. When vegetation cover was high, RVI was very sensitive, but with vegetation cover 
<50%, sensitivity decreased significantly. Therefore, RVI also did not adequately reflect 
the wheat tiller number. 

Figure 9. Coefficients of variation of (A) NDVI and (B) RVI among subregions.

2.5. Statistical Analysis

To establish models, the 216 data points were divided into three groups according
to three varieties of winter wheat (Table 1). The determination coefficient (R2) was used
to evaluate the models, RMSE to evaluate model accuracy, and normalized root mean
square error (nRMSE) to describe model accuracy. The RMSE and nRMSE were calculated
as follows:

RMSE =

√
1
n ∑n

i=1

(
yi − yj

)2 (4)

nRMSE =

√
∑n

i=1(yi−yj)
2

n

yi
(5)

where yi and yj are respectively the measured value and the estimated value of the model,
n is the sample size, and yi is the average value of measurement.

3. Results
3.1. Estimation of Tiller Number in Wheat
3.1.1. Unitary Linear Regression Analysis

Coverage and mean values of NDVI and RVI of the wheat regions were calculated,
and measured tiller numbers of the three wheat varieties were used to construct unitary
regression models (Figure 10). The trend in variation of wheat tiller number was consistent,
and in all varieties, tiller number increased with increasing coverage, mean NDVI, and
mean RVI. The regressions with coverage better estimated the number of tillers than
those with mean values of NDVI and RVI, and the highest R2 value was 0.7 for variety 3
(Figure 10C). The regressions between RVI and wheat tiller number had the lowest R2

values. RVI was not suitable for tiller number estimation.
The three agronomic parameters did not adequately reflect wheat tiller number, based

on the coefficients of determination for regressions between the three parameters and
wheat tiller number of the three varieties. Coverage did not adequately reflect wheat tiller
number because of the influence of LAI and coverage of wheat. Although NDVI could
reflect LAI and coverage of wheat, it did not adequately reflect the wheat tiller number
under conditions of high LAI, low LAI, and high coverage. Plant cover greatly affected
RVI. When vegetation cover was high, RVI was very sensitive, but with vegetation cover
<50%, sensitivity decreased significantly. Therefore, RVI also did not adequately reflect the
wheat tiller number.
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variety 3 (C,F) of number of tillers and wheat coverage (A,B), and NDVI (D,E).

3.1.2. Multiple Linear Regression Analysis

Multiple linear regression was used to analyze the relation between coverage and mean
values of NDVI and RVI and wheat tiller number (Figure 11). When coverage, mean NDVI,
and mean RVI were combined as three feature values, the coefficient of determination
improved to a certain extent, compared with a single feature. The highest R2 value of 0.7265
was with variety 3 (Figure 11C), which also had the lowest RMSE of 40.4228 and nRMSE
of 23.41%. Compared with the mean value of RVI in predicting wheat tiller number, the
R2 value increased significantly, whereas compared with coverage, the R2 value increased
slightly. In contrast to estimating wheat tiller number by a single parameter, multiple
regression with three vegetation parameters provided a more comprehensive evaluation,
and thus, the R2 value increased to a certaMultiple linear regression was used to analyze
the relation between coverage and mean values of NDVI and RVI and wheat tiller number
(Figure 11). When coverage, mean NDVI, and mean RVI were combined as three feature
values, the coefficient of determination improved to a certain extent, compared with a single
feature. The highest R2 value of 0.7265 was with variety 3 (Figure 11C), which also had
the lowest RMSE of 40.4228 and nRMSE of 23.41%. Compared with the mean value of RVI
in predicting wheat tiller number, the R2 value increased significantly, whereas compared
with coverage, the R2 value increased slightly. In contrast to estimating wheat tiller number
by a single parameter, multiple regression with three vegetation parameters provided a
more comprehensive evaluation, and thus, the R2 value increased to a certain extent.
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Figure 11. Multiple linear regression models of winter wheat tiller number with coverage, mean
NDVI, and mean RVI for (A) variety 1, (B) variety 2, and (C) variety.

3.1.3. Estimation of Wheat Tiller Number after Optimization with Gradient Characteristics

In previous studies, unitary regression and multiple regression models were used
to predict the wheat tiller number. Because R2 values were not very high, we attempted
to improve prediction of wheat tiller number by adding gradient features (Figure 12).
Compared with other prediction models, R2 values for the three varieties improved after
optimization with gradient features. For variety 3, the R2 was 0.7357 and the nRMSE was
23.02% (Figure 12C), whereas for variety 1, the R2 value increased by 0.0206 (Figure 12A).
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Figure 12. Models optimized with gradient vegetation features for winter wheat (A) variety 1, (B)
variety 2, and (C) variety 3.

The wheat tiller number was predicted under the same N fertilizer treatment and
different density treatments. For variety 1, the highest R2 value of the model to predict
wheat tiller number under different density treatments was in the N3 treatment (Figure 13C),
reaching 0.8953, with a RMSE of 32.3377 and nRMSE of 17.72%. For variety 2, the highest
R2 value of the model to predict the wheat tiller number under different densities was in
the N4 treatment (Figure 13H), reaching 0.8219, with a RMSE of 35.8180 and nRMSE of
18.29%, For variety 3, the highest R2 value of the model to predict the wheat tiller number
under different densities was in the N4 treatment (Figure 13L), reaching 0.9120, with a
RMSE of 28.0245 and nRMSE of 15.10%.

Wheat tiller number was also predicted under the same density treatment and different
N treatments. For variety 1, the highest R2 value of the model to predict wheat tiller number
under different N treatments was in the M2 treatment (Figure 14B), reaching 0.8277, with a
RMSE of 30.5286 and nRMSE of 16.84%. For variety 2, the highest R2 value of the model
to predict wheat tiller number under different N treatments was in the M1 treatment
(Figure 14D), reaching 0.8925, with a RMSE of 43.0726 and nRMSE of 31.91%. For variety
3, the highest R2 value of the model to predict wheat tiller number under different N
treatments was in the M2 treatment (Figure 14I), reaching 0.8853, with a RMSE of 39.0222
and nRMSE of 17.70%.
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Figure 13. Prediction models for tiller number of different winter wheat varieties under the same
nitrogen fertilizer treatment and different density treatments. (A–D) Variety 1; (E–H) variety 2;
and (I–L) variety 3. There were four nitrogen treatments: (A,E,I) N1; (B,F,J) N2; (C,G,K) N3; and
(D,H,L) N4.

3.2. Estimation of Wheat Tiller Number in the Whole Field

The model optimized by gradient characteristics was selected for each variety to
predict the wheat tiller number in the whole field (Figure 15). For variety 1 (Figure 15A),
under the same N fertilizer treatment, tiller number increased with the increase in N
fertilizer application rate, and under the same N fertilizer treatment, tiller number changed
little with the increase in density. For varieties 2 (Figure 15B) and 3 (Figure 15C), under the
same density treatment, tiller number increased with the increase of N application rate.
Under the same N treatment, in the high N treatment, the number of tillers increased with
the increase in density, whereas in the low N treatment, the number of tillers remained at a
generally low level. Thus, varieties 2 and 3 were greatly affected by N fertilizer. Among the
three varieties, variety 1 had good and uniform tiller growth in the whole field (Figure 15A).
By contrast, variety 3 had the lowest tiller number in the whole field (Figure 15C), although
tiller number increased dramatically in the high-N fertilizer and high-density treatment.
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4. Discussion

Tiller counts are important when monitoring the development of many plants, espe-
cially wheat [15]. Most studies that estimate plant density use ground-based non-contact
measurements, focusing on relatively large plants [23]. However, in crops such as wheat,
with small and variable spacing between plants with narrow leaves, leaf overlap between
adjacent plants and many tillers makes visual counts difficult in the field, even when plants
have more than three leaves [24]. In addition, different N treatments and planting densities
significantly affect the tillering of wheat, which greatly increases the difficulty in estimating
the wheat tiller number.

In this study, the tiller number estimation model of wheat was optimized and predicted
by introducing gradient feature, compared with the prediction of tiller number of wheat
by single elements of canopy coverage, NDVI, and RVI [8,9]. We took into account the
influence of other factors and designed experimental schemes of different varieties and
treatments to make the results more persuasive. Yuan et al. used LiDAR to obtain data and
ALHC algorithm to successfully predict wheat tiller number, but the prediction accuracy
would decrease with the increase of wheat planting density [14]. However, the prediction
model optimized by gradient features could predict wheat tiller numbers well under
different planting densities, showing better adaptability compared with LiDAR. Ni et al.
used the penetrability of X-ray to predict the tiller number of wheat by CT. Due to the
X-ray attenuation within tillers, as all tillers can be seen in the transverse section image
of the wheat culms, and the tiller number can be determined through image analysis.
Nevertheless, the generation of section images needs to scan the objects at hundreds
of different angles, and the reconstruction has a very long computation time. So, the
application of CT for real-time imaging is limited due to its low speed [25]. Compared with
CT, UAV can obtain images faster and more conveniently, saving a lot of time; Boyle et al.
obtained RGB images of plants through NPCC and estimated wheat tiller number by using
the Frangi algorithm. This method mainly estimates the tiller number of potted wheat
but does not estimate the tiller number of wheat in the whole field [15]. Our method can
estimate the tiller number of wheat in the whole field, which has greater significance.

The accuracy of wheat tiller number estimates in models optimized by gradual vege-
tation features was improved, but the complexity of the whole process was increased. In
the process of practical application, it is not easy for us to obtain prior information such as
soil N content, so the specific application value of the method introduced in this paper may
be weakened. In the next study, more spectral information through hyperspectral images is
expected to be obtained to reduce the complexity of the optimization process. Information
on soil nitrogen content will be obtained to reduce the impact of soil nitrogen content on
the vegetation index, which may further improve the experimental accuracy.

5. Conclusions

In this study, we designed a field experiment with different varieties of winter wheat
and different N fertilizer and density treatments. Multispectral images were collected by
UAV, and models were established to estimate the wheat tiller number by using data on
vegetation and gradient characteristics. The primary conclusions were as follows: (1) the
combination of gradient and other vegetation features improved the accuracy of wheat
tiller number estimates; (2) the accuracy of the wheat tiller number estimates in models
optimized by gradual vegetation features was higher than that of other models, and R2
values for the three varieties were 0.7044 (P1), 0.7060 (P2), and 0.7357 (P3), it could be
used to effectively estimate the wheat tiller number in a whole field and more intuitively
reflected the wheat tiller number in a whole field; and (3) models optimized with gradient
characteristics could better estimate the wheat tiller number under different nitrogen
treatments, planting densities, and growth processes.
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