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Abstract: A digital twin is a virtual representation of a physical object or process capable of collecting
information from the real environment to represent, validate and simulate the physical twin’s present
and future behavior. It is a key enabler of data-driven decision making, complex systems monitoring,
product validation and simulation and object lifecycle management. As an emergent technology, its
widespread implementation is increasing in several domains such as industrial, automotive, medicine,
smart cities, etc. The objective of this systematic literature review is to present a comprehensive view
on the DT technology and its implementation challenges and limits in the most relevant domains and
applications in engineering and beyond.
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1. Introduction

Digital twins (DTs) are an emergent technology which has seen a recent surge in
case studies mostly focused on lifecycle management and predictive analysis for various
industries and domains. The technology offers the ability to have a deep insight on the
inner operations of any system, the interaction between different parts of the system and
the future behavior of their physical counterpart in a way that is actionable for their users
and stakeholders. DT research and implementation have become more popular in certain
domains, such as: smart cities, urban spaces, freight logistics, medicine, engineering and the
automotive industry, amongst others. In this work, the DT concept will be analyzed across
these domains and across different integration and maturity levels, where the objective is to
present both a holistic view of the technology challenges, limitations and trends as well as
a domain-specific revision of applications. Not only the technical aspect of DT technology,
but benefits, future research agenda and implementation considerations are also explored.

For this work, a systematic literature review (SLR) method is employed in accordance
with Charles Sturt University guidelines. Higgins et al. in the “Cochrane Handbook for
Systematic Reviews of Intervention” [1] define a systematic review as one that “seeks
to collate evidence that fits prespecified eligibility criteria in order to answer a specific
research question. It aims to minimize bias by using explicit, systematic methods docu-
mented in advance with a protocol”. The stages when implementing this methodology are:
(i) identifying answerable research questions, (ii) developing a protocol, (iii) conducting
systematic publication search operations, (iv) selecting studies to include, (v) conducting
a comprehensive revision, (vi) extracting and synthesizing information, (vii) writing and
publishing the review. The protocol and selection criteria are evidenced in Figure 1.
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Figure 1. Selection criteria process for publication comparative analysis [2].

1.1. Research Questions

Considering the main objective of this review, a research question (RQ) was posed and
then deconstructed into three subquestions (SQx) to be considered when addressing the
main objective.

• RQ: What is the state of the art of DT technology in implementing real-life applications?
• SQ1: What are the challenges of implementing a DT-based system using the cur-

rent technology?
• SQ2: What are the limitations when implementing a DT-based smart city platform in

Latin America and around the world?
• SQ3: What are the trends in the use of enabling technology for the future?

1.2. Contributions

The main contributions that our work is providing to the scientific community are
the following:

• A clear view of trending enabling technologies and specific tools for DT develop-
ment: by using the comparative table in Section 4, this work aims to highlight the
trends in the use of enabling technologies for domain-specific applications but also for
DTs in general. In comparison with other works which only provide a list of enabling
technologies, we also discuss the specific tools (sensors, devices and software) in
Section 3.

• Identifying the general implementation challenges around the world and in the
Latin American context: highlighting the centralized efforts from all industries around
the world and their different approaches.

• Building a layered analysis and evaluation of DT applications across various do-
mains in terms of the integrity level, the technology readiness level (TRL), the societal
readiness level (SRL) and the maturity level: using the evaluation tools of TRL, SRL
and the maturity index, this paper presents an overview of the state of the art based
on real applications and studies.

This work is structured as follows. Section 2 presents the conducted systematic
literature review methodology (protocol, systematic search, selection and revision), the DT
definitions and concepts, the basic architecture as a holistic view and a maturity spectrum
index for DT evaluation. Section 3 describes the application of DTs in various domains and
their respective limitations and challenges. Section 4 presents the results and findings on
the trends of enabling technologies in DTs and provides a comparison table of enabling
technologies for different domains and publications. Section 5 discusses some of the general
application challenges, and the challenges specific to Latin America, as well as giving a
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summary of this work’s benefits and implications. Finally, conclusions are provided in
Section 6.

2. Methodology

In order to conduct this SLR, the following subsections detail the protocol followed
and the systematic approach to literature reviews in accordance with [1]. The compiled
studies were selected through specific search methods and criteria and were analyzed to
present a state-of-the-art revision on DTs, the general DT architecture, types of DTs, their
integration levels and a maturity evaluation method.

2.1. Protocol

A comprehensive search in several databases for publications was conducted. Publica-
tions of various types (journal articles, white papers, reviews, etc.) were initially collected.
However, the following criteria were set for obtaining a preliminary selection of publications:

1. Search criteria: publications with the term “digital twin” in the keywords or in the title.
2. Year of publication from 2017 to present.
3. Publications were selected from different application industries such as smart cities,

freight logistics, medicine, engineering, automotive, etc. The domains discussed
in this work were chosen based on their relevance with respect to the initially col-
lected publications.

The classification of publications is based on their application industries pertinent to
the third criterion of the protocol and is showcased in Figure 2. As can be observed from
Figure 2, the most relevant domains are urban spaces, manufacturing, reviews, engineering,
automotive and medicine domains. For this work, the manufacturing domain was divided
and automotive-related manufacturing publications were used in the automotive domain
section. Additionally, some publications from the urban and engineering domains that
relate to freight and operations logistics were also separated. In this sense, the five do-
mains that will be discussed are: smart cities and urban spaces, freight logistics, medicine,
engineering and automotive.

Figure 2. Publication classification by the application industry.

2.2. Systematic Search of Related Literature

Once the searching criteria and publication requirements were established, the next
step was to conduct the actual search of the related publications. For this part of the
methodology, a variety of databases was used. However, the main databases used were
ResearchGate, MDPI, Science Direct and ProQuest. We finally selected articles and pub-
lications from recent years (2017–present), and from Q1 and Q2 high-ranked journals (as
classified by the Scopus journal search engine).
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2.3. Selection

From this preliminary search, a large amount of publications was collected. The total
number of publications was 115, and after filtering the highly ranked studies, 84 references
were obtained for presentation in this review; moreover, we selected a smaller set of 18 more
recent (2019–present) studies that were analyzed in depth and used for a comparative
analysis that presents more insights on the trending enabling technologies used in the
current applications of DT-based systems. The complete selection process is shown in
Figure 1.

2.4. Revision and Synthesis

Once the final set of publications was selected, a comparative table was generated
in order to analyze several variables from each publication, such as: the use of enabling
technologies, a technology readiness level (TRL) [3], a societal readiness level (SRL) [4], a
maturity level [5], the application industry, the system evaluation methods, the construction
based on its counterpart physical twin, what sensors were used, etc. This table is presented
in Section 4.

One of the challenges that emergent technologies such as DTs face when attempting
a widespread and social adoption is the lack of a universal, standardized definition and
characteristics. However, there are basic components and ideas of what a DT should do.
The authors in [6] mention that a DT must have a physical counterpart to be determined as
such. Without the physical counterpart, it is merely a digital model or a digital functional
description [6]. Due to the nature of DTs and their applicability to multiple industries and
domains, their definition and main characteristics may vary. Recent insights detail all the
domains that are currently transitioning and integrating the digital twin modeling concept
such as agriculture, electricity, vessels, manufacturing, construction, cities, healthcare,
aerospace, waste, water, transport and automotive [7]. This surge in different domain
applications comes with more frequent and popular publications on the subject.

2.5. The Digital Twin Architecture

When it comes to specific uses, methods, protocols and even enabling technologies, DT
concepts will vary for each domain. This is mostly due to the nature of information from
each domain. As declared in [8], each domain will determine the rationale for deploying a
DT within a built environment by answering business-case questions. However, there is a
general framework for the DT architecture which is composed of three main elements: the
physical world, the virtual world and the connectivity between the two [9]. Each element
will integrate a variety of components dependent on the designer’s needs and require-
ments. However, some basic components include sensors in the physical world (to gather
information from the real environment), a physical twin, edge processing capabilities, data
security, the digital twin itself, data processing capabilities (enabled by machine learning
(ML), artificial intelligence (AI), big data, etc.) and communication interfaces such as the
internet, Bluetooth, satellite, etc. An important part of this DT architecture also includes
data visualization for the user. This is showcased in Figure 3, in which the physical world
is composed of the physical object or process, sensors, actuators and processing capabili-
ties. The digital world is composed of the digital twin itself, machine learning and data
processing capabilities and databases. Both are connected in the communication element
where several protocols and interfaces are available such as WiFi, Bluetooth and wired
connections. For the user, this architecture allows constant monitoring and visualization.
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Figure 3. DT architecture [9].

However, the modern state of the art classifies and defines DTs based on the application
domain [10] and their levels of integration.

2.6. Types of Digital Twins

• Digital twin instance (DTI): A digital twin instance is described as a type of digital
twin that represents its physical counterpart throughout all its lifecycle [10], meaning
there is a continuous monitoring of the state of the physical twin and any changes
or evolution experienced by the physical twin will impact the digital twin. In this
sense, this concept accompanies a product or process from its inception and through
its lifetime while monitoring and predicting its behavior. It is useful to validate the
expected behavior and performance of a product or object.

• Digital twin prototype (DTP): When it comes to manufacturing and production pro-
cesses for products, a digital twin prototype gathers and stores valuable information
and characteristics about the physical twin. Some data might include computer aided
designs (CADs), bill of materials (BOM), drawings or even information that might link
the manufacturing process with the production chain stakeholders [10]. In accordance
with DT characteristics, the DTP is able to simulate manufacturing scenarios and
perform validation testing, evaluation and even quality control testing prior to the
actual manufacturing process itself. This approach effectively reduces production
costs and operational time by identifying flaws or possible risks of the physical twin
before production. In this sense, DTPs can also be called experimentable DTs where,
according to [11], a virtual prototype becomes available whose level of detail increases
successively while virtual test results give a sufficiently reliable statement about the
design quality and reduce the number of usually expensive hardware prototypes.

• Performance digital twin (PDT): In more real and unpredictable conditions for phys-
ical twins, the PDT is able to monitor, aggregate and analyze data from products [10].
By aggregating smart capabilities, the PDT is able to process the information being
monitored from the physical counterpart and generate actionable data that can be used
for design optimization, maintenance strategy generation and drawing conclusions
from a product’s performance [12].

2.7. Integration Levels

The following integration levels are in ascending order, meaning digital models are
the least integrated ones and digital twins are the most integrated, as proposed in [12].
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• Digital model: In its basic concept, the digital model will not integrate any automatic
information flow from the physical world to the virtual world. This means that the
virtual and physical world are not automatically connected, so any change must be
reflected through manual modification.

• Digital shadow: The digital shadow will integrate unidirectional automatic informa-
tion flow from the physical world to the virtual world [13]. This is best represented by
a system where sensors measure information from the physical model and transfer
signals to the virtual model. Regardless of whether information flows in a polling or
interrupt method, as long as it is automatic, the integration level can be determined as
a digital shadow.

• Digital twin: A fully integrated twin where the virtual and physical world interact
in a bidirectional fashion. This means that information flows automatically to and
from each world. In this case, information flowing from the virtual world will be
useful to perform changes in the physical model or to instruct actuators to perform
an operation. Conversely, data from the physical twin may influence the virtual twin
automatically in such a way that the virtual twin accurately represents the current
state and the evolution of its physical counterpart.

2.8. Maturity Spectrum

According to a recent report published in [5], the global DT market was valued at USD
$3.8 billion in 2019 and is expected to reach USD $35.8 billion by 2025. The majority of large
industrial companies are expected to adopt them in order to increase their effectiveness,
but less than 5% of companies have something tangible at the moment. One of the most
important insights from [5] is related to a classification of several maturity levels for DTs as
presented in Table 1, which are agnostic of the industry domain or the technologies used
to build the models. In the literature to date, the majority of DT concepts are at levels 0–3
of maturity, and few have started the integration with real-time data streams due to the
significant challenge of data gathering, filtering and processing in real time, as well as
device malfunctioning and poor calibration which may create anomalies or missing data
points. The 3D simulation modeling with the time component is the preferred approach to
date due to the availability of running multiple what-if scenarios powered by real data sets.

Table 1. Maturity levels for digital twins [5].

Level Principle Usage

0 Reality capture (e.g., point cloud, drones,
photogrammetry or drawings/sketches)

Brownfeld (existing) as-
built survey

1 2D map/system or 3D model (e.g., object-
based, with no metadata or building infor-
mation models)

Design/asset optimization
and coordination

2 Connect model to persistent (static) data,
metadata and building information model
(BIM) Stage 2 (e.g., documents, drawings,
asset management systems)

4D/5D simulation, design/asset
management, BIM Stage 2

3 Enrich with real-time data (IoT, sensors) Operational efficiency

4 Two-way data integration and interaction Remote and immersive opera-
tions; control the physical from
the digital

5 Autonomous operations and maintenance Complete self-governance with
total oversight and transparency
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3. Literature Review on Digital Twin Progress by Domain Area

The more general application of DTs can be found in industrial applications [14],
inside lifecycle management platforms [15], in predictive maintenance [16] and in the
automotive industry [17]. Among the most recent and/or future DT applications, we
name: agriculture, healthcare, business, construction, education, mining, natural disaster
detection, communication and security [10,18,19]. Another, very complete, review on
DT technology remarks on the use of DT in applications for: logistics, robotics, design,
manufacturing (production, modeling, experiments and process) and products [9]. The
use of DTs for supply networks and service in industrial operations is also mentioned
in [20]. Figure 4 shows a summary of the fields of application where DTs and big data can
be used, different data mining techniques for prediction, classification and optimization,
data acquisition methods (sensors, internet of things) and modeling, as well as the main
communication infrastructure technologies [18].

Figure 4. Representative map of features of DT using big data and ML approaches. Several applications
and fields are presented, as well as the main technologies and communication infrastructure [18].

3.1. Smart Cities and Urban Spaces

In [21], a smart city is defined as a ”strategic approach to integrate data and digital
technologies to ensure sustainability, citizen welfare and economic development of the
urban environment“, where DTs are the building blocks of smart neighborhoods and
spaces. Some of the industries that have seen a recent surge in the DT concept integration
are smart cities and city planning. Besides the focus around smart digital buildings and
their maintenance and asset management, a shift is also taking place towards the digital
replica of entire neighborhoods or the so-called smart digital twin cities. City-scale DTs
are used to improve the quality of life, mobility and services of the citizens [22] in such
a way that technological advances are people-centered and improve the quality of life
of citizens rather than achieve economic efficiency [23]. From the studies included in
this work, Figure 5 presents the publications of smart digital twin cities being developed
in different countries worldwide, where there is a notable increase in density in Europe
and China. For instance, this work incorporates three studies [24–26] of smart city DT
concepts being developed in China, which presents the highest frequency of all countries.
Other publications present advances in cities such as Bogotá [27], Helsinki [28], Brescia [29],
Valencia [30], Irkutsk [31], Dublin [32], Herrenberg [23], Shenzhen [26] and Zurich [33]
and applications in Europe [34,35]. Recent approaches and initiatives such as Bently’s
OpenCities Planner in Helsinki, Finland [28] exploit cloud computing capabilities by
employing web-based 3D visualization solutions with federated data for communication
and collaboration. This is mostly due to the computational burden created by large data
sets and cloud points which a web interface with a powerful cloud service behind can
easily provide. In [36], the authors present Microsoft Azure digital twins as an approach



Remote Sens. 2022, 14, 1335 8 of 25

that integrates different assets and environments ranging from factories and buildings
to stadiums and even cities and gain insights from previously disparate devices and
business systems. The next step that seems to be taken by Azure DT is in a real-time asset
management monitoring even across several factories or cities around the world, with
less emphasis on all 3D modeling details and more focus on operational improvement
and refinement. Conversely, Dassault Systems [37] are taking the experience to a new
level by integrating virtual reality (VR) together with the 3D rendering of the system.
Furthermore, authors in [33] discuss that the data must be easily accessible through an
advanced geoportal for multiple users in a presentation of 3D spatial GIS models. The
authors of [38] mention DT 3D modeling standards in the context of smart cities such as
geographic data files (GDFs), CityGML, OpenDRIVE and Open Geospatial Consortium
(OGC) standards such as LandInfra.

Figure 5. World map of smart city digital twin implementations.

Currently, research scientists are being left behind by several industrial leaders which
are moving towards detailed simulation modeling without considering the true and power-
ful research questions about the capability of such systems powered by big data and AI,
which represents a significant gap in some cases that needs to be filled. Several approaches
have been taken to start building the DTs of real-life cities by data integration from several
sources. This approach generates massive operational data and poses new challenges for
diagnosis and prognosis [7]. Big data-based diagnosis and prognosis will be the mainstream
research object, including algorithm design, feature extraction, performance improvement,
etc. In terms of the SRL for this type of DT, considering the interests of all participants and
stakeholders and balancing their utility are the bottlenecks and pose a challenge that still
needs to be solved.

In [32], the authors discuss the fact that cities are becoming increasingly smarter
and produce information from a variety of sources such as traffic, transportation, power
generation, utility provisioning, water supply and waste management. The use of ML and
DL techniques has become more relevant as smart cities have become “exciting testbeds
for data mining and ML” [32]. The authors defined a DT smart city with six layers as
shown in Figure 6. Layers go from the most basic (terrain) up to the digital layer by adding
information on different components of an urban space such as building, infrastructure
and mobility. Finally, the digital layer has automatic connectivity with the last layer, the
digital twin layer where information can be used for scenario simulation and deep urban
analysis and studies using ML and DL. In the experimental setup presented in [32], the
DT of the urban space uses information from three sources: citizens, IoT data from smart
devices and sensors and 3D and urban mobility data enabled by internet connectivity
between the DT and the city’s council [32]. This work presents an advanced and unique



Remote Sens. 2022, 14, 1335 9 of 25

application of the DT technology to perform 3D simulations of a city under different
scenarios such as building and infrastructure planning, natural disasters (flooding) and
green space simulations. However, in [39] a more advanced and complex work on DT
implementations; the Destination Earth initiative is exposed. The European initiative
seeks to develop “a distributed and international knowledge platform to facilitate multi-
stakeholder collaboration and partnerships, sharing information, best practices, and policy
advice among the United Nations Member States, civil society, the private sector, the
scientific community and other stakeholders” [39]. In this initiative, information is used to
study the set of natural and social phenomena that characterize the Earth system, a class of
entities encompassing the local and global changes affecting the natural cycles, the deep
under-surface processes and the interconnections with human society [39].

Figure 6. Smart city digital twin layers of integration [2].

Other implementations of DTs as smart city applications can be found in [40] where the
authors mention that the latest implementations of smart cities seek to use the information
gathered from IoT real-time sensory information to “improve the efficiency, sustainability
and security of urban spaces while reducing costs and resource consumption”. The study
proves the implementation of a multi-paradigm simulation in a DT smart city for citizen
surveillance where information is used to generate conclusions on crime prevention, traffic
management, energy use and waste reduction in an urban space [40]. The authors discuss
that the challenges of a physical implementation of the system would be the analysis
of such large streams of real-time data, the reliability and fidelity of the measured data
and the challenge of developing simulations for complex dynamic environments. In this
sense, the development of multi-paradigm techniques for simulation helps in overcoming
said challenges.

On-demand delivery methods such as AmazonPrime, Deliveroo, Uber Eats, etc. are
gaining significant momentum, leading to an increase in on-demand personal trips around
cities; the complexity of modeling all this behavior currently represents a unique challenge.
In [41], authors conclude that “without a sound theory and knowledge with respect to the
relationships linking contextual reality and choice/behavior, it is not possible to make sense
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of what happens in the real world. Therefore, the joint use of behavioral and simulation
models should characterize a DT within a Living Lab approach so as to simulate effective,
well-informed and participated planning processes, but also to forecast both behavior
and reactions to structural changes and policy measures implementations”. Furthermore,
the implementation of big data in urban space applications enables monitoring of behav-
ioral patterns and lifestyle and their interaction with population, economic development,
construction and infrastructure [21]. The authors of [42] rate the application relevance of
different types of data in current and future smart cities in percentages with the top five
information data sets rated as:

• Infrastructure data = 91% (such as data from traffic, renewable energy, indust-
rial appliances).

• Sensor data = 88% (gathered by domestic appliances and smart street meters).
• Smart city IoT data = 86%(data collected from smart and connected sensor networks

in major utility services such as energy, gas and water).
• Social media data = 86% (from websites such as LinkedIn, Facebook, Twitter,

Pinterest, etc.).
• Online sources = 85% (from search engines and websites such as Google and YouTube).

3.1.1. Remote Sensing Technologies

An important part of our analysis is to investigate how sensors are collecting the
data, and the main challenges they are facing, such as: cost, sensors not being reliable or
calibrated, how to connect the sensors in real time to the cloud or to external servers.

Furthermore, an evaluation of sensing and data analysis solutions for smart cities is
presented in [42]. Smart city DTs offer a way of gathering and handling data for automated
decision making. Some of the most relevant solutions for urban spaces, mobility and citizen
DT concepts are:

• Real-time demand-based energy production = 86% (using smart city IoT sensors to
determine energy demand and production).

• Wearables for remote patient diagnostics = 94% (opening the possibilities of the
human DT concept).

• Body sensors to monitor chronic conditions = 88% (wearable devices).
• Real-time information on public transportation and traffic = 96% (using smart sens-

ing technologies to enhance public transportation and mobility infrastructure).
• Predictive maintenance for building management systems = 91% (integrating tech-

nologies such as ML and AI to process real information).
• Drones for site inspections = 88% (using tools such as cameras, LIDAR and ultrasonic

sensors, drones can be used for property management and monitoring).

Other data sources include personal analytics (health data, productivity, fitness, etc.),
and large-volume video, images, digital text and audio (from CCTV and public/private
records) [42].

Additionally, high levels of fidelity represent some of the major limitations of bringing
DTs up to the next level [43]. Modeling all components of a real-life system in detail requires
a lot of computational power, storage and data traffic and manipulation on a regular basis.
The infrastructure needed to achieve this high level of performance is not attained in many
domains such as smart cities. Big data sets would need to be monitored closely in terms of
accuracy, frequency and the level of agreement amongst all stakeholders. This gap explains
the popularity of BIM as detailed in the following subsection.

3.1.2. Building Information Models

The authors of [44] have proposed a DT evaluation of net-zero energy building (NZEB)
for existing buildings; the approach is to combine a novel hierarchy flow chart with
a BIM which is then used to thoroughly visualize each option, promote collaboration
among stakeholders and accurately estimate associated costs and associated technical issues
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encountered while producing an NZEB in a predetermined location. Other authors [29]
have started to use DTs to conduct a sustainability assessment of an educational building
in combination with an IoT-enabled dynamic approach. This is one of the few approaches
to date that has shifted towards a maturity level of 3 by real-time data integration with
the physical DT model of the building. Some researchers recently brought the DT concept
even further [45] by building so-called cognitive digital twins (CDTs) with the purpose of
incorporating cognitive abilities to detect complex and unpredictable actions and reason
about dynamic process optimization strategies to support decision making in building
lifecycle management (BLM). The study relied on surveys with industry experts to focus
on the lifecycle applicability and the integration of the CDT model in practice.

The same trend and research questions have been debated by [46] who focused on
enterprise BIM (EBIM) as an emerging concept to support business management via the
entire lifecycle of buildings and infrastructure. The authors highlight and discuss the
importance of both available and missing standards related to the effective implementation
of EBIM via a case study focused on cleaning. However, in [29], the authors present a
framework for sustainable digital twin (SDT) implementation in an educational building in
Italy. This work focuses on the development of the SDT under a green BIM concept that
is created in accordance to the International Standardization Organization (ISO) standard
ISO 19650-3:2020 [29] which relates to the organization and digitalization of information
about buildings and civil engineering works [47]. Although not explicitly related to DTs,
this standardization approach is key for the widespread implementation of DTs.

3.2. Freight Logistics

One of the largest sectors in which DTs are making significant progress is the freight
and logistics sector, which requires a closer look into decision making taken globally, as
shippers and integrators need to act more precisely and choose specific transport modes
that obeys strict regulations in order to avoid bottlenecks. For example, the authors of [48]
produced one real business scenario where a four-corner model solution enables synchro-
modality across the logistics network of one industry unit and its providers, the DT for the
process and the verified gross mass (VGM) formality documents. They mainly proposed
collaboration networks between logistics stakeholders that provide interoperable, low-cost,
reliable and secure data exchange, without requiring significant information technology
(IT) developments.

In [49], the authors focus on last-mile operations and propose a data- and model-driven
framework to support decision making for urban distribution with the test bed being the
city of Bogotá, Colombia.In this sense, the DT concept is powered by real sensing data (GPS,
RFID and customer service), and using optimization, ML and simulation models, it is meant
to simulate different situations and to produce actionable information to support decision
making in last-mile operations for retailers. In this way, the methodology is meant to set up
potential actionable scenarios to respond to immediate and diverse circumstances [49]. The
main data sets used were: a network of stakeholders, the retail organization, the number
of vehicles utilized, the resource capacity utilization and the fleet costs. The notion of DT
in this work has a special behavior and denomination as it stands for a simulator that
can predict future scenarios and can plan strategies for the most likely situations for the
dispatchers of various vehicles in businesses (e.g., retail, logistics companies, restaurants).
The study uses operational research, deep learning (DL) and data-driven modeling, which
is a unique combination without any 3D modeling or realistic city layouts involved in
the work.

The authors of [50] mention that “to advance the competitiveness of services, retailers
and logistics service providers have devoted significant effort to deploy express fulfilment
services, e.g., same-day or next-day delivery, via an omni distribution channel. This results
in new logistics challenges such as fragmented and downsized shipments, higher delivery
frequency, shorter delivery time, highly fluctuation and uncertain demands and returns”.
This comes as a result of the modern e-commerce behavior which demands an increasing
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fragmentation, complexity and integration level of DTs. Recent works with regards to
ports [25] mention that the DTs for ports should focus on port digitization and integrated
management needs, based on the BIM plaform, an index system of anchorage, quay crane,
port machinery and gate infrastructure and effectively integrate the sensing information
of the data. For this, tools such as Anylogic, Simio, Arena and Transmodeler can be used
for scene visualization and management coordination, full scene of the port development
process and the integration of the port planning, design, construction and future operations.

Another challenge is related to the complexity of urban planning in megacities [50]
which significantly delays all freight and logistics operations—see the example of Seattle
where freight vehicles spend 28% of their trip time finding available parking.

3.3. Medicine

Implementations of DTs in medicine have recently started to be reported in the liter-
ature [51]. Diverse applications have been described, such as in the fields of fitness [52],
simulations of viral infection [53], well-being in smart cities [54], remote surgery applica-
tions [55] and healthcare management [51].

Healthcare management can benefit greatly from DT technology; the use of AI, data
science and DL approaches can be used to provide more customized (and faster) healthcare
services to the population. Usage of such technologies has served to develop technologies
such as vital sign monitoring apps, brain–computer interfaces (BCIs), food monitoring
apps and liver and cardiac disease detection. The conceptual model of a human digital
twin (HDT) is proposed in [51], framing security and social ethics problems among its
main challenges. Its objective is to replicate the body of a person in a cyber-physical space
using information provided by wearable sensors, mobile phones and medical records
continuously updating its content via web services [51]. The data are analyzed by different
tools to provide contextual interpretations of the health state of the patient. Some other
elements are taken into consideration such as the interaction between other people and the
environmental factors. The idea of the HDT involves a particular index that is provided to
humans when they are born, and their biological information is constantly fed as an input
to the HDT as the person grows.

One of the biggest challenges of the HDT is that although some variables can be
monitored to infer certain threats, other human traits, such as thinking, reactions and
behavior, can be, to some extent, unpredictable, because humans are more complex than
manufacturing processes. Another one is that humans, if seen as models, are not indepen-
dent from one another. Factors such as genetics, heredity and even culture might play a
role in determining differences in specific human features [51].

In [52], a set of HDTs was developed for a team of athletes. Variables such as heartbeat,
number of steps, physical activity and sleep time, as well as manual information about the
food intake, their performance and mood, were recorded. The SmartFit app is explained in
this study, where the information is gathered, and sent to predictive models; the outputs of
the models are presented to trainers and coaches in a user-friendly visualization, which
can be used for correction, monitoring and suggestions. ML and DL algorithms can be
used to fill in the blanks or to manually correct fed data, by choosing reliable predictors
that take into consideration both past and future values. A challenge from this type of
DT is that the amount of data and the processing time needed to build individual models
constantly increase. Incremental learning is suggested to learn “on the run”, as new data
become available.

In a recent work [53], the description of a DT used to simulate human response to
viral infections is presented. This DT is built at different scales: subcellular, multi-cellular,
tissue, organ and whole-body scales, each simulating specific parameters related to a viral
infection at those scales. The experimental part of this DT is imperative as data coming
from sensors and medical records will be key to the development of reliable predictions
through the simulations. In [56], the authors also propose an approach of a collaborative
city DT concept capable of generating information for city crisis management. In another
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work, a city-scale platform for interacting DTs was used to enable data-driven decision
making and to generate efficient and inclusive plans to manage health crises, such as the
COVID-19 pandemic [56].

Among the main challenges for this type of DT is the fact that many biological phenom-
ena are poorly understood, such as infections within the body and the immune response
to viral pathogens, as well as some treatments. Therefore, validation by experts is very
important in order to assess the reliability of the models [53].

A DT for well-being is presented in [54], where an ISO/IEEE 11073 (X73) standardized
DT was developed. This development follow protocols and guidelines internationally
validated for data collection in personal health devices. A custom-made system was
developed to measure in real time gait forces using sensors in shoe insoles to identify if
the participants were walking, running or sitting. Visualizations were also enabled and
the authors suggested that the use of such systems in the smart city context could improve
the quality of healthcare services that are available to citizens [54]. In [57], the authors
proposed the use of HDTs for elderly real-time monitoring, remote diagnosis, virtual
surgery training and health consultation. By analyzing all the physiological variables of the
patients constantly and in real time, the system could send alerts to cloud servers, where
medical workers and/or institutions have access to the information, and then perform
preventive or emergency measures [57]. Figure 7 shows a representative framework for
HDTs according to [57].

Figure 7. Framework for DT used in healthcare: data are acquired in real time from wearable sensors,
and sent to models for simulation and evaluation. The historical records are recorded in the cloud to
provide personalized healthcare services [57].

3.4. Engineering

The DT concept is key for modeling, simulating and optimizing cyber-physical sys-
tems [58]. It can provide a deeper understanding of complex physical processes through
application services concerning diagnosis, simulation, monitoring, optimization and prog-
nostic and health management [7]. Thus, DTs enable companies to make more accurate
predictions, rational decisions and informed plans [59].
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The engineering applications of DTs seek to predict the future behavior and the perfor-
mance of a physical system (predictive) and build a relevant industrial big data that allow
the self-adaptive behavior of the equipment, providing support in the decision-making
process (interrogative) [24,60]. Although a DT does not necessarily imply a spatial/visual
model, the application of AR and VR for simulation, via the DT, is a safer approach (with
extra features) that allows working with hazardous environments and remote access [61].
According to the literature, around 18% of engineering applications of DTs focus on design,
approximately 35% on production areas, 38% on prognostics and health management
(PHM) and 9% on other areas [59]. However, the application can be diverse depending on
the stage of the engineering product lifecycle such as design, manufacturing, distribution,
usage and even end of life [62].

In [11], the authors proposed a DT-based simulation framework to equip virtual
testbeds with efficient algorithms, in combination with up-to-date virtual reality and 3D
simulation techniques. This sought to reduce the development costs and the time to orbit for
the iSAT-1 space mission. A different study developed an advanced physics-based model
to enable predictive maintenance applications focusing on the dynamic behavior of the
machine, the virtual sensors and the modeling parameters [63]. Meanwhile, another study
integrated a six degrees of freedom (DoF) robot with an end-effector grinder and a computer
vision system, to create an automation cell for a fan-blade reconditioning component of
maintenance, repair and overhaul (MRO) services. Here, a DT of the grinding process was
developed to explore the required force parameters to remove surface material [64]. In
general, applications in this area focus on predicting aspects such as the structural life of
the aircraft, the operational state of sections, the tire touchdown wear and its probability of
failure, the cooling rate and the temperature gradient, among others [59].

An example in construction is a DT multi-dimensional model that was developed to
achieve real-time monitoring of prestressed steel structures and provide timely predictions
regarding safety [65]. Moreover, a vessel DT-denominated “virtual sister ship” was pro-
posed by DNV GL to both reduce operational cost and increase reliability and safety while
a different application focused on a drilling platform DT for Blue Whale 1 (China) to enable
a visual display and real-time monitoring [7]. One more case is the successful application
of DTs in electrical energy conversion systems, particularly cabling or cable systems, which
allows for calculating the aging time through the cable current condition [24]. Other diverse
applications can be found in vertical transportation systems, where DTs can be used to
evaluate the system condition and potential corrective solutions derived from friction
losses, vibration and discomfort [66]. The authors of [67] present a DT model in the context
of high-voltage transmission line live working scenes for simulating a live worker posture
trajectory, including geometric, electrostatic field and safety operation components. This
DT sought to realize the deep fusion of physical trajectory and spatial virtual electric field
distribution of a live worker operating across different scenarios.

Nonetheless, a robust simulation requires precision, accuracy, data acquisition and
synchronization [24]. Hence, the practical implementation of DTs faces obstacles such as
real-time communication, complexity, accuracy, integration and structural foundations. The
challenge of running the DT in real time is not only related to the need for re-running the
optimization algorithm, but to the migration of the DT from one edge server to another [68].
Alongside the high variability and uncertainty, the complexity of the real industry context
can generate more equipment interactions that involve conflicts between resources, limiting
the high-fidelity mirroring of the physical system [60]. Some argue that a DT should be
simple enough, so it provides a reasonable estimation of the product/operation, risking
the accuracy [63]. On the other hand, the functionality and behavior of a system depends
on the correct interaction of modules with a local intelligence [11]. Due to the different
formats, standards and protocols, current tools are not integrated and simultaneously
used for a specific objective [7], and production plants do need tools that can centralize
(at least partially) the flow of decisions [60]. In the future, the development of platforms
and tools for DTs is required [7], as well as more efficient mapping systems, novel control
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interfaces, flexible data visualization and overall simulations [15]. Specific to integration,
some opportunities include VR, cloud/edge parallel computing and the incorporation
of big data analytics [15]. Finally, the security and privacy of the DT should be carefully
studied [59].

3.5. Automotive

In the automotive industry, although there has been an increase in the use of DT
concepts, most of the existing work is focused on the automotive manufacturing processes
and prototype testing. A key enabler of data-driven manufacturing is the concept of the
DT [17]. The authors of [6] mention that the key benefits from DTs are “increased produc-
tivity, reduced complexity, time savings, reduced cost, improved quality”. The authors also
mention that DTs can be used to develop and optimize new and existing products [6] by
generating information that is not readily available in the real environment [69]. In this
sense, once the physical counterpart exists, there are different configurations of DTs in the
automotive industry, such as the following (each configuration will have an impact on
different stages of a vehicle’s lifecycle from its conceptual design, to the system engineering
design, manufacturing, testing, performance and its end of life).

• Functional prototype twin (FPT twin): This is the basis for a functional representation
of the vehicle using model-based systems engineering.

• Harness twin: A DT that aims to represent and optimize complete wiring harnesses
in the vehicle.

• Prototype twin: Representation of a fully developed vehicle that is useful for scenario
simulation. This may have a great impact on reducing time and costs in testing phases
and future design and development stages.

• Geometric twin: Geometric prototype of the vehicle that integrates information on
the physical manufacturing and assembly of the car as well as information necessary
to connect individual car parts.

• Virtual reality twin (VR twin): Visualization twin that presents a visual aid for
simulation, rendering and optimization of manual assembly work on the vehicle.

• Simulation twin: Primarily used to develop software solutions or updates for existing
car models. Has the capabilities of experimentable DTs.

• Reuse twin: Digital representation of the end of the lifecycle of the vehicle where
information is enabled to draw conclusions on recycling strategies and optimization
solutions for a new series of vehicles.

In [70], an advanced approach is presented for an X-in-the-loop (XiL) framework and
demonstration for exploiting new technologies such as DT and IoT to provide connec-
tivity between physical and virtual representations of a vehicle during testing. The XiL
framework is put to practice in test and validation environments for a vehicle with various
integrated systems such as real-time vehicle simulation (vehicle-in-the-Loop), test and
validation functions from the automotive segment, artificial urban testing environments
for automated cars, connectivity platforms and interface applications [70]. With a mixed
reality approach, the study aims to prove key benefits from such integrated ecosystems
such as reproducibility, flexibility, scalability, cost efficiency and realistic simulation [70].
Some enabling technologies present in the demonstration are industry-standard simulation
tools such as CarMaker VTD, CarSim and PreScan and sensors such as light detection and
ranging (LIDAR), radio detection and ranging (RADAR), Global Positioning System (GPS),
inertial measurement unit (IMU), controller area network (CAN) bus and cameras [70]. The
simulation framework for an implemented proof-of-concept scenario-in-the-Loop (SciL)
validation model from [70] is presented in Figure 8.
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Figure 8. Co-simulation framework of the implemented proof-of-concept SciL validation model. Real-
time interface between several simulation tools incorporates different wireless communications and
adds realistic visualization and co-simulation techniques which create unprecedented opportunities
for software tool combination [70].

Electric Vehicles

In [71], the authors discuss the importance of enabling technologies in the advance-
ment of electric vehicles in the automotive industry, with the introduction of IoT and
network technologies that convert offline digital models to DT; this presents important
benefits such as smart system monitoring, prediction and re-scheduling of upcoming main-
tenance events, fault locations, fault endurance and remaining useful lifetime [71]. DTs
have been identified as enablers for further optimization of the efficiency and reliability of
electric vehicles (EVs). In addition, five enabling technology trends are outlined: IoT, cloud
computing, application programming interfaces (APIs) and open standards, AI and digital
reality technologies [71]. In this case, the authors propose three classifications of DTs in
the automotive industry: digital twin for design (DT4D), digital twin for control design
(DT4CD) and digital twin for reliability (DT4R) [71].

In an application of an electric battery DT for an EV, some authors provide a framework
for integrating concepts of state-of-the-art battery modeling, in-vehicle diagnostic tools and
data-driven modeling approaches [72]. The authors also propose a potential ecosystem
of battery DT data aggregation where multiple vehicles produce real-time information
that is sent to the cloud via IoT and is accessible for external users. Some technologies
that are present in this work are AI and ML models that enable data mining and data
refining, ML for remaining useful life (RUL) estimation of components, cloud and edge
computing, IoT and data-driven modeling. The use of these technologies together with the
aggregation of multiple data sets, real-time monitoring of key states and the fusion with
hybrid models unlocks the potential for optimizing real dynamic systems such as battery
systems [72]. The cyber-physical elements of the battery DT proposed by [72] include:
data collection, data processing, model/algorithm application (through edge and cloud
computing), cell balancing, battery diagnostics, SOX estimation, smart charging, energy
management, system prewarning and remote upgrade and maintenance and a mirrored
framework of functions and operations [72].

In the category of EVs, these present a challenge to design engineering due to the fact
that most of the components involved are multi-physics systems incorporating interactions
of mechanical, electronic, thermal and other phenomena [73]. This makes multi-physics
modeling an important part of DT implementation for EVs. According to the authors,
“the design and operation of e-powertrain components requires the consideration of their
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multi-physics effects and the coupling between them, as well as the interactions of the
components with the rest of the EV and its environment” [73]. Vehicles can be classified
as systems-of-systems which adds to the complexity of representing cars in a virtual
world. However, [73] propose the use of model order reduction techniques to enable the
real-time model-based health assessment of e-powertrain devices in representations of
reduced complexity.

4. Results and Findings on Enabling Technologies

In accordance with the SLR methodology, the final steps of our current work focused
on gathering and comparing a small set of studies (18 for this work). These studies were
compiled using every criterion in our methodology and are summarized in Table 2, where
enabling technology trends, TRL, SRL and maturity levels are presented for each domain.
In order to target our research subquestion SQ3, we conduct the final comparison of studies
which provides valuable information towards understanding the most relevant enabling
technologies in terms of computing, simulation, communication interfaces, data analysis
techniques, sensing technology and evaluation methods for future DT development. For
evaluating different publications, a TRL, an SRL and a maturity spectrum index (only for
implemented applications) were assigned. As presented in Table 2, most applications lie in
the early stages of DT development and levels of these evaluation methods, indicating the
infancy stage of DT implementations and the large gap to fill.

The TRL is an index proposed by the European Commission where a scale of 1–9 rates
studies in terms of technology readiness level (e.g., implementation and validation level) [3].
The levels are presented as: (1) basic principle is observed, (2) technology concept formu-
lated, (3) experimental proof of concept, (4) technology validated in a lab, (5) technology
validated in relevant environment (industrially relevant environment in the case of key
enabling technologies), (6) technology demonstrated in relevant environment (industri-
ally relevant environment in the case of key enabling technologies), (7) system prototype
demonstration in operational environment, (8) system complete and qualified, (9) actual
system proven in operational environment (competitive manufacturing in the case of key
enabling technologies, or in space).

The SRL assesses the level of societal adaptation of the studies with nine levels where
levels 1–3 reflect the early work in a research project, including testing on a preliminary ba-
sis of a technical and/or social solution to a societal problem. Levels 4–6 represent the actual
solution, the research hypothesis and testing it in the relevant context in co-operation with
relevant stakeholders, while keeping a focus on impact and society’s readiness for the prod-
uct. Levels 7–9 include the end stages of the project, refining the solutions, implementation
and dissemination of results and/or solutions [4].

The findings in Table 2 show that some technologies such as ML, big data, remote
sensing, IoT and cloud computing are common across all domains and are therefore the
most relevant when it comes to DT implementation in general. Each domain demands
specific tools for development, but the most common are GIS modeling, ANSYS, ML data
processing, big data, GPS/LIDAR sensors and IoT communication using various interfaces.
All domains present advanced and mature implementations with most of them classified
at level 3 of the maturity spectrum (where models are enriched with real-time and static
data). The TRL evaluation also presents high levels of technology readiness, especially
in the smart cities and the automotive domains. This may be an indication of the slower
adoption of DTs by the smart manufacturing, freight logistics and medicine domains, due to
implementation costs and complexity limitations. In addition, all domains show low levels
of societal readiness. This is representative of applications where relevant stakeholders are
not identified or consulted, and the potential impact on society and the environment is not
well defined. Moreover, the smart cities and medicine domains should lead the way with
sustainable development frameworks given their high societal impact.
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Table 2. DT application technological comparison.

Domain Ref. Objective Physical Twin Computing Simulation Communication Data Analysis Sensors Eval. TRL SRL Matur.
Level

Smart Cities and Ur-
ban Spaces [30] DT for water distribution

system Water distribution system - GIS IoT Big data Level, pressure,
flow, quality, etc. 7 0 3

Smart Cities and Ur-
ban Spaces [74] Smart city management Urban Space - ArcGIS - ML (ICP, C2C,

M3C2), Big data

LIDAR,
UAVs, satellites,
ranging sensors

- 3 2 2

Smart Cities and Ur-
ban Spaces [21] SoA of implemented DTs Urban Space Fog/cloud

computing ANSYS
Bluetooth,
NFC, MQTT,
HTTP, Ethernet

ML (ANN, CNN)
Camera, pressure,
vehicle GPS, travel
cards, temp., etc.

- 3 1 -

Smart Cities and Ur-
ban Spaces [31] Electricity network DT Electricity

distribution network - Python -
Reinforcement
learning (Markov
decision process)

IoT
electricity meters

77-node
test scheme 4 3 3

Smart Cities and Ur-
ban Spaces [29] Implementation of SDT Educational building - OPAL-RT IoT, Ethernet,

LoRa AI
Temp., humidity,
light, CO2, VOC,
sound, etc.

Sustainable build-
ing rating systems 7 4 3

Smart
Manufacturing [75] Lifecycle monitoring and

business projections Industrial machines Cloud - JSON, IoT,
REST API ML, Big Data - - 8 0 3

Smart
Manufacturing [60]

Implementation of smart
manuf. cyber-physical
system prototype

Manufact. process, AGV Arduino
(edge) DES WiFi Indus. Big Data Proximity - 5 0 1

Smart
Manufacturing [76] Role of DT in manufacturing - -

Matlab/Simulink,
Mathematica,
Dassault Systems

IoT Big Data - - - - -

Smart
Manufacturing [77] Framework for CPPS-DT im-

plementation - Cloud V-Hub IoT (MQTT, OPC,
WebSocket) Indus. Big Data - Continuous

model calibration 7 2 3

Freight Logistics [49]
Proposing data- and model-
driven framework for urban
logistics DT

Distribution network - GIS Mobile ML, DL, AI GPS, RFID, cus-
tomer service

Walk-forward
metric 7 4 3

Medicine [54] Framework for HDT Human Cloud - X73 ML (CNN) Wearables - 3 3 2
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Table 2. Cont.

Domain Ref. Objective Physical Twin Computing Simulation Communication Data Analysis Sensors Eval. TRL SRL Matur.
Level

Engineering [40] DT for surveillance Urban space - Multi-paradigm IoT
Markov decision
process policy
generator

Camera, drones,
seismic, humidity,
audio, etc.

- 3 2 -

Engineering [65] Multi-dimensional DT for
prestressed steel Steel cable - ABAQUS, ANSYS Serial ML (SVM) Pressure trans-

ducer Error percentage 5 0 -

Engineering [63]
Methodology for ad-
vanced physics-based
PdM modeling

Industrial robot - Open
Modelica, Matlab - - Virtual sensors - 5 0 3

Engineering [64]
Automation for recondition-
ing of aircraft component
using DT

Industrial grinding robot - Coppelia- Sim - Markovian chain
RGB-D cam-
era, depth and
force sensors

RMSE 6 0 3

Automotive [69] Battery pack DT
for monitoring Battery pack Cloud - 4G IoT (MQTT),

REST API, HTTP Python GPS, OBD-II, volt-
age, acc., etc. - 7 0 2

Automotive [70] DT for vehicle testing Car Cloud
Unreal, Mat-
lab/ Simulink,
Python, CarSim

5G ML, AI LIDAR, RADAR,
GPS, CAN

Accuracy testing,
ISO standards 7 3 3

Automotive [78] DT for automotive LIDAR LIDAR - ANSYS - ML (NN) LIDAR Accuracy and pre-
cision testing 4 0 -
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5. Discussion
5.1. Application Challenges and Limitations

The authors of [10] argue that the challenges that might arise depend on the scale
and integration complexity of the application. From the reviewed literature, five main
challenges that are common for all domains were found in DT technology implementation.
These challenges effectively conclude and respond to the research subquestion SQ1 and
help address the state-of-the-art main research question (RQ) :

1. Issues related to data (trust, privacy, cybersecurity, convergence and governance,
acquisition and large-scale analysis) [10]. It is difficult for designers to mimic or
model behaviors that cannot be explained by numbers. Such is the case of social con-
flicts, sociopolitical issues, social inequality [79] and environmental sustainability [80].
These developments in the social and environmental domains will target lower levels
of SRL where there is a clear understanding of the potential impact on identified
stakeholders, the entire society and the environment. Furthermore, this challenge
relates to maturity levels 3 and 4 in Table 1 where enriching models with real-time and
bidirectional flow of information presents a relevant limit when it comes to complex
DT implementations.

2. Lack of standards, frameworks and regulations for DT implementations [15]. The
authors of [77] discuss that implementations of DTs are limited due to a lack of
standards and recognized interoperability, especially in the manufacturing domain.
Articles that explore the benefits, define concepts and architectures of DTs and review
the technology’s state of the art are important for adopting a widespread, concrete un-
derstanding of DTs and their relevance. Furthermore, targeting this specific challenge
with surveys and literature reviews, researchers may impact lower levels of the TRL
to make basic principles and concepts widely known.

3. High costs of implementation due to the increased amount of sensors and compu-
tational resources needed [10,18]. Due to the expensiveness of DT implementations,
their accessibility is limited by the accessibility of such resources, which is often poor
in developing countries [79]. The increase in the amount of sensors needed comes with
an added complexity with regard to data connectivity and processing which poses a
challenge to reach level 3 in the maturity spectrum from Table 1 (where the digital
model needs to be enriched with real-time information). This challenge also poses
a limitation for practitioners to enable higher levels of TRL where pilot systems are
demonstrated, DTs are incorporated in a commercial design or full-scale deployment.

4. The use of AI and big data to satisfy the long-term and large-scale requirements
for data analysis [13,81]. With the large amount of data generated and analyzed in
DT systems, big data algorithms and the IoT technology are powerful allies that can
provide support to a great extent to successful DT implementations [75]. Furthermore,
information flowing from various levels of indicator systems presents a challenge for
developing common policies and standards [82]. Effectively targeting levels 4 and 5 of
the maturity spectrum, this challenge could enable bidirectional flow of information,
control of the physical world from the digital model and even autonomous operations
and asset maintenance.

5. Communication network-related obstacles. There is a need to build faster and more
efficient communication interfaces such as 5G. The authors of [42] mention an urgent
demand for using the 5G technology for smart cities, such as the ability to connect
many more sensors and devices, the high-speed ubiquitous connectivity, the improved
reliability and redundancy and ultra-low power consumption; the authors believe
that it is of great value to enable real-time data connectivity and operational efficiency
for the DT.

5.2. Digital Twin Challenges in Latin America

It is important to note that the development and widespread implementation of DTs
depend on the advances in research and enabling technologies such as AI, ML, big data, 5G
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communication and cloud/edge computing [10,83]. Addressing research subquestion SQ2,
in the Latin American context, the challenges are greater due to limited access to high-end
technology in developing countries as exposed by [79]. This, paired with a lack of inter-
operable platforms and tools with up-to-date information under set standards, presents a
significant obstacle to DT implementation. However, applications in Latin America offer
significant opportunities for environmental and sustainable development [27]. To make
cities more sustainable, the design and practice of buildings as well as the perception
and lifestyle of citizens would benefit from smart city DT implementations. With the
gained insight from an urban space, developers and designers may use the information
for proposing solutions to reduce urban expansion, reduce carbon emissions, integrate the
use of renewable energy sources and optimize infrastructure and construction methods.
Furthermore, the DTs may generate actionable intelligence necessary for addressing global
challenges, facilitating sustainable transitions and contributing to realizing the United
Nations Sustainable Development Goal (SDG) agenda [39].

5.3. Contribution Benefits and Implications

Our work presented in this paper explores the possibilities, challenges and limitations
for DT implementation and its use in different domains. By understanding how DT applica-
tions might differ in terms of their requirements, data gathering techniques, data processing,
simulation and prediction capabilities, a more concrete and general understanding of the
benefits and implications of this technology is made available. Other literature reviews
such as [9,13,62,84] focus on presenting the DT architecture, definitions, concepts and
benefits while others, such as [15–18], focus on the technical aspect of the DT technology
and explore the trending technologies for a solid DT implementation. Our work explores
both perspectives and adds a discussion of a future agenda for researchers and practitioners
based on real applications and the state of the art of the literature. In this sense, the main
research question (RQ) is addressed and subquestions (SQ1, SQ2, SQ3) are answered in a
comprehensive approach. The findings presented in this work help to answer our research
questions but also open the discussion for future research developments in this field.

To reach a widespread implementation, industries and organizations need to clearly
understand the benefits of implementing DTs in their processes. In this sense, this work
presents a clear overview of how each domain is impacted by this emergent technology.
Furthermore, a holistic view of benefits, challenges and future agenda is presented to
discuss DTs in a generic way which is crucial to making these insights transferable across
domains as suggested in [17]. The challenges presented in this section present a clear
view of the current limitations for more mature and complex implementations of DTs
across all domains. Furthermore, the layered analysis and evaluation using the TRL,
SRL and the maturity spectrum present valuable information on the state of the art of
DTs. For instance, the presented challenges show the relationship of specific enabling
technologies and their relevance to creating more mature DT concepts (beyond level 3
of the maturity spectrum in Table 1). Additionally, Table 2 presents a pattern that shows
that most DT applications have not been developed to high levels of SRL. This suggests a
point of improvement when it comes to developing more sustainable and society-centered
applications where communities, governments and stakeholders are taken into account.
The discussed challenges present a guide for practitioners and researchers to focus on
specific aspects faced in real applications when developing the DT technology.

6. Conclusions

The emergent use of DT applications across a number of domains is on the rise
and, combined with enabling technologies such as big data, ML, advanced modeling,
simulation and advanced communication interfaces, it enables insights on their physical
twin’s operation in a way that is useful and actionable by the designer or the operator.
This insight leads to a data-driven decision making, which in some domains is the main
advantage of DTs. In the different domains presented in this work, their respective concepts
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of DTs have different focuses and needs. For instance, some key features, such as real-
time monitoring, predictive analysis or edge/cloud computing, will differ in terms of
relevance but the main concept and basic architecture of the DT are still prevalent across all
domains. Although universal standards for this technology still lack widespread adoption,
the increasing amount of publications and attention towards DTs is an important step
for standardization organizations such as ISO to take DTs into account. It is well noted
that the predictions for the DT market are favorable, where market value is expected to
increase significantly as more companies and industries adopt the technology. Not only in
the private sector, but also governments and public agencies are starting to consider and
implement DT concepts for smart city developments, public services management and an
overall insight into their urban communities. The use of urban spaces and human health
DTs is aligned with citizen well-being and Sustainable Development Goals which target a
framework of sustainability for DT development.

DT technology is still in its early stages and reaching its full potential will require
addressing significant limitations and challenges for a modern DT implementation, such
as: costs, information complexity and maintenance, a lack of standards and regulations
and issues related to cybersecurity and communications. The TRL, SRL and maturity
spectrum evaluation of relevant publications is of great value to assess DTs in three aspects:
technology, societal readiness and maturity. As seen from the analysis in Sections 3 and 4,
the technology and maturity of DTs are still in early stages for most applications. Table 2
includes advanced applications of DTs, but more work needs to be done to fully enable
autonomous, sustainable and accepted DTs in real environments. As technology further
develops under the framework of innovation and sustainability, these and other obstacles
will become easier to tackle. Technologies and tools for data processing and analysis will
be key enablers for further improvements in DTs. Based on the challenges presented in
this work, future research efforts should include: (1) simulation and modeling techniques
to reduce computational complexity; (2) 5G communication; (3) IoT data processing and
analysis through big data, ML and AI; (4) interoperability and integration of simulation,
modeling, analysis and visualization software; and (5) edge and cloud computing capabil-
ities in advanced microprocessors. Understanding the holistic view of DTs across many
relevant domains will allow for a better evaluation of the state of the art and where the
technology is going. It is essential to address the proposed research efforts to unleash the
potential of DTs for the future.
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