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Abstract: Aerosol–cloud interactions (ACI) are in the spotlight of atmospheric science since the
limited knowledge about these processes produces large uncertainties in climate predictions. These
interactions can be quantified by the aerosol–cloud interaction index (ACI index), which establishes a
relationship between aerosol and cloud microphysics. The experimental determination of the ACI
index through a synergistic combination of lidar and cloud radar is still quite challenging due to the
difficulties in disentangling the aerosol influence on cloud formation from other processes and in
retrieving aerosol-particle and cloud microphysics from remote sensing measurements. For a better
understanding of the ACI and to evaluate the optimal experimental conditions for the measurement
of these processes, a Lidar and Radar Signal Simulator (LARSS) is presented. LARSS simulate
vertically-resolved lidar and cloud-radar signals during the formation process of a convective cloud,
from the aerosol hygroscopic enhancement to the condensation droplet growth. Through LARSS
simulations, it is observed a dependence of the ACI index with height, associated with the increase in
number (ACINd) and effective radius (ACIre f f ) of the droplets with altitude. Furthermore, ACINd

and ACIre f f for several aerosol types (such as ammonium sulfate, biomass burning, and dust) are
estimated using LARSS, presenting different values as a function of the aerosol model. Minimum
ACINd values are obtained when the activation of new droplets stops, while ACIre f f reaches its
maximum values several meters above. These simulations are carried out considering standard
atmospheric conditions, with a relative humidity of 30% at the surface, reaching the supersaturation
of the air mass at 3500 m. To assess the stability of the ACI index, a sensitivity study using LARSS is
performed. It is obtained that the dry modal aerosol radius presents a strong influence on the ACI
index fluctuations of 18% cause an ACI variability of 30% while the updraft velocity within the cloud
and the wet modal aerosol radius have a weaker impact. LARSS ACI index uncertainty is obtained
through the Monte Carlo technique, obtaining ACIre f f uncertainty below 16% for the uncertainty
of all LARSS input parameters of 10%. Finally, a new ACI index is introduced in this study, called
the remote-sensing ACI index (ACIRs), to simplify the quantification of the ACI processes with
remote sensors. This new index presents a linear relationship with the ACIre f f , which depends on the
Angstrom exponent. The use of ACIRs to derive ACIre f f presents the advantage that it is possible to
quantify the aerosol–cloud interaction without the need to perform microphysical inversion retrievals,
thus reducing the uncertainty sources.

Keywords: aerosol–cloud interaction (ACI); remote sensing; particle number size distribution (PSD);
cloud formation
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1. Introduction

A complete understanding of the climate system is difficult due to its complexity and
the multiple interactions occurring [1]. Thus, atmospheric physical processes need to be
deeply investigated for a better understanding of climate change and its future effects [2].
One of the principal causes of the atmospheric radiative forcing high uncertainties is
the atmospheric aerosol, which has complex and non-linear interactions with a wide
variety of atmospheric components. These interactions are generally enclosed as aerosol-
radiation interaction (ARI) and aerosol–cloud interaction (ACI) [3]. The ARI refers to the
role that aerosols have by directly scattering and absorbing solar radiation, reducing the
amount of solar energy that reaches the ground, by increasing the radiation absorbed
in the atmosphere and backscattered to the space [4]. Therefore, changing the surface
energy budget, atmospheric thermodynamic stability, cloud evolution, among others [5–7].
The ACI refers to the role of atmospheric aerosols as cloud condensation and ice nuclei,
changing cloud microphysics. Thus, ACI affects cloud albedo, development, and lifetime,
and therefore the atmospheric stability [7–10].

The impact of the ACI was firstly introduced by Twomey [11], highlighting the in-
fluence of aerosols on cloud albedo. Feingold et al. [12] presented the ACI index as a
parameter to quantify the effect of aerosols on cloud properties, given by the ratio of cloud
optical properties to aerosol optical properties, based either on in situ or remote-sensing
measurements or the combination of both [13,14]. Aircraft in situ measurements have
proven to be an effective platform for studying the relationship between aerosols and cloud
microphysical properties near the cloud base [15,16]. However, these measurements are
quite costly, and, thus, limited. To overcome these limitations, ground-based in situ experi-
mental approaches have been applied with promising results, although these techniques
are invasive.

By allowing multiple measurements in real atmospheric conditions, remote-sensing
techniques are a suitable alternative to retrieve the ACI index, especially as satellite-based
remote sensing is the primary source of information for ACI [10]. Although several studies
are based on the use of remote sensing instrumentation, most of them present qualitative
results due to the great difficulty of disentangling the influence of aerosols from other
factors [17–19]. Sarna and Russchenberg [20] obtained quantitative values of the ACI index
through a synergistic combination of lidar, radar, and microwave radiometer measure-
ments, but highlighting the problem to disentangle the aerosol influence on clouds from
other variables such as temperature or water vapor content. Mamouri and Ansmann [21]
also provided quantitative values using vertical profiles of particle linear depolarization
ratio to retrieve cloud condensation nucleus (CCN) and ice nucleating particle number
concentrations. More recently, Jimenez et al. [22] presented the possibility of studying ACI
through the use of a dual field of view lidar for measuring both the aerosol below the
cloud and the microphysical properties of liquid-water clouds. Despite recent advances,
ACI is still the primary uncertainty source [10], mainly due to the limited observational
capabilities and coarse-resolution of the climate models [23].

This work presents a simulator of the lidar (e.g., attenuated backscatter coefficient)
and radar (e.g., radar reflectivity) products, considering the atmospheric physical pro-
cesses involved in the formation of convective clouds. Particularly, LARSS simulates the
aerosol hygroscopic growth, droplet activation, and droplet condensation growth processes,
providing the attenuated backscatter coefficient using MOPSMAP (Modeled optical prop-
erties of ensembles of aerosol particles) and the radar reflectivity using the radar equation
(Section 2). The study of ACI indexes sensitivity to variations of the atmospheric conditions
(such as dry and wet aerosol modal radius and the updraft velocity) performed by LARSS
allows to enhance the research approach for ACI study from the identification of some of
the technical difficulties to the optimization of data analysis. Furthermore, a new ACI index
based on the lidar and cloud radar signal is presented, reducing the ACI uncertainty by
avoiding the use of microphysical inversions techniques.
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Due to its theoretical nature, LARSS has been evaluated with well-known processes,
such as the Twomey effect [11]. In addition, an experimental comparison of the activation
fraction (AF) measured at the Andalusian Global Observatory of the Atmosphere (AGORA)
has been performed (Section 3). The Monte Carlo technique and the one-factor-at-a-time
method have been used to retrieve the ACI uncertainty and the ACI sensitivity to the
fluctuation of the atmospheric parameters, respectively (Section 4). Finally, a new ACI
index directly based on lidar and radar optical measurements is presented in Section 5.

2. Methodology

LARSS is a simplified approach to simulate lidar and radar signals under convective
clouds formation. From these simulated signals, it is possible to study ACI indexes and
the influence that different atmospheric variables and aerosol properties have in ACI,
disentangling the effects of the multiple processes involved.

2.1. Lidar and Radar Signal Simulator (LARSS)

LARSS simulation process is schematized in Figure 1. This process starts with a
dry air parcel (relative humidity [RH] ≈ 30%), characterized by its initial temperature,
pressure, and water vapor content at ground level. This air parcel is assumed to contain
a specific aerosol load characterized by its density, hygroscopicity parameter, refractive
index, aerosol number concentration (Na), and particle number size distribution (PSD).
The PSD is assumed to be Gaussian, defined by a modal radius, standard deviation, and
minimum and maximum radius.

Figure 1. Simulation scheme (left to right columns): the ascent of the dry air parcel, cloud formation,
atmospheric process and theories, retrieval of aerosol and cloud optical properties from the PSD and
DSD, respectively; and generation of lidar (aerosol and cloud) and radar (cloud) signals.

LARSS simulates the reduction of the saturation pressure with height during the air-
parcel ascent and the dry adiabatic lapse rate at a given updraft velocity (w). Since the water
vapor mixing ratio remains constant during the ascent, RH increases (see Figure 2a). This
RH increase triggers two different processes. First, aerosol hygroscopic growth, described
by the Hänel theory, for RH below 100% [24,25] (see Figure 2b). Therefore, in the ascending
air parcel, PSD changes with height toward larger sizes. Second, droplet formation, de-
scribed by the Köhler theory, starts once the supersaturation (SS, i.e., RH ≥ 100%) reaches
the minimum SS required to activate the PSD bin with the largest radius (C) [26,27]. It is
worthy to note that there is a smooth transition from Hänel to the Köhler theory since the
last one also covers RH ≤ 99%.

From this point on, the SS is calculated in height (see Figure 3a) according to the
theoretical model presented by Pinsky et al. [28],

SS = A1z− A2qw + C (1)
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where A1 and A2 are temperature-dependent functions, z is the height above ground level,
qw is the liquid water mixing ratio which depends on the temperature, the saturation
mixing ratio, and the supersaturation, and C is the aforementioned initial supersaturation.
A2qw term represents the decrease of available water-vapor molecules due to condensation,
so it contributes to reduce the SS. This explains the SS maximum reached at 180 m above
CBH shown in Figure 3a).

The SS evolution with height affects the droplet number size distribution (DSD):
(i) as long as the SS increases, smaller particles are activated, increasing the DSD. Once
SS reaches its maximum, no more particles are activated and thus, the droplet number
concentration (Nd) stays constant from this height. (ii) Droplet growth continues as long as
RH is greater than 100%. This two effects causes the Dre f f evolution in height shown in
Figure 3b).

Figure 2. (a) Relative humidity (RH), (b) effective radius and attenuated backscatter coefficient
(βatt) (c) profiles retrieved using LARSS with standard atmospheric conditions at surface (298.15 K,
101.325 kPa, and RH = 30%).

The attenuated backscatter coefficient profile (βatt) (directly proportional to the lidar
range-corrected signal) below the cloud base height (CBH) is the lidar product used in
LARSS to obtain the ACI index. This profile is derived from the PSD using MOPSMAP (mod-
eled optical properties of ensembles of aerosol particles) (see Figure 2c) [29]. MOPSMAP is an
open-source code based on a data set of pre-calculated single-particle optical properties,
according to either Rayleigh, Mie, T-matrix, or optical-geometry scattering. Addition-
ally, aerosol-particle backscatter (β) and extinction (α) coefficients can be derived, and the
Aerosol Optical Depth (AOD) can be retrieved by integrating α in a certain layer. The radar
reflectivity (Ze), is directly derived from the DSD according to Pruppacher and Klett [30]
(see Figure 3c):

Ze =
λ4

r
π5|Kp|2

∫
σb(Dd)n(Dd)dDd (2)

where Dd is the droplet diameter, σb is the cross-section of a droplet with diameter Dd,
n(Dd) is the number of droplets with diameter Dd, λr is the radar wavelength, and |Kp|2 is
the dielectric factor [31].
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Figure 3. (a) Supersaturation (SS), (b) droplet effective radius (Dre f f ) and (c) backscatter attenuated
(βatt) profiles retrieved from LARSS within the cloud.

In this study, simulations with LARSS have been performed under specific conditions
based on a series of assumptions that are summarized next:

• The PSD and DSD are described by a log-normal size distribution.
• The aerosol number concentration is constant with height, presenting the same PSD

except for hygroscopic growth.
• The minimum SS to start the droplet formation is established by the PSD bin with the

largest radius.
• The LWP is constant, as it is a requirement for retrieving the ACI indexes.
• The updraft velocity is constant with height.
• The droplets are only allowed to grow through condensation, making the maximum

radius of a droplet at r = 20 µm (the limit where coalescence growth starts to present
a considerable contribution).

These assumptions provide a simplified but realistic approach to the cloud formation
process. They allow us to identify the different parameters involved in the ACI processes,
and thus, to quantify how these parameters influence the ACI indexes. Despite these as-
sumptions, LARSS provides valuable information on how remote sensing instrumentation
can be used to estimate ACI indexes.

2.2. ACI Indices Estimation by LARSS

According to Feingold et al. [12], different ACI indices can be estimated based on
different aerosol and cloud proxies,

ACIre f f = −
∂ ln rre f f

∂ ln γ

∣∣∣∣
LWP

0 < ACIre f f < 0.33

ACINd =
∂ ln Nd
∂ ln γ

0 < ACINd < 1

ACIre f f =
1
3

ACINd

(3)

where γ is an aerosol proxy, and ACIre f f and ACINd use the rre f f and the ND as cloud
proxies, respectively.

To estimate the ACI indices using LARSS, a certain number of iterations, N, are
performed with different values of Na. As an example, ACI indices for sulfate-aerosol
particles are calculated here using LARSS with Na values ranging between 5 to 20× 108

part/m3, keeping constant the rest of the input parameters, with the values provided in
Table 1.
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Table 1. Initial parameters used for ammonium sulfate ([32–35]).

Atmospheric
properties

Specie Ammonium
sulfate

Atmospheric
conditions

Temperature
[To] (K) 298Number

concentration
[Na] (#108/m3)

5.0

Minimun radius
(µm) 0.01 Pressure

[eo] (kPa) 101

Modal radius
(µm) 0.1 Updraft

[w] (m/s) 2

Maximun radius
(µm) 0.5 Water-vapor

ratio [qv]
8

PSD standard
deviation [σ]

1.6

Instrumental
parameters

Lidar
wavelength

(nm)
355

Hygroscopicity
parameter [κ] 0.51

Density
(g/cm3)

1.77 Radar
wavelength

(mm)
3.18

Refractive
index

1.448 +
i7.49× 10−6

The simulated values for Nd and re f f allowed us to calculate the ACI indices at different
altitudes within the clouds. Figure 4 (left) shows the dependence between log(Nd) and
log(Na) where the ACINd index is obtained from the slope of the linear fit between both
datasets. Similarly, Figure 4 (center) shows the dependence between log(re f f ) and log(Na),
from which ACIre f f can be retrieved. Table 2 shows the value of the different ACI types at
each height according to the Figure 4.

Figure 4. Dependence between log(Na) and log(ND) (left), between log(Na) and log(re f f ) (center),
and between log(Ze) and log(β) (right) at three different heights varying the initial number of aerosol
for the accumulation mode ammonium sulfate using ten iterations. Input parameters of Table 1.

The retrieval of rre f f and Nd from remote sensors is performed with inversion algo-
rithms that usually require many assumptions and increase the uncertainty. To avoid these
intermediate steps, an ACI index based on direct measurements, such as Ze and β, the
(ACIRs), is proposed in this study (Section 5),

ACIRs = −
∂ ln Ze

∂ ln β

∣∣∣∣
LWP

0 < ACIRs < 1 (4)

where β is used as a proxy of Na, and Ze as a proxy of Nd. Figure 4 (right) shows the
dependence between log(Ze) and log(β).
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Table 2. ACINd, ACIre f f , and ACIRs values for different height according to the slope of Figure 4.

Height (m) 100 120 140

ACINd 0.97 ± 0.04 0.92 ± 0.04 0.81 ± 0.04

Height (m) 260 280 300

ACIre f f 0.17 ± 0.01 0.20 ± 0.01 0.21 ± 0.01

Height (m) 300 320 340

ACIRs 0.59 ± 0.03 0.61 ± 0.03 0.64 ± 0.03

2.2.1. ACI Uncertainty Based on Monte Carlo Technique

The calculation of ACI indices uncertainties is not straightforward due to the non-
linear physical phenomena related to aerosol particles [36] and droplet formation. Thus,
to calculate these uncertainties, the Monte Carlo technique (MCT), widely used in the
literatures [37,38], is implemented in LARSS (schematized in Figure 5) as follows:

1. Table 1 shows the 13 initial parameters required to initialize one simulation with
LARSS (P1, P2,. . ., P13). This set of parameters is noted as S.

2. The uncertainty associated to each parameter Pi is represented by its relative error
∆Pi.

3. A Gaussian distribution is associated to the uncertainty of each parameter Pi where
its standard, σPi, is derived from ∆Pi.

4. From each Gaussian distribution, h random values are selected (e.g., P1,1, P1,2, . . .,
P1,h).

5. Random values are grouped in h sets (e.g., S1, S2, . . ., Sh). For example, the set S1 is
given by P1,1, P2,1, . . ., P13,1.

6. h ACI indexes are retrieved with the generated sets.
7. The ACI index uncertainty is the standard deviation of the h ACI indexes.

Figure 5. Monte Carlo technique scheme showing the process to derive ACI uncertainty from input
parameter uncertainties (Pi ± ∆Pi).

Despite ACI index uncertainty depends on the number of simulations (h), it converges
once h is large enough. The ACI uncertainty has been retrieved for several h values ranging
between 10 and 40 (with ∆P = 5% for all the input parameters) to identify the number
of simulations needed for this convergence. Table 3 shows the convergence of the ACI
uncertainty at h = 30. Similarly, if the input parameters have an uncertainty of ∆P = 10%
the uncertainty for ACIRs is 0.05, for ACIre f f is 0.018, and for ACINd is 0.06.



Remote Sens. 2022, 14, 1333 8 of 25

Table 3. ACI uncertainty calculated by the Monte Carlo technique.

Uncertainty

h ACIRs ACIre f f ACINd

10 0.05 0.020 0.07

20 0.04 0.016 0.05

30 0.03 0.011 0.04

40 0.03 0.014 0.05

The number of iterations (N) to retrieve the ACI indices only affects the ACI index
value if at least one input parameter uncertainty is taken into account. Figure 6 shows
the variability of the ACI indexes (∆ACI) with respect to the ideal ACI indexes without
uncertainty, as a function of N assuming a dry modal radius uncertainty of 13%. As it can
be seen, ∆ACI reaches a local minimum at N equals to 20, 30, and 80, with a coefficient
of determination R2 > 0.85 from N ≥ 20. Due to the increase in the computational cost,
N is fixed at 20. ∆ACI is lower if AOD is used as an aerosol proxy instead of beta. βatt
at 200 m below the CBH causes a ∆ACI (not shown) similar to AOD. Considering that
both proxies provide the same value of ACI, this result indicates that AOD is a more stable
aerosol proxy to retrieve the ACI index.

Figure 6. ∆ACIre f f−β and ∆ACIre f f−AOD with respect to the number of simulations (N).

3. LARSS Evaluation and ACI Assessment for Simulated Data
3.1. LARSS Evaluation against Experimental Data

Even though LARSS is a tool that reproduces idealized atmospheric conditions, it
provides a realistic approximation that allows us to understand the behavior of aerosols
and droplets interactions. Under specific atmospheric conditions, CCN data obtained from
LARSS have been evaluated against experimental data measured at the Andalusian Global
Observatory of the Atmosphere (AGORA).

AGORA includes two sampling sites: an urban background station located in the city
of Granada (37.18◦ N, 3.58◦ W, 680 m a.s.l., UGR) and an alpine station in Sierra Nevada
mountain range (37.10◦ N, 3.39◦ W, 2500 m a.s.l., SNS). PSD and CCN concentrations
were measured for almost a year at UGR (from October 2018 to May 2019) and during the
summer period at SNS (from June to August 2019) [39]. Table 4 shows the mean values of
aerosol and droplet properties obtained at the AGORA observatory for these periods. The
activation fractions (AF) were calculated using the ratio between the CCN and the Na.
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Table 4. Atmospheric and cloud parameter used for LARSS comparison.

Measurement location UGR SNS

Number concentration
[Nd] (#108/m3) 130 27

Atmospheric
aerosol

properties

Minimun radius
(µm) 0.012 0.012

Modal radius
[Drmod] (µm) 0.045 0.062

Maximun radius
(µm) 0.514 0.514

Hygroscopicity parameter
[κ]

0.186 0.198

Density
(g/cm3)

1.76 2.08

Refractive index 1.51
+0.005i

1.51
+0.005i

Cloud
properties

Supersaturation
[SS] (%) 0.2 0.25

Activation-related
properties

CCN concentration
(#108/m3) 10.06 4.13

Activation fraction [AF] 0.077 0.152

The mean and standard deviation of the AF obtained from the experimental data at
Granada (AFUGR) and Sierra Nevada (AFSNS) are compared with the AF derived from
LARSS (AFLARSS) using the atmospheric aerosol properties of Table 4 as input parameters.
Figure 7 shows the variation of the AFLARSS with height until it reaches the maximum
supersaturation (SSmax) values of 0.20± 0.10 and 0.25± 0.10, respectively. These SSmax coin-
cides with the SS at which AFUGR and AFSNS were obtained, allowing the intercomparison.
Note that SS uncertainty was calculated with the Monte Carlo technique [Section 2.2.1]
and does not include systematic error due to LARSS assumptions discussed at the end of
Section 2.1.

Since AFLARSS values are within the AFSNS and AFUGR uncertainties, good agreement
between simulated and experimental AF data can be considered, indicating the good
performance of the simulator. Even though LARSS underestimates the AF with a relative
difference of 25% and 22% for UGR and SNS, respectively, results indicate that experimen-
tal data can be reproduced by the simulations. Furthermore, similar difference between
predicted and measured CCN concentration were found by Ervens et al. [40] for SS = 0.22,
and by Almeida et al. [41] for SS = 0.23.

3.2. Analysis of the ACI Indices for Different Aerosol Types

Figure 8 shows the ACINd (left), ACIre f f (center) and Ze (right) vertical profiles within
the cloud obtained with LARSS for the case study noted as Case Aa (see input parameters
in Table 1). The horizontal red dashed line marks the height at which the assumed radar
sensitivity value is reached (−60 dB [42]). The ACIre f f is close to zero in the first tens of
meters above the CBH because only a few large particles are activated. From ∼200 m to
350 m, ACIre f f increases with height. In this region, Ze is just above the minimum radar
sensitivity. ACIre f f reaches its maximum value from 350 m above CBH (LWP > 154 g/m2).
As it can be seen in Figure 8 (left), ACINd is equal to one at the very beginning, decreasing
up to its minimum value (0.660 at CBH + 180 m), where SSmax is reached. Thus, ACINd
minimum is reached at a lower altitude (i.e., 170 m below) than ACIre f f maximum.
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Figure 7. AF of the aerosol in Granada (UGR) and Sierra Nevada (SNS) for different maximum SS.

Figure 8. ACINd, ACIre f f (based in β) and radar reflectivity factor (Ze) of ammonium sulfate, where
the red dashed line marks the height at which the minimum radar sensitivity is reached.

The same analysis of the ACI indices has been repeated for the aerosol types listed in
Table 5. A total of 15 cases have been analyzed (Figure A7) for fixed instrument parameters
and atmospheric conditions. Given the large number of combinations, simulated cases
are noted as ‘Case Tm’ where T refers to the aerosol type (i.e., A = ammonium sulfate,
B = biomass burning, D = dust) and the subscript m refers to the mode (i.e., a = accumu-
lation and c = coarse). For example, ‘Case Dc’ refers to a simulation of coarse-mode dust
aerosol particles. In the case of an aerosol mixture, we follow the notation ‘Case T1m1T2m2’,
just adding as many monomodal cases as needed. For example, ‘Case AaDc’ refers to a
simulation for a mixture of accumulation-mode sulfate and coarse-mode dust particles.
Fine mode aerosols have been omitted since they require higher SS than those occurring in
the free atmosphere to be activated, even for highly hygroscopic particles [43]. Most of the
simulations focus on accumulation mode aerosol particles since this is the predominant
mode for the natural formation of clouds [43]. Coarse mode aerosol particles require a
lower SS to be activated, but they are much fewer in number [43].

Table 5. LARSS monomodal implemented cases.

Case Aerosol Type Aerosol Mode

Aa Ammonium sulfate Accumulation

Ba Biomass burning Accumulation

Da Dust Accumulation

Dc Dust Coarse
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Table 6 shows the input parameters used for the initialization of LARSS for each
aerosol type. The hygroscopicity parameter, standard deviation, and density of ammonium
sulfate and dust are extracted from Hande et al. [33]. The hygroscopicity parameter and
density of biomass burning are extracted from Psichoudaki et al. [44] and Zhai et al. [45],
respectively. The minimum, modal, and maximum radius, and the Na of the ammonium
sulfate and dust are from Mészáros [32] and Tu and Kanapilly [35], and Dentener et al. [46],
respectively. The minimum, modal, and maximum radius, and the Na of the biomass
burning are from Remer et al. [47] and Keil and Haywood [48]. The refractive index of
ammonium sulfate, dust and biomass burning are extracted from Curtis et al. [34], Denjean
et al. [49] and Remer et al. [47], respectively.

Table 6. Initial parameters used for the different aerosol types. Source: α Mészáros [32], β Tu
and Kanapilly [35], γ D’Almeida et al. [50], δ Remer et al. [47], ε Keil and Haywood [48], ζ

Dentener et al. [46], η Curtis et al. [34], θ Denjean et al. [49], ι Hande et al. [33], λ Zhai et al. [45],
and µ Psichoudaki et al. [44].

Atmospheric
properties

Specie
Ammonium
sulfate [Aa]

Burning
Biomass [Ba]

Dust
Accumulation [Da]

Dust
Coarse [Dc]

Atmospheric
conditions

Temperature
[To](K) 298Number

concentration
[Na] (#108/m3)

α 5.00 ε 18.90 ζ 7.00 ζ 0.35

Minimun radius
(µm)

α 0.01 δ 0.05 ζ 0.05 ζ 0.50
Pressure
[eo] (kPa) 101

Modal radius
(µm)

β 0.10 δ 0.14 ζ 0.20 ζ 1.30
Updraft
[w] (m/s) 2

Maximun radius
(µm)

α 0.5 δ 0.5 ζ 0.5 ζ 6.0
Water-vapor

ratio [qv] (g/kg) 8

Standard
deviation [σ]

ι 1.6 γ 1.3 ι 1.59 ι 2.00

Instrumental
parameters

Lidar
wavelength

(nm)
355

Hygroscopicity
parameter [κ]

ι 0.51 µ 0.22 ι 0.14 ι 0.14

Density
(g/cm3)

ι 1.77 λ 1.15 ι 2.60 ι 2.60 Radar
wavelength

(mm)
3.18

Refractive
index

η 1.448 +
i7.49× 10−6

δ 1.520 +
i0.025

θ 1.530 +
i0.008

θ 1.530 +
i0.008

The simulated ACINd and ACIre f f for accumulation-mode Cases (Aa, Ba, and Da)
(Figure 9) present opposite behaviors, decreasing and increasing with height, respectively.
ACINd minimum range is between 0.447 and 0.718, whereas ACIre f f maximum range is
between 0.152 and 0.322. The Case Ba presents negatives ACIre f f values from CBH + 120
to CBH + 180 m due to a positive relationship between Na and the droplet effect radius.
This is known as the anti-Twomey effect and it has been previously observed in the Gulf of
Mexico and the South China Sea [51]. It may be caused by the low LWP values in this region
(from 0.12 to 5.79 g/m2). In the Case Dc, both ACINd and ACIre f f reach the maximum
theoretical value (i.e., 1 and 0.33, respectively). In other words, the whole PSD is activated.
This case would rarely occur in real atmospheric conditions since it requires the presence of
pure coarse-mode dust. The grey bars mark the height at which Ze reaches the minimum
radar sensitivity value. Thus, only the information to the right side of this bar can be seen
by the radar. The ACI indexes of Case Dc also present a local minimum at 20 m, which may
also be associated with the anti-Twomey effect. In any case, this behavior would not be
detectable by radar because Ze is below the typical minimum radar sensitivity.
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Figure 9. Aerosol cloud interaction index (ACINd and ACIre f f ) for different aerosol types, as a
function of height, according to the legend.

Looking for more realistic study cases, two-type aerosol particles mixtures have been
simulated (Figure 10). The ACI index values of accumulation-mode mixtures (i.e., AaBa, ...)
are dominated by the single-mode aerosol type with the larger modal radius. For example,
the ACI value of BaDa (ACIre f f = 0.218) is close to the ACI of Da (ACIre f f = 0.240) because
the modal radius of Da (0.2 µm) is larger than Ba one (0.14 µm). This is related to the strong
influence of the modal radius in the ACI index, as indicated by the sensitivity analysis
performed in Section 4.

The ACI index behaviour is dominated by the Dc if present in the mixture, as observed
in Case AaDc and Case BaDc). This behaviour is easily explained considering that Dc
is totally activated due to its bigger dry size, while only a small amount of Aa and Ba
is activated [52] in the simulated process. However, the Case DaDc is dominated by Da
because, although Da modal radius is smaller than the Dc one, the Na of Da is more than
14 times larger than Na of Dc [43]. The special Case DaDc is analyzed in detail in the
Appendix A.2.

Figure 10. Aerosol cloud interaction index (ACINd and ACIre f f ) for different mixtures of two aerosol
types, as a function of height, according to the legend.

ACI indexes of mixtures of three and four aerosol types are shown in Figure 11. As
previously mentioned, the weight of Da and Dc is larger than the Aa and Ba in the ACI
index values. Furthermore, it is worthy to note that the variation range of ACI indexes
maxima decrease with the increase of aerosol-type mixture (i.e., variation range of the
ACIre f f maxima is [0.152, 0.322] for one-type cases according to Figure 9 whereas variation
range of the ACIre f f maxima is [0.127; 0.213 for mixtures cases according to Figure 11).
As the ACIre f f range of variation decreases with mixtures, it is crucial to reduce the ACI
uncertainty to distinguish mixture types.

If Na in accumulation mode increases enough, its influence can significantly decrease
the ACI index values, as it can be seen in the Case AaBaDc where ACI values decreases
up to ACIre f f = 0.182 from ACIre f f = 0.235 and ACIre f f = 0.237 of the Cases AaDc and
BaDc, respectively.



Remote Sens. 2022, 14, 1333 13 of 25

Figure 11. ACINd, ACIre f f for different mixtures of three and four aerosol types according to
the legend.

Considering the different aerosol types and mixtures analyzed, in general, it can be
concluded that the ACI index must be measured at least 200 m above the minimum altitude
measured by the radar (represented in this case by the grey bar) to assure that the ACI
index is stable.

4. Results: ACI Index Sensitivity to Atmospheric Conditions

Under real atmospheric conditions, atmospheric parameters vary with time, affecting
lidar and radar signals. As aforementioned, LARSS has been developed to investigate
ACI indexes sensitivity to these changes. To do so, the one-variable-at-a-time method
is used. This method allows to determine the fluctuation range of a single atmospheric
parameter (e.g., updraft velocity) that causes an ACI-index variability (∆ACI) of 10%
(taking as reference the ACI index with constant atmospheric parameters). This process has
been performed for the atmospheric parameters shown in Table 7, and for an ACI-index
variability of 20% and 30% for Case Aa.

Table 7 shows the atmospheric parameters used in LARSS to investigate ACI indexes
sensitivity. Those parameters to which the ACI indexes are more sensitive can be observed
on the upper side of the table, whereas the bottom contains the ones which exert less
influence. For example, refractive index fluctuation of [1%, 5%] causes an ACIβ variation
of [10%, 30%], making the ACI index very sensitive to refractive index. The same ACIAOD
variation is obtained if the refractive index varies between 15% and 35%, indicating that
ACIβ is more sensitive to variations in the refractive index. According to these results, the
ACI index must be derived in cases when the same aerosol type is present in the analyzed
aerosol layer in order to keep the refractive index as constant as possible. It is worthy to
highlight that ACIAOD should be prioritized over ACIβ since it is less sensitive to refractive
index variations (as noted by differences between blue and pink lines in Figure 12).

After the refractive index, ACI indexes show large sensitivity to the PSD standard
deviation. Fluctuations of [4%, 10%]([6%, 16%]) cause an ACIβ (ACIAOD) variation of [10%,
30%], i.e., ACI variation is still larger than the parameter fluctuation and must be carefully
considered during the data analysis. Thus, events with the same aerosol characteristics
must be used to prevent this influence and determine the ACI index. For example, it
may be assumed that the anthropogenic aerosol is constant during winter. However, this
assumption may not be valid for inter-seasonal anthropogenic aerosol. Thus, the ACI index
may be derived from the same season but not with cases from the whole year.
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Table 7. Fluctuation range of each parameter to retrieve the ACI index based in the backscatter
coefficient (β) or the aerosol optical depth (AOD) with a variability lower than 10%, 20% and 30%.
Parameters are sorted according to their influence on ACIre f f uncertainty (Up, higher influence). R2

remains above 0.6 for all parameters, except for hygroscopicity parameter at CBH (R2 = 0.31) and
the updraft velocity (R2 = 0.34).

ACI Index Variability

ACI Based on <10% <20% <30%

Parameter
fluctuation

(%)

Refractive index
β 1 3 5

AOD 15 24 35

PSD standard deviation at surface
β 4 6 10

AOD 6 10 16

Dry modal radius at surface
β 7 13 16

AOD 13 16 18

Wet modal radius at CBH
β 15 17 20

AOD

Dry maximum radius at surface
β 46 57 63

AOD 63 65 67

Hygroscopicity parameter at CBH
β 56 87 94AOD

Updraft
β 59 95 119

AOD

Wet maximum radius at CBH
β 74 144 178AOD

Hygroscopicity parameter at surface
β 82 135 216

AOD

The last of the parameters that present a considerable influence on ACI indexes are dry
(rm,dry) and wet (rm,wet) aerosol-particle modal radius. ∆ACI and the correlation coefficient
(R2) are shown in Figure 12. As it can be seen, while rm,dry fluctuations vary from 0% to 97%,
R2 ACI decreases from ∼0.99 to ∼0 and ∆ACI increases from ∼0% to ∼99%. According to
these results, rm,dry fluctuations must remain below 18% during experimental studies to
obtain a ∆ACI below 30% and R2 greater than 0.76. Larger fluctuations become a limitation
that prevents the determination of the ACI indexes. As above-mentioned, the use of
AOD as an aerosol proxy to retrieve the ACI index decreases the influence of the rm,dry
fluctuations (blue and light blue lines are above pink and purple lines in Figure 12).

Since random variations may also occur in the vicinity of the CBH, the fluctuations of
the wet aerosol-particle modal radius (rm,wet) are also analyzed (see Figure 13). The results
present a similar behavior to those shown in Figure 12. In this case, the rm,wet fluctuations
must remain below 19% to keep ∆ACI below 21% and R2 greater than 0.80. Thus, the
fluctuations of rm,dry are more important than rm,wet in terms of ACI accuracy. This is a
technical advantage since it is easier to control the rm,dry at the surface level than at the
CBH (for example, through in situ instrumentation). The influence of rm,wet on the rest of
the ACI indexes, similar to ACIRs−β and ACIRs−AOD, is shown in Figure A5.
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Figure 12. Correlation coefficients (R2 ACI) and variability (∆ACI) for ACINd−β and ACIre f f−β as a
function of the fluctuation of the aerosol modal radius at surface (rm,dry) using LARSS.

Figure 13. Correlation coefficients (R2 ACI) and variability (∆ACI) for ACINd−β and ACIre f f−β as a
function of the fluctuation of the aerosol modal radius at the CBH (rm,wet) using LARSS.

The ACI indexes show low sensitivity to the hygroscopicity parameter, the PSD
maximum radius, and the updraft velocity, having small ACI variations associated with
relatively large variations of these parameters. For example, large hygroscopic parameter
fluctuations (135%) cause ACI variations below 20%. Despite the updraft velocity shows a
low influence on the ACI index, its variability strongly affects the correlation of the linear
fit (R2) used to determine the ACI index (Figure 4). While R2 remains above 0.6 for all
the parameters in Table 7, the updraft velocity presents a R2 of 0.3. A detailed analysis
is tackled in Figure 14 with both ∆ACI and R2 due to updraft velocity (w) fluctuations
ranged between 0% to 158%. Despite ∆ACI remains very low even for large w fluctuations
(e.g., ∆ACI = 25% for ∆w = 119%), R2 decreases considerably, affecting the ACI index
reliability. Thus, w fluctuations must remain below 59% during the experimental study
to obtain a ∆ACI below 9% with a correlation of around 0.650. The influence of w on the
rest of the ACI indexes is shown in the Appendix (Figure A6). From the point of view of
the experimental approach, the availability of w data (e.g., from a Doppler cloud radar,
Doppler lidar, radiosonde) would be very beneficial for the study of ACI.
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Figure 14. Correlation coefficients (R2 ACI) and variability (∆ACI) for ACINd−β and ACIre f f−β as a
function of the fluctuation of the updraft velocity (w) using LARSS.

As a summary, from our sensitivity analysis, we can conclude that the ACI index
is quite sensitive to the aerosol refractive index, PSD standard deviation, and the modal
radius, whereas the hygroscopicity parameter, the PSD maximum radius, and the updraft
velocity have much lower influence. Nonetheless, these properties still contribute to the
process and can alter other parameters, such as R2, and should not be neglected.

5. Proposal of ACI Index Based on Remote-Sensing Measurements (ACIRs)

As mentioned in Section 2.2, ACIre f f and ACINd are calculated through retrieval
algorithms that require many assumptions, increasing the ACI uncertainty. To avoid these
assumptions and reduce the uncertainty, we propose an alternative ACI index based on
direct measurement of radar (Ze) and lidar (β), introduced here as remote-sensing ACI
index (ACIRs). This new index has been simulated for different mixtures of aerosol using
LARSS (see Figures 15 and A8). From the simulations, we observe that the ACIRs index
behavior in the vertical coordinate is similar to the ACIre f f but with a wider variation range
([−1, 1]). This variation range is explained by the combined influence of Nd and Dre f f in Ze.

Figure 15. ACIRs proposal for different cases according to the legend using LARSS.

Since ACIRs is proposed as a new index in this study, there are no theoretical or exper-
imental values in the literature to compare to. Thus, ACIRs is directly compared to ACINd
and ACIre f f in Figure 16. In the case of ACINd and ACIRs no direct relationship is observed.
However, there is a high linear correlation between ACIre f f and ACIRs, with R2 = 0.990. Re-
stricting the linear fit to the region where Ze is greater than −60dB, the assumed minimum
radar sensitivity in LARSS [42], the linear correlation improves up to R2 = 0.999. Therefore,
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ACIre f f can be derived by means of the ACIRs as ACIre f f = 0.161 · ACIRs + 0.112. How-
ever, this relationship depends on the aerosol type as shown in Figure 17, where ACIre f f
and ACIRs are compared (Ze > −60 dB). It can be noticed that the aerosol type does not
affect the slope (0.16), but the intercept which ranges from 0.117 (Case AaDa) to 0.072
(Case AaBaDa).

Figure 16. Relation between the ACINd and ACIre f f with the ACIRs considering ACI values where
Ze greater than −60 dB.

According to the backscatter-related Ansgtrom exponent (AE), indicated in the legend,
the data can be grouped by AE ≥ 1.2 (lines with blue color range) and ≤1.1 (lines with red
color range), resulting in two ACIRs-to-ACIre f f conversion equations, ACIre f f = 0.164 ·
ACIRs + 0.112 and ACIre f f = 0.153 · ACIRs + 0.073, respectively. The ACIre f f uncertainty
derived from ACIRs is below 0.008 (a relative error of 4% for Aa), which indicates a good
performance, considering that aerosol-particle and cloud microphysical inversion generate
ACIre f f uncertainties over 45% [53–55]. Therefore, this method facilitates the retrieval of the
ACIre f f index from this linear relationship based on ACIRs since any inversion algorithm is
needed. Finally, an ACIRs-to-ACIre f f conversion cannot be inferred for AE < 0.6 because
small changes in the AE imply a large change in both the slope and the intercept (see
Figure A9).

Figure 17. Relation between the ACIre f f with the ACIRs for different cases with AE from 0.6 to 1.4
(Ze ≥ −60 dB).

6. Conclusions

This work has successfully presented a lidar and radar signal simulator (LARSS) under
convective cloud conditions. LARSS has allowed studying the ACI indexes evolution in
height, showing that ACINd (ACIre f f ) decreases (increases) with height. ACINd minimum
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value is reached at the SSmax height. However, the ACI index evolution depends on the
aerosol types. According to the 15 simulated cases, the ACIre f f reaches the stable value
between 220 m and 350 m above the CBH. Thus, the simulations indicate that the vicinity
of the CBH shall be avoided to derive stable ACI indexes.

The Monte Carlo technique has been used to estimate the LARSS retrieved ACI-index
uncertainty associated with the input parameters of the simulation (e.g., temperature,
hygroscopicity parameter, standard deviation). For a case study using ammonia sulfate, an
uncertainty of 5% in all input parameters causes uncertainty of 6%, 5%, and 4% in ACINd,
ACIre f f and ACIRs, respectively. These results indicate the robust behavior of LARSS due
to the low theoretical uncertainties. Additionally, the Activation Fraction (AF) (i.e., CCN-
to-Na ratio) simulated by LARSS is within the uncertainty interval of the experimental one
measured at the AGORA observatory in two sites (Granada and Sierra Nevada). Similar
differences between predicted and measured CCN concentration were measured by Ervens
et al. [40] for SS = 0.22, and by Almeida et al. [41] for SS = 0.23. Therefore, LARSS has
been validated, exhibiting a good agreement with experimental results.

The combination of co-located lidar and radar measurements to disentangle the aerosol
particle effect on clouds requires the rest of the atmospheric conditions to be constant.
Since this assumption is usually not fulfilled, the ACI indexes sensitivity to atmospheric
conditions (such as dry and wet aerosol modal radius and the updraft velocity) has been
analyzed through the once-variable-at-a-time study. It has been determined that even
small fluctuations of the refractive index, the standard deviation of the PSD, and the
modal radius of the PSD prevent the quantification of the ACI index. Thus, the aerosol
properties must be constant during the analyzed period and in the aerosol layers used
for the retrievals of ACI indexes. For example, rm,dry fluctuations must be below 18% to
obtain a deviation of the ACI index below 30%. On the contrary, the updraft velocity, the
maximum radius, and the hygroscopicity parameter presents little influence on the ACI
indexes. Indeed, w fluctuations can be as high as 119% to obtain a deviation of the ACI
index of 30%. Additionally, this analysis points out that the ACI index based on the AOD
is less affected by atmospheric fluctuations than the ACI index based on β, and thus, its use
should be prioritized. Thus, the sensitivity study helps to improve the research approach
for experimental ACI remote sensing studies, establishing an appropriate guideline on the
technical setup and data analysis.

This study also provides a new methodology to obtain ACIre f f−AOD from ACIRs—a
new index based on AOD and Ze as proxies. According to simulations, ACIre f f−AOD =
a · ACIRs + b with a = 0.164 and b = 0.112 for AE ≥ 1.2 and a = 0.153 and b = 0.073
for AE < 1.2 for ammonium sulfate (relative error of 4%). This approximation is valid
if the predominance of the coarse-mode is not too strong (AE > 0.6). The main benefit
of this new approach, based on direct measurements, is that aerosol-particle and cloud
microphysical inversion are avoided.

Despite the current version of LARSS allows a better understanding of the experimen-
tal approach of the aerosol influence in convective cloud formation, future developments
including more processes, such as the coalescence droplet growth, may help to better
understand the aerosol–cloud interactions in more complex scenarios, such as in stratocu-
mulus clouds.
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Abbreviations

Symbol Description Units

A1
g

RT

(
Lw R

cp RvT − 1
)

m−1

A2
1
qv

+ L2
w

cp RvT2 -

ACI Aerosol cloud interaction -
ACIAOD Aerosol cloud interaction index based on the backscatter coefficient -
ACIre f f Aerosol cloud interaction based on the aerosol optical depth -
AF Activation fraction -
AOD Aerosol optical depth -
C Initial supersaturation -
CCN Cloud condensation nuclei #/m3

cp Specific heat capacity of most air at constant pressure J/kg K
Dd Droplet diameter µm
Dre f f Droplet effective radius µm
Drmod Droplet modal radius µm
DSD Droplet number size distribution -
g Mean gravitational acceleration m/s2

qv water vapor mixing ratio (mass of water per 1 kg of air) -
qw Liquid water mixing ratio (mass of liquid water per 1 kg of dry air) -

|Kp|
∣∣∣mr−1

mr+2

∣∣∣2 -

mr Refractive index of water -
n(Dd) Droplet number concentration with a diameter d #/m3

Na Aerosol number concentration #/m3

Nd Droplet number concentration #/m3

PSD Particle number size distribution -
R Specific gas constant of most gases J/kg K
R2 Correlation coeficient -
RH Relative humidity %
rm,dry Dry aerosol-particle modal radius µm
rm,wet Wet aerosol-particle modal radius µm
Rv Specific gas constant of water vapor J/kg K
SS Supersaturation -
SSmax Maximum supersaturation -
T Temperature K
To Reference temperature K
w Updraft velocity m/s
z Height above ground level m
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Ze Radar reflectivity dB
αext Extinction coefficient m−1

β Backscatter coefficient 1/Mm sr
βatt Attenuated backscatter coefficient 1/Mm sr
γ aerosol proxy −
∆ ACI Variability between the ACI index with and without fluctuations %
∆rm,dry Fluctuation of the dry aerosol-particle modal radius %
∆rm,wet Fluctuation of the wet aerosol-particle modal radius %
∆w Fluctuation of the updraft velocity %
κ Hygroscopicity parameter -
λr Radar wavelength mm
σ Standard deviation -
σb Droplet effective cross-section m2

Appendix A. Additional LARSS Simulations

Appendix A.1. Simulation of the Twomey Effect by LARSS

Twomey effect describes that an Na increase results in a cloud albedo increase due
to larger Nd and lower Dre f f [11]. Feingold et al. [56] evidence this effect for liquid-water
clouds, single-layered, non-precipitating, and free of airborne insects using ground-based
remote sensors. This cloud type has been simulated by LARSS for Na = 500 #/cm3 and
Na = 2000 #/cm3, keeping the rest of input parameters constants. SS, Nd, Dre f f and Ze
profiles of theses two cases are shown in Figure A1. As it can be seen, the increase of Na
causes a considerable increase of Nd from 76 to 189 #/cm3 at CBH + 160 m (Figure A1b).
The increase of Nd causes the decrease of available water-vapour molecules which explain
the decrease of the SSmax from 0.1 at CBH + 180 m to 0.08 at CBH + 140 m (Figure A1a).
The effect of Na in Dre f f is negligible below CBH + 200 m (Figure A1c) and thus, Ze at
Na = 500 #/cm3 (green) is lower than at Na = 2000 #/cm3 (purple), following the Nd
evolution. However, above CBH+250 m, the increase of Dre f f at Na = 500 #/cm3 (green)
is large enough to overcomes Ze at Na = 2000 #/cm3 (purple). This Ze dependence with
the Nd and the Dre f f can also be appreciated in Raghavan [57]. It is worthy to note that the
Nd (green curve) agrees with the Nd obtained by Mei et al. [58] for ammonium sulfate at
SS = 0.12%.

Figure A1. Twomey effect of a cloud formed from the activation of ammonium sulfate particles.
Supersaturation (SS) (a), droplet number concentration (Nd) (b), droplet effective radius (Dre f f ) (c),
and radar reflectivity (Ze) (d) profiles inside the cloud.



Remote Sens. 2022, 14, 1333 21 of 25

Appendix A.2. Variations in ACI Related to the Presence of a Second (Coarse) Mode in the PSD

In Section 3.2, the ACI index was retrieved for a monomodal distribution of ammonium
sulphate (type Aa). However, PSD ussualy are bimodal, e.g., DaDc. Figure A2 shows the
influence on ACINd−β of the coarse-mode size, varying the coarse-mode concentration
Na between 0 and 35× 106 m−3 with a constant accumulation-mode concentration Na at
7× 108 m−3.

Figure A2. Accumulation mode dust ACI indexes variations due to the presence of a coarse mode.

The increases of the coarse-mode predominance causes an almost linear decrease of
the ACINd−β (greater slope from 0 to 20 · 106 m−3) from the value of pure Da of 0.718 to the
mixture DaDc value of 0.447.

Appendix A.3. Range-Dependence of Cloud Microphysics

LARSS considers two processes within the cloud: droplet activation and condensation
growth. Figure A3 shows the evolution with height of the most relevant cloud properties ob-
tained with LARSS (such as SS, Nd, Dre f f , σ, and LWP) for the aerosol type Aa. This figure
can be successfully compared with Figure 7.4 of Yau and Rogers [43] for sodium chloride.

Figure A3. Early development of cloud properties: (a) supersaturation (SS), (b) droplet number
concentration (Nd), (c) droplet effective radius (Dre f f ), (d) standard deviation (σ), (e) liquid water
content (LWC) in air ascending at constant velocity of 2 m/s.
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Appendix B. Additional Figures

Appendix B.1. ACIRs Sensitivity to rm,dry, rm,wet and w

Figure A4. R2 (left axis) and ∆ACI (right axis) with Respect to the rm,dry Uncertainty.

Figure A5. R2 (left axis) and ∆ACI (right axis) with respect to the rm,wet uncertainty. R2Nd − AOD
and ∆ACIre f f − AOD (not shown) are identical to R2Nd − β and ∆ACIre f f − β because the uncer-
tainty of rm,wet in the vecinity of the CBH does not affect the dry aerosol properties.

Figure A6. R2 (left axis) and ∆ACI (right axis) with respect to the w uncertainty. R2Nd − AOD and
∆ACIre f f − AOD (not shown) are identical to R2Nd − β and ∆ACIre f f − β because the uncertainty
of w only affect within the cloud.
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Appendix B.2. ACINd and ACIre f f for All the Cases Used in LARSS

Figure A7. ACINd, ACIre f f for different aerosol types according to the legend.

Appendix B.3. ACIRs for All the Cases Used in LARSS

Figure A8. ACIRs for different cases according to the legend.

Appendix B.4. ACIRs to ACIre f f Relation for All the Cases Used in LARSS

Figure A9. Relation between the ACIre f f with the ACIRs for different cases according to the legend.
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