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Abstract: Ground-penetrating radar (GPR) crosshole tomography is widely applied to subsurface
media images. However, the inadequacies of ray methods may limit the resolution of crosshole radar
images, since the ray method is a type of high-frequency approximation. To solve this problem,
the full waveform method is introduced for GPR inversion. However, full waveform inversion is
computationally expensive. In this paper, we introduce a trained neural network that can be evaluated
very quickly to replace a computationally intensive forward model. Additionally, the forward error
of the trained neural network can be statistically analyzed. We demonstrate a methodology for a
full waveform inversion of crosshole ground-penetrating radar data using the Markov chain Monte
Carlo (MCMC) method. An accurate forward model based on Maxwell’s equations is replaced by a
quickly trained neural network. This method achieves a high computation efficiency, which is four
orders of magnitude faster than the accurate forward model. The inversion result of the synthetic
waveform data shows a good performance of the trained neural network, which greatly improves the
calculation efficiency.

Keywords: ground penetrating radar (GPR) crosshole; MCMC; trained neural network; full waveform
inversion (FWI)

1. Introduction

Ground-penetrating radar (GPR) crosshole tomography is widely used to map subsur-
face electrical properties, e.g., electrical conductivity and dielectric permittivity, which are
important in investigating environments [1–4]. A GPR crosshole experiment includes trans-
mitting radar antennas and receiving antennas that are distributed in the opposite borehole.
Transmitting antennas (20 MHz to 1 GHz) generate high-frequency electromagnetic energy
to acquire crosshole radar data.

Inversion refers to using physical phenomena observed on the earth’s surface to infer
the spatial changes of the physical structure of the underground medium. To solve the
inversion problem, a number of inversion methods have evolved over the past two decades,
including deterministic inversion algorithms and probabilistic inversion [5]. Compared
with deterministic inversion algorithms [6–8], probabilistic inversion methods do not
need an accurate a priori model and can use any a priori known information, regardless
of its complexity. The result of the probabilistic inversion is the a posteriori probability
density [9]. The model variability of posterior samples can reflect the information contained
in the posterior probability density, which can solve more sophisticated questions [10]. To
solve the highly nonlinear inversion problem, Mosegaard et al. proposed the extended
Metropolis algorithm to sample the a posteriori probability density [11]. Instead of an
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explicit mathematical expression of a priori information, the extended Metropolis algorithm
only needs a “black box” algorithm to sample the a priori probability. A sequential Gibbs
sampler is proposed to serve as a black box algorithm to sample a priori information
defined by any geostatistical algorithm [12,13]. In this way, sampling the a posteriori
probability density becomes very flexible [14–17].

Ray tomographic methods are generally based on ray theory, which uses only a small
portion of signal information, limiting the resolution of crosshole radar images [18,19].
To solve this problem, a full waveform method is introduced for GPR inversion. Ernst
successfully used full waveform data from a GPR crosshole to invert electrical conductivity
and dielectric permittivity [20]. Klotzsche et al. characterized a gravel aquifer by the full
waveform crosshole ground-penetrating radar data [21]. Cordua obtained the first a poste-
riori probability density of full waveform GPR crosshole data [22]. Hansen implemented
an efficient Monte Carlo sampling method using a neural network to simulate travel time
to replace the ray methods [23]. However, the problem of the huge computational costs of
full waveform inversion has not been solved.

In this paper, to obtain fast full waveform inversion, we introduce the trained neural
network forward model into the MCMC method of GPR crosshole data. The inverse
problem refers to obtaining dielectric permittivity through full waveform GPR crosshole
data. We replace a numerical complex forward model based on the 2D FDTD solution of
Maxwell’s equations with a two-layer feedforward network. Taking advantage of the fast
mapping of a two-layer feedforward network, this MCMC inverts four orders of magnitude
faster than the 2D FDTD solution of Maxwell’s equations.

This paper is organized as follows: First, we introduce probability inversion using
the MCMC method, including its theories and formulas. Second, we present the forward
method based on the 2D FDTD solution of Maxwell’s equations. Then, we briefly introduce
the two-layer feedforward network. Finally, we use the synthetic FWI data from a ground-
penetrating radar crosshole to analyze the error and efficiency of the trained neural network.

2. Methods
2.1. Probabilistically Formulated Inversion

For geophysical inverse problems, the subsurface can be described by a set of param-
eters m, and the observed data can be represented by a dataset d. Hence, the forward
relation between m and d is as follows [5]:

d = f (m) (1)

where the function f is a mapping operator solved by a physical relation. The corresponding
inverse problem can be expressed as follows:

m = f−1(d) (2)

In this formula, the inverse operator f−1 is difficult to obtain because it is non-trivial or
does not exist. Furthermore, the forward relation is an approximation to the correct physical
law. In this paper, relative dielectric permittivity refers to the subsurface parameters m that
we want to invert, and the observed data are the waveform data of the GPR crosshole.

For probabilistic inversion, the corresponding inversion formula is as follows [5]:

σM(m) = kρM(m)L(m) (3)

where ρM(m) is the a priori probability density, which represents the a priori information
of the model parameters. The solution of the inverse problem is the a posteriori probability
distribution σM(m). k is a normalization factor, and L(m) is the likelihood function. L(m)
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is a probabilistic measure that describes how well the modeled data explain the observed
data. Its general formula is given by the following:

L(m) =
∫

dd
ρD(g(m))θ(d|m)

µD(d)
(4)

where ρD(g(m)) represents measurement uncertainties that are mainly related to the
recording instrument. θ(d|m) represents the model error caused by the imperfect forward
method defective parameterization. µD(d) describes the homogeneous state of information,
which ensures parameterization is invariant when the coordinate system changes. In most
cases, µD(d) can be assumed to be constant.

2.2. Extended Metropolis Algorithm

For non-linear and non-Gaussian problems, obtaining the mathematical formula of
the a priori probability density is difficult. The extended Metropolis algorithm can solve
this difficulty using sequential Gibbs sampling to directly sample ρM(m). To perform
the extended Metropolis algorithm, we used a sequential Gibbs sampler as a part of
the extended Metropolis algorithm to directly sample ρM(m). The extended Metropolis
algorithm is performed as follows [14]:

1. Start in the current model, mcur, which constitutes the a priori probability density.
Using the sequential Gibbs sampler to sample mcur, a new model candidate mpro
is generated.

2. Calculate the probability of accepting the proposed model using the ratio of likelihood

function: Pacc = min(1, Lmpro
Lmcur

)

3. If mpro is accepted, use mpro instead of mcur. Consequently, the proposed model takes
the place of the current model: mcur = mpro. Otherwise, the random walker staying at
a location in mcur and mcur is counted again.

2.3. Forward Model Based on Waveform

For the forward model, several methods can be selected to simulate the GPR signal’s
wavefield. In this paper, we chose the 2D FDTD solution of Maxwell’s equations in
transverse electric mode. This FDTD method simulates the vertical component of the
electrical field as the observed data. For electromagnetic wave propagation, the transverse
electric or TE modes of Maxwell’s equations in the (x, z) plane of Cartesian coordinates are
as follows [24]:

∂Ex

∂t
=

1
ε

(
−

∂Hy

∂z
− σEx

)
(5)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− σEx

)
(6)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(7)

where Ex and Ez represent the horizontal and vertical components of the electric field,
respectively; ε is the dielectric permittivity; σ is the electrical conductivity; Hy is the
magnetic field perpendicular to the propagation plane; and µ represents the magnetic
permeability, which is equivalent to the free-space permeability assumed to be constant in
the following.

We used the FDTD techniques [24,25] based on the staggered grid finite difference
operator with second-order accuracy in space and time to solve Equations (5)–(7). A gener-
alized perfectly matched layer (GPML) surrounding the edges of the FDTD grid absorbs
the artificial reflections at the edges of the model space. Near the surface, electromagnetic
signals are mainly affected by dielectric permittivity and electrical conductivity. Permittiv-
ity primarily controls the phases, and conductivity primarily controls the amplitudes of the
observed signals. In this paper, we consider only the influence of the dielectric permittivity.
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For all examples presented in this paper, we inverted the permittivity while keeping the
conductivities fixed [8].

2.4. Solving the forward Problem Using a Trained Neural Network

Trained neural networks are methods that infer a non-linear mapping operator from
one data set to another data set. For the inversion problem, neural networks can be ap-
plied to simulate the forward operator and the inverse operator [26–29]. In this paper,
we used neural networks to replace the computationally expensive forward model in
Equations (5)–(7). The neural networks can evaluate the forward problem quickly. How-
ever, this also leads to some modeling errors. We used a Gaussian probability distribution
to quantify the modeling error θ(d|m) caused by the trained neural network. In this paper,
we used a two-layer feedforward neural network containing a hidden layer [30]. It should
be noted that we can use any regression-type network. The main reason we chose the
two-layer feedforward network is that, once trained, the mapping of the network on a new
model is potentially very fast and meets our requirement for efficiency. The mathematical
expression of this network is as follows:

dk = h1

(
NH

∑
j

w2
jkh2

(
NM

∑
i

w1
ijmi

))

dk = [d1, d2, . . . , dND] represents each of the observed data d, and ND is the number of
observed data parameters. mi = [m1, m2, . . . , mND] represents each of the model parameters.
NM represents the number of parameters in the model.

NH represents the number of hidden layers. h1 and h2 are two sigmoidal types of
activation functions. w1

ij refers to the weights of the units in the first layer, and w2
jk refers to

the weights of the units in the second layer. If we have a sufficient training set and enough
units of the hidden layer, we can replace any continuous mapping. Figure 1 shows the one
hidden-layer network architecture that we used.

Figure 1. Structure diagram of one hidden-layer network.

For probabilistically formulated inverse problems, a great quantity of training data
can be easily generated from the a priori distribution ρM(m). The accuracy of the network
is highly dependent on the size of the training data set NT. We can create an arbitrarily
large sample of the a priori M and simulate the observational data D using the forward
model. If we want to train the network needs NT times, the M and D should consist of
NT samples.

For all models in M, the corresponding simulated observational data are simulated
by the exact, but expensive, forward model based on the FDTD solution of Maxwell’s
equations, fFWI. The neural network training result, fnn, provides an approximation of
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fFWI. In other words, using fnn leads to a modeling error. To evaluate the training effect,
we need the model error. To estimate the forward model error between fFWI and fnn, we
can analyze Nr samples from the a priori model.

First, we use the a priori distribution to generate Nr realizations in M∗ = [m1, m2, . . . , mNr].
We use both fFWI and fnn to compute the observed data set DFWI and Dnn of every model in
M∗. Second, we obtain a sample of the modeling error θ(d|m) using Dθ = DFWI − Dnn
and use the method of Hansen et al. to obtain a Gaussian model of modeling error [31].

3. Experimental Validation

For the synthetic example, we simulated a reference model m of size 5.2 × 12 m
(26 × 60 = 1560 pixels of size 0.2 m × 0.2 m). This model is created by a multivariate
Gaussian probability distribution, with the mean of the relative dielectric permittivity εr
being 4.0 and the variance being 0.75. In this reference model, the electrical conductivity is
assumed to be a constant value of 3 mS/m. There is a relatively high dielectric permittivity
structure located at a depth of about 4 m, which is the main feature of our inversion.

To obtain the observed data, we designed a recording geometry of the ground-
penetrating radar (GPR) cross borehole. Figure 2 shows a recording geometry that contains
four transmitters, and each borehole contains two (the transmitters are represented by red
crosses, one at 3 m and one at 9 m). The receivers are represented by black dots at equally
spaced intervals of 1.5 m in the two boreholes. Due to the effects of wave guiding [32],
the travel path is not at the center of the antenna, but at the tips of the antenna [33]. Data
where the angle between a transmitter–receiver and the horizontal is larger than 45◦ are
omitted. This decision was made with a similar reasoning to the parameters inferred in
Cordua using the same geometrical setup [22].

Figure 2. Recording geometry; red crosses represent sources, and black dots represent receivers.

The FDTD algorithm is used to calculate a full waveform synthetic dataset. The FDTD
model for solving Maxwell’s equations uses a regular grid consisting of square elements
of 0.1 m × 0.1 m, and the number of boundary elements is 40. In the synthetic data, we
assumed that the source pulse is known, which was a ricker wavelet, and that the central
frequency is 100 MHz. For the field data, it should be noted that the source wavelet needs
to be estimated. Some methods can estimate the source wavelet [34,35].

The recorded synthetic observational data are the vertical components of the electrical
field. They contain a total of 20 waveform traces. We added Gaussian-distributed data
uncertainties to the waveform data. In Figure 3, we present five waveform traces generated
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by a transmitter at a depth of 3 m in the left borehole. The signal-to-noise ratios from
the top are 8, 15, 20, 30, and 40, respectively. The blue dotted curves represent noise-free
waveforms, and the red curves represent noisy waveforms. As can be seen in Figure 3,
the matching of the waveforms from top to bottom gradually becomes better between the
noise-free waveforms and the noisy waveforms.

Figure 3. Noise-free waveforms and noisy waveforms: the signal-to-noise ratios from the top are 8,
15, 20, 30, and 40, respectively.

For this reference model and observed data, we set the size of the input layer NM
as 1560. The output layer ND was 460. The number of hidden units NH was 100. The
accuracy of the network was very heavily affected by the size of the training data set NT.
We generated four training data sets whose training sizes were NT = [1000, 5000, 10,000,
20,000] to analyze the training effect of the neural network. The corresponding four forward
models refer to f1000, f5000, f10,000, and f20,000. Before the inversion, we needed to obtain
NT models as unconditional realizations of the a priori distribution and the observed data
computed by the forward model fFWI described previously. Figure 4 shows five different
sampling models generated from the a priori probability density.

Figure 4. Five sampling models of the a priori probability density.
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The extended Metropolis algorithm was used to obtain the a posteriori probability
density. Figure 5 shows four groups of inversion results based on the four neural network
forward models. The synthetic GPR shows that the trained neural network can obtain
the main features of the inverse models, even when using the neural network forward
model whose training size is 5000. Clearly, the inversion models contain features that
appear to be consistent with those in the reference model. The relatively high dielectric
permittivity structures are located at a depth of about 4 m. This proves the effectiveness
of the MCMC inversion based on the trained neural network. To test the training effect,
we used the observed waveform created by the FDTD method to compare the simulated
waveform of the four neural networks. We selected trace 1 and trace 5 of the top left
borehole, corresponding to the minimum signal-to-noise ratios trace and the maximum
signal-to-noise ratios trace, as Figure 6 shows. There are some obvious distortion points in
the simulated waveforms created by f1000 and f5000. The simulated waveforms created by
f20,000 are more similar to the observed waveforms.

Figure 5. (a–d) Four samples of the a posterior probability density σ(m) for the four forward models
based on our trained neural network.
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Figure 6. (a–d) Four simulated waveforms created by the trained neural network compared with
observed waveforms.

To analyze the forward modeling error of the neural network-based forward, we
created a 1D distribution of the modeling error, which was created by 6000 realizations,
in Figure 7. Clearly, the magnitude of modeling error using the trained neural network
decreases as training times increases. Figure 8 shows the covariance model of four forward
methods based on the trained neural network. f1000 leads to a more correlated covariance
model compared with f5000, f10,000, and f20,000.

Figure 7. 1D distribution of the modeling error.
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Figure 8. (a–d) Covariance matrix of four forward methods based on trained neural network.

Table 1 lists the computation time of the forward model. We tested the forward model
10,000 times in the extended metropolis algorithm to record the computation time. For
the four forward models based on a neural network, the running time of the extended
Metropolis algorithms are similar, and all the step sizes tend to be stable after 3000 iterations.
Table 1 shows that, compared with the full waveform forward model fFWI, the forward
model based on our trained neural network is more than four orders of magnitude faster.
This is a significant improvement in computation efficiency.

Table 1. Computation time analysis of different forward models.

Forward Model fFWI f1000 f5000 f10,000 f20,000

Calculation Time (s) 32,164 3.6994 3.1000 3.3001 3.1995

4. Conclusions

This paper replaces a computationally complex full waveform forward model with
a fast forward model based on a trained neural network, which, when combined with
the MCMC method, solves the inversion problem. Although the neural network of the
minimum training time, 1000, cannot reflect the correct features of the reference model,
the neural network whose training size is 5000 contains features that are consistent with
the reference model. There are some obvious distortion points in the simulated waveform
created by the neural network with less training times. When the training times reach 10,000,
the distortion disappears clearly in the simulated waveform. The error analysis shows
that the inversion effect becomes better when the size of the training times is increased.
Compared with the full waveform forward model based on the 2D FDTD solution of
Maxwell’s equations, our trained neural network is more than four orders of magnitude
faster. The results demonstrate that trained neural networks can be used to describe a full
waveform forward model, which is an obvious advantage in application. In the future,
we will research how to apply this method to some complex models and try to apply it to
field data.
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