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Abstract: Based on remote sensing data of vegetation coverage, observation data of basic meteorolog-
ical elements, and support vector machine (SVM) method, this study develops an analysis model of
meteorological elements influence on vegetation coverage (MEVC). The variations for the vegetation
coverage changes are identified utilizing five meteorological elements (temperature, precipitation,
relative humidity, sunshine hour, and ground temperature) in the SVM model. The performance of
the SVM model is also evaluated on simulating vegetation coverage anomaly change by comparing
with statistical model multiple linear regression (MLR) and partial least squares (PLS)-based models.
The symbol agreement rates (SAR) of simulations produced by MLR, PLS, and SVM models are 55%,
57%, and 66%, respectively. The SVM model shows obviously better performance than PLS and MLR
models in simulating meteorological elements-related interannual variation of vegetation coverage in
North China. Therefore, the introduction of the intelligent analysis method in term of SVM in model
development has certain advantages in studying the internal impact of meteorological elements
on regional vegetation coverage. It can also be further applied to predict the future vegetation
anomaly change.

Keywords: support vector machine; meteorological element; vegetation coverage; machine learning;
model

1. Introduction

Vegetation is the key element for the interaction between land and atmosphere, and its
change is caused by topographic (altitude, slope, and others) factors [1], human activities
(urban construction, overgrazing, and ecological engineering), and climate change [2–5].
Among them, climate is one of the main determinants of vegetation type distribution and
dynamic change [6,7].

Remote sensing data, such as vegetation coverage (VC), normalized difference vegeta-
tion index (NDVI), and net primary productivity (NPP), is widely applied in vegetation
greenness, agriculture, forestry, hydrology, and drought detection [8–11]. Numerous studies
explored the response of regional and global vegetation to climate change. Zhao et al. [12]
revealed that growing-season NDVI depends largely on water in arid and semiarid areas,
temperature in high northern latitude areas, and radiation in the Amazon and Eastern and
Southern Asia. Li et al. [13] used linear correlation and showed that there was a strong
correlation between grassland and precipitation, forest, farmland, and temperature in the
North China Plain. Previous studies usually use linear correlation and partial correlation
analysis to study the relationship between the vegetation coverage and meteorological
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elements in the same or advanced period, to explain that the main driving factors of vege-
tation dynamic changes in different climatic regions and seasons [2,12–16]. Scholars mainly
also analyze the key driving factors affecting vegetation growth. However, how to use
an effective method to quantify the influence of meteorological elements on the vegeta-
tion coverage and establish the proper model remains a difficult problem in ecological
meteorology research.

Vegetation models, such as global dynamic vegetation model (DGVM), statistical mod-
els, and machine learning, are an effective tool to quantitatively understand the interaction
between climate and vegetation. DGVM, such as LPJ-DGVM (the Lund–Potsdam–Jena
Dynamic Global Vegetation Model) simulated vegetation changes in high-latitude areas
of the Northern Hemisphere [17]. Although the simulation effect of the global dynamic
vegetation model is excellent, its limitation is that it is not easy to obtain a large number
of model input data, parameter data, and validation data [18]. On the contrary, statistical
models and machine learning can overcome the data problem, so they are commonly used
in the simulation of vegetation dynamic change, especially in local or small institutions
with limited infrastructure capability. A number of studies have focused on climate predic-
tion of vegetation change [12,13,19,20]. Based on vegetation coverage and meteorological
elements data, such as temperature, precipitation, and sunshine hours in North China
during 2000 to 2018, Bai proposed a statistical model that suggests that meteorological
elements affect vegetation coverage [21]. Machine learning has been extensively used in
ecology, meteorology, and other fields, and performs well. Zheng et al. [22] used stepwise
cluster algorithm combined with GIMMS (Global Inventory Modelling and Mapping Stud-
ies) AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets (2000–2013) to
study the relationship between temperature, precipitation, and NDVI in the Three-River
Headwaters region of China, and proved the significant influence of precipitation and
temperature on NDVI. Shi et al. [23] used an SVM-based classification method combined
with Landsat images to determine vegetation area and vegetation distribution. Something
these methods have in common is that computers intelligently dig out hidden laws through
a large number of historical data and use them for prediction or classification [24].

Artificial intelligence (AI) is a method to explore the relationship between independent
and dependent variables of a system according to the existing data, so that the model can
make the most accurate estimation possible when the output is unknown [24,25]. Several al-
gorithms, such as random forest regression, regression trees, and support vector regression,
are applied to prediction of vegetation change [22,23,26]. SVM is a typical binary classifi-
cation method which has the advantages of solving high-dimensional problems, dealing
with nonlinear problems, and low generalization error rate. Based on the advantages of the
SVM method, it is necessary to use SVM to build an analytical model to study the complex
nonlinear relationship between meteorological elements and vegetation coverage.

North China is the main wheat-producing base in northern China, and the vegetation
in this area is extremely sensitive to climate change. Studying the influence of meteoro-
logical elements (temperature (T), precipitation (P), relative humidity (R), sunshine hours
(S), and ground temperature (G)) on the vegetation coverage in this area has crucial value
for improving the agricultural production. This paper aims to set up an AI model of
meteorological elements’ influence on vegetation coverage (MEVC) in North China. The
main framework of the article is as follows (Figure 1): Section 2 describes the location of the
study area, data source, length and preprocessing, statistical method, and MEVC model;
Section 3 analyzes the temporal and spatial characteristics of vegetation coverage and
meteorological elements and introduces the influence factors of meteorological elements
on vegetation coverage and MEVC model training, testing, and simulation. The discussion
of research results and future work is given in Section 4. A conclusion is given in Section 5.



Remote Sens. 2022, 14, 1307 3 of 14

Data Preprocessing

1km×1km  NDVI

Remote sensing

Meteorological 

observation

Formula (1)  Resampling

Interpolation

0.1°×0.1°
VC time series

0.1°×0.1°
Meteorological 

element time series

Model

Multiple Linear Regression

Partial Least Squares Regression

Support Vector Machine

MEVC

Model

D
etre

n
d

Identify model factors

Temporal and spatial characteristics

Correlation Analysis

Train

Figure 1. Study workflow.

2. Materials and Methods
2.1. Study Area

Based on the main wheat-producing areas, this paper expands the North China region
to Beijing, Tianjin, Shanxi, Shandong, Hebei, and Henan Province. For the convenience
of description, it is still referred to as North China (Figure 2). The scope of the study
area is 31◦–42◦ N and 110◦–122◦ E, covering an area of about 696,600 square kilometers.
The altitude in the northwest is high and the altitude in the southeast is low. According
to the distribution of total precipitation in summer (Figure 3b1), North China is in the
transition zone of semiarid and semihumid (0–200 mm is arid zone, 200–400 mm is semiarid
zone, and 400–600 mm is semihumid zone), of which the northwest is semiarid zone and
the southeast is semihumid zone [27]. Studies have shown that North China has been
changing to warm and dry since 1950, so the vegetation in this area is extremely sensitive to
climate change [28]. Therefore, it is quite necessary to study the influence of meteorological
elements on vegetation coverage in this area.
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Figure 2. The location of study area and distribution of meteorological observation stations.
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Figure 3. Special distribution basic characteristics of meteorological elements in North China during
2000–2018: (a1–e1) are the averaged climatic values of air temperature (unit: ◦C), precipitation (unit:
mm), relative humidity (unit: %), sunshine hours (unit: h), and ground temperature (unit: ◦C) in
summer, respectively; (a2–e2) are the linear trend coefficients.
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2.2. Data and Preprocessing

Vegetation coverage data: The NDVI data in Moderate-resolution Imaging Spectro-
radiometer (MODIS) 1 km monthly synthetic products (https://earthdata.nasa.gov/, ac-
cessed on 24 October 2021) are used to calculate the vegetation according to Formula (1) [8]:

VC =
NDVI − NDVIS

NDVIV − NDVIS
. (1)

where NDVIS represents the NDVI value of pixels without vegetation cover during 2000
to 2018, and NDVIV represents the NDVI value of pixels completely covered by vegeta-
tion. Considering that this paper studies a single pixel with spatial distribution, the high
resolution of 0.01◦ × 0.01◦ makes the amount of calculation very large. In order to improve
the calculation efficiency, the data resolution is appropriately reduced to 0.1◦ × 0.1◦.

Meteorological data: daily 2 m atmospheric temperature (T), precipitation (P), relative
humidity (R), sunshine hours (S), and 0 cm ground temperature (G) data in North China are
selected from the 2400 stations dataset provided by the National Meteorological Information
Center. All the stations with missing data are removed, and the remaining are used for
North China research, a total of 525 stations. The specific locations of North China stations
are shown in Figure 2. For detailed stations information, please visit http://data.cma.cn,
accessed on 25 February 2022. The data length is from 2000 to 2018. We calculated the
monthly average of T, R, S, G, and total monthly P for each station, and obtained the grid
data with 0.1◦ × 0.1◦ resolution by using the inverse distance weighted interpolation
method to be consistent with the resolution of vegetation coverage data.

2.3. Methodology

The trend approach was applied in the analysis vegetation coverage (VC) and meteo-
rological elements (T, P, R, S, G) variation trends:

slopeij =

n×
n
∑

t=1
t× xij

t −
n
∑

t=1
t

n
∑

t=1
xij

t

n×
n
∑

t=1
t2 − (

n
∑

t=1
t)2

, (2)

where slopeij is variation trend of row i and column j; n is the years of study; and xij
t is

variable x(T, P, R, S, G, VC) of row i and column j of year t.
Correlation analysis is a statistical method to explore the relationship between two

variables. Here, the significance is tested by Student’s t test. The correlation coefficient
formula is

rij
xy =

n
∑

t=1
(xij

t − xij)(yij
t − yij)√

n
∑

t=1
(xij

t − xij)2
n
∑

t=1
(yij

t − yij)2

, (3)

where rij
xy is correlation coefficient of the variable xij and variable yij; xij

t is x of row i and

column j of year t; yij
t is y of row i and column j of year t; xij is the mean for any xij; yij is

the mean for any yij.
We use the SAR to evaluate model performance; the SAR is calculated as

SAR =
Ng

N
. (4)

where N represents the total number of pixels and Ng represents the number of pixels with
the same symbols of observed and simulated vegetation cover changes of pixels.

https://earthdata.nasa.gov/
http://data.cma.cn


Remote Sens. 2022, 14, 1307 6 of 14

2.4. Influence Model of Meteorological Elements on the Vegetation Coverage

In order to describe the MEVC, based on the meteorological elements and vegetation
coverage data during 2000–2018, the MEVC model is constructed by using SVM [29,30],
PLS [31,32], and MLR [33] methods, respectively.

(1) The MEVC model based on SVM

The influence of meteorological elements on vegetation coverage has a complex nonlin-
ear relationship, but solving nonlinear problems is not easy, so we transform the nonlinear
problem into a linear problem by performing a nonlinear transformation. The classification
hyperplane equation of the influence of the meteorological element on the symbol change
of vegetation coverage can be given:

ωT ϕ(T, P, R, S, G) + b = 0. (5)

In Equation (5), ω is the weight vector, ϕ is a nonlinear transformation, and b is a
constant. According to the principle of structural risk minimization, the corresponding
classification decision function is

f (T, P, R, S, G) = sign(ωT ϕ(T, P, R, S, G) + b). (6)

which side of the hyperplane the sample is located on is determined by the sign of f (T, P, R, S, G).
The plane with the maximum distance between the hyperplane and the sample set of both vege-
tation increase and vegetation decrease is the optimal classification hyperplane [34]. Suppose
the nearest point is (Ti, Pi, Ri, Si, Gi), the hyperplane satisfies |ω · ϕ(Ti, Pi, Ri, Si, Gi) + b| = 1,
but some samples cannot be classified correctly through Equation (6). Then, we introduce
relaxation variables to correctly classify the wrong points. Moreover, we need to give them a
penalty, represented by C in Equation (7). Solving Equations (5) and (6) transform into solving
the constrained optimization problem, that is

min
ω,b

1
2
||ω||2 + C

t

∑
i=1

µi,

s.t. sign(VCRi)[ω · ϕ(Ti, Pi, Ri, Si, Gi) + b]− 1 + µi ≥ 0, i = 1, 2, · · · , t,

µi ≥ 0.

(7)

We use the Lagrange multiplier method to solve the constrained optimization problem,
where the Lagrange function is constructed as

L(ω, b, µ, τ, ρ) =
1
2
||ω||2 + C

t

∑
i=1

µi −
t

∑
i=1

τi(sign(VCRi))(ω · ϕ(Ti, Pi, Ri, Si, Gi) + b]− 1 + µi)

−
t

∑
i=1

ρiµi,

(8)

where (τi, ρi ) is Lagrange multiplier. The constrained optimization problem of (7) is equiv-
alent to solving min

ω,b,µ
max

τ,ρ
L(ω, b, µ, τ, ρ). When the Karush–Kuhn–Tucker (KKT) condition

is satisfied, min
ω,b,µ

max
τ,ρ

L(ω, b, µ, τ, ρ) is equivalent to max
τ,ρ

min
ω,b,µ

L(ω, b, µ, τ, ρ). The partial

derivatives of L(ω, b, µ, τ, ρ) with respect to ω, b and µi, are

∂L
∂ω

= ω−
t

∑
i=1

τisign(VCRi)ϕ(Ti, Pi, Ri, Si, Gi),

∂L
∂b

= −
t

∑
i=1

τisign(VCRi)

∂L
∂µi

= C− τi − ρi

(9)
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Let Equation (9) be equal to 0, then one can obtain

ω =
t

∑
i=1

τisign(VCRi)ϕ(Ti, Pi, Ri, Si, Gi),

t

∑
i=1

τisign(VCRi) = 0,

C = τi − ρi.

(10)

Substituting Equations (10) into Equation (8), we can deduce
max

τ

1
2

t

∑
i=1

t

∑
j=1

sign(VCRi)sign(VCRj)ϕ(Ti, Pi, Ri, Si, Gi)ϕ(Tj, Pj, Rj, Sj, Gj),

s.t.
t

∑
i=1

τisign(VCRi) = 0, 0 ≤ τi ≤ C.

(11)

In Equation (12), we find the optimal solution τ∗ = (τ∗1 , τ∗2 , · · · , τ∗t )
T by using the

sequential minimal optimization (SMO) method, then the calculation

b∗ = sign(VCRj)−
t

∑
i=1

τ∗i sign(VCRi)ϕ(Ti, Pi, Ri, Si, Gi) · ϕ(Tj, Pj, Rj, Sj, Gj).

Thus, the classification hyperplane is

f (T, P, R, S, T) = sign(
t

∑
i=1

τ∗i sign(VCRi)ϕ(Ti, Pi, Ri, Si, Gi) · ϕ(T, P, R, S, G) + b∗),

where

ϕ(Ti, Pi, Ri, Si, Gi) · ϕ(T, P, R, S, G) = exp(−γ((T − Ti)
2 + (P− Pi)

2 + (R− Ri)
2

+ (S− Si)
2 + (G− Gi)

2)),

Through the above derivation process, the MEVC model based on SVM is given:

f (T, P, R, S, T) =sign(
t

∑
i=1

τ∗i sign(VCRi) exp(−γ((T − Ti)
2 + (P− Pi)

2 + (R− Ri)
2

+ (S− Si)
2 + (G− Gi)

2)) + b∗), τ∗i ∈ [0, C].

(12)

(2) The MEVC model based on PLS and MLR

In order to quantify the influence of meteorological elements on vegetation coverage,
Bai [21] constructed a linear model, Equation (13):

VCR = a0 + a1T + a2P + a3R + a4S + a5G + ε. (13)

where a0, a1, a2, a3, a4, a5 are the fitting parameters and ε is the error term. The parameters
are trained by MLR and PLS methods, and two linear models (MLR model, PLS model) are
obtained, respectively.

2.5. Identify Model Factors and Parameter Sensitivity Analysis
2.5.1. Temporal and Spatial Characteristics of Meteorological Elements and
Vegetation Coverage

The temperature, precipitation, relative humidity, and ground temperature gradually
increase from northwest to southeast, and the sunshine hours gradually decrease from
northwest to southeast in North China (Figure 3a1–e1). Therefore, the climate in this region
mainly presents the distribution characteristics of northwest–southeast-type. The summer
temperature and precipitation in most areas of North China show an upward trend and the
relative humidity shows a downward trend, indicating that North China is continuously



Remote Sens. 2022, 14, 1307 8 of 14

changing to warm and dry (Figure 3a2–e2). Except for the low vegetation coverage in the
northwest of North China, the vegetation coverage in other areas basically reaches more
than 0.6 (Figure 4a). The vegetation coverage shows an increasing trend (Figure 4b), which
is mainly related to the state ecological restoration projects implemented in terms of af-
forestation, returning farmland to forest, Three-North Shelterbelt, etc. [9,35–37]. Therefore,
when we carry out the work of the influence of meteorological elements on vegetation
coverage, we roughly regard the linear trend of vegetation coverage as the impact of human
factors and the fluctuation as the variation caused by the fluctuation of meteorological
elements [14,16]. The vegetation coverage analyzed in the following study is also treated
with linear trend removed. By analyzing the temporal and spatial characteristics of summer
meteorological elements and vegetation coverage in North China, it is obvious that the veg-
etation coverage in Northwest China is low, while the air temperature, ground temperature,
precipitation, and relative humidity are low, and sunshine hours are long, which implies
that these elements have a great influence on vegetation coverage change in North China.
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Figure 4. Basic characteristics of summer vegetation coverage (dimensionless) in North China during
2000–2018. (a) Mean value; (b) linear trend coefficients.

2.5.2. Relationship between Vegetation Coverage and Meteorological Elements

According to the physiological process of vegetation growth, meteorological ele-
ments (such as temperature, precipitation, relative humidity, sunshine hours, and ground
temperature) have a certain continuous (cumulative) and lag effect on the growth of
vegetation [38–40]. The selection of key factors is based on the correlation analysis between
summer vegetation coverage and each meteorological element with the same period (sum-
mer, JJA), one month ahead (MJJ), two months ahead (AMJ), and one season ahead (MAM).
Correlation analysis between vegetation coverage and meteorological element shows that
vegetation coverage was positively correlated with precipitation and relative humidity, but
it shows negative correlation with air temperature, sunshine hours, and ground tempera-
ture. Influence of meteorological elements of AMJ and MAM on vegetation coverage are
not significant (Figure 5). Observing Figure 5, it is obvious that the main meteorological
factors affecting vegetation growth are precipitation, relative humidity, sunshine hours of
JJA, and air temperature and ground temperature of MJJ.

Temperature is significantly correlated with sunshine hours and ground temperature;
precipitation is significantly correlated with relative humidity; relative humidity is signifi-
cantly correlated with precipitation, sunshine hours, and ground temperature; sunshine
hours are significantly correlated with temperature, relative humidity, and ground temper-
ature; ground temperature is significantly correlated with temperature, relative humidity,
and sunshine hours (Figure 6). Therefore, it can be found that these five meteorological
elements have interactions with each other, jointly influencing the physical process of
vegetation growth in North China.
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Figure 5. Correlation coefficients between summer vegetation coverage and meteorological elements
(temperature (T), precipitation (P), relative humidity (R), sunshine hours (S), and ground temperature
(G)) in different periods (JJA: June–August, MJJ: May–July, AMJ: April–June, and MAM: March–May).
The blue dotted line indicates the 95% significance level, and the red dotted line indicates the 99%
significance level.
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Figure 6. Heat map of correlation coefficient between vegetation coverage (VCR) and meteorological
elements (temperature (T), precipitation (P), relative humidity (R), sunshine hours (S), and ground
temperature (G)).

2.5.3. MEVC Model Training and Testing

We selected the above interpolation data of temperature (T) and ground temperature
(G) from May to July, and precipitation (P), relative humidity (R), and sunshine hours
(S) from June to August during 2000–2018. The three MEVC models were trained and
tested by utilizing the fluctuation data of meteorological elements and vegetation coverage.
Meteorological elements are defined as input, and the category of whether vegetation
increases or decreases is regarded as the output of each model.

The training data of MEVC model is (Ti, Pi, Ri, Si, Gi, sign(VCRi)), i = 1, 2, · · · , 6948×

16. sign(VCRi) =

{
+1 VCRi > 0
−1 VCRi < 0

. The linear MEVC model is obtained by calculat-

ing the regression coefficient (a0, a1, a2, a3, a4, a5) in Formula (13) through the program of
MLR and PLS. The parameters of the SVM model (12) are obtained by the SVM algorithm.
The testing data of the MEVC model is (Ti, Pi, Ri, Si, Gi, sign(VCRi)), i = 1, 2, · · · , 6948× 3.
The SAR of training results of MLR and PLS models are 68% and 71%, and the SAR of
testing results of MLR and PLS are 55% and 57%, respectively. According to Formula (12),
cost factor C and γ are two crucial parameters that need to be determined in the SVM
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model. The parameter sensitivity test is also discussed for better utilization of the SVM
model. In Figure 7, it can be found that the results of the training set are greater than 67%
and the results of the testing set are greater than 59%. When the C value is large, the higher
the penalty of the model is for error points, and there may be overfitting. Thus, we choose
γ(gamma) = 5 and C = 2 .
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m
a
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Figure 7. Parameter sensitivity analysis.

3. Results
MEVC Model Simulation

We used three MEVC model to simulate vegetation coverage change in North China
during 2000–2018. Figure 8 presents the observation and simulation results of vegetation
coverage fluctuation in 2000, 2005, 2010, 2015, and 2018. In 2000, MLR simulates the
area with increased vegetation coverage in Shanxi Province as a decrease. MLR and PLS
simulate the area with increased vegetation coverage in Henan Province as a decrease. In
2005, MLR and PLS simulated error is quite large in Shanxi, and SVM simulated error north
of Hebei. In 2010, PLS simulated error is quite large in Shanxi and Hebei, and the SVM
is consistent in North China. In 2015, the three models’ simulation can well reproduce
the observation. In 2018, MLR and PLS simulated error is quite large in Shandong. The
linear model (MLR and PLS model) is higher for some sporadic point simulation, while the
nonlinear model (SVM model) shows better performance for the overall trend simulation.
In order to quantify and compare the simulation results of the three models during 2000 to
2018, the SAR between the observation and the model simulation is presented in Figure 9.
In 2002 and 2015, the SAR of the SVM model was slightly lower than the PLS model; in
2009, 2013, and 2017, the SAR of the PLS model was lower than the MLR model. In 89%
of these years, the SAR of the nonlinear model is better than the linear model. From the
overall performance of the model, the nonlinear MEVC model is superior to the linear
MEVC model. The MLR and PLS models are based on the linear hypothesis and do not
consider the complexity of ecosystems and the nonlinearity of climate change on vegetation
dynamic change. The SVM model can describe the complex nonlinear relationship between
meteorology and the vegetation system.
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Figure 8. Observation and simulation map of positive and negative fluctuation anomaly of vegetation
coverage for 2000, 2005, 2010, 2015, and 2018 in North China (among them, the first column is the
observation diagram, and the second, third, and fourth columns are the simulation diagrams of the
MLR model, the PLS model, and the SVM model, respectively). Blue and orange indicate positive
and negative vegetation coverage anomaly, respectively.
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Figure 9. SAR of vegetation coverage anomaly during 2000–2018.

4. Discussion

North China is the main wheat-producing base in northern China, and crop yields are
closely related to climate change [41]. Consequently, predicting vegetation coverage change
is an urgent problem in North China. In this study, the artificial intelligence model (SVM
model) was driven by a station observation dataset. The MEVC SVM model showed better
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performance with regard to vegetation coverage change than the MLR and PLS models,
using remotely sensed summer vegetation coverage data combined with meteorological
elements of MJJ and JJA (Figures 8 and 9). However, the artificial intelligence model gives
higher error for some sporadic point simulations.

This paper develops an MEVC model based on the entire region of North China,
without considering the differences of vegetation types. Studies have shown that grass-
land is closely related to precipitation, and farmland and forest are closely related to
temperature [13,42]. Peng et al. [1] have shown that the vegetation dynamics trend
of the Qinghai Tibet Plateau is affected by topography. There are a few studies that
combine the Coupled Model Intercomparison Project 5 (CMIP5) to predict future vegeta-
tion changes [22,41].Consequently, we should collect related data, including topography
and CMIP6, and combine machine learning methods to build a better vegetation predic-
tion model.

Local climate and large-scale climatic conditions are the predictors of vegetation
change [12,43]. EI Ninõ-Southern Oscillation (ENSO) has a significant impact on regional
rainfall and temperature, which will affect the production of crops [44,45]. Future studies
will use local climate, topography, and large-scale climate conditions, including ENSO,
atmospheric circulation, and sea surface temperatures (SSTs) anomalies in key areas as
predictors to predict the vegetation coverage change.

5. Conclusions

This paper analyzes the temporal and spatial characteristics of meteorological ele-
ments and vegetation coverage, determines the key meteorological elements affecting the
change of vegetation coverage in North China, and develops an MEVC classification model
utilizing the SVM methods. The obtained results are as follows: The climate has been
changing to warm and dry state in North China during 2000–2018. Correlation analysis
revealed that precipitation, relative humidity, and sunshine hours of JJA, as well as air
temperature and ground temperature of MJJ, have close relationships with the interannual
variation of summer vegetation coverage in North China. The MEVC classification model
can well reproduce the change symbols of vegetation coverage in North China from 2000
to 2018. The mean SAR between observation and simulation is 70%, which shows that the
MEVC classification model has good performance.
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