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Abstract: The post-fire debris flow (PFDF) is a commonly destructive hazard that may persist for
several years following the wildfires. Susceptibility mapping is an effective method for mitigating
hazard risk. Yet, the majority of susceptibility prediction models only focus on spatial probability
in the specific period while ignoring the change associated with time. This study improves the
predictive model by introducing the temporal factor. The area burned by the 30 March 2020 fire
in Xichang City, China is selected as an illustrative example, and the susceptibility of the PFDF
was predicted for different periods of seven months after the wildfires. 2214 hydrological response
events, including 181 debris flow events and 2033 flood events from the 82 watersheds are adopted
to construct the sample dataset. Seven conditioning factors consist of temporal factors and spatial
factors are extracted by the remote sensing interpretation, field investigations, and in situ tests, after
correlation and importance analysis. The logistic regression (LR) is adopted to establish prediction
models through 10 cross-validations. The results show that the susceptibility to PFDF has significantly
reduced over time. After two months of wildfire, the proportions of very low, low, moderate, high,
and very high susceptibility are 1.2%, 3.7%, 24.4%, 23.2%, and 47.6%, respectively. After seven months
of wildfire, the proportions of high and very high susceptibility decreased to 0, while the proportions
of very low to medium susceptibility increased to 35.4%, 35.6%, and 28.1%, respectively. The reason
is that the drone seeding of grass seeds and artificial planting of trees accelerated the natural recovery
of vegetation and soil after the fire. This study can give insight into the evolution mechanism of PFDF
over time and reflect the important influence of human activity after the wildfire.

Keywords: post-fire debris flow; logistic regression; occurrence probability; susceptibility; watershed
recovery; spatiotemporal evolution

1. Introduction

Wildfire is defined as a natural disaster accompanied by devastating consequences to
the infrastructures, ecosystems, and human lives [1–3]. The wildfires considerably alter the
landscape characteristics while generating a cascade of hydrogeomorphic hazards [4–6].
Post-fire debris flow (hereinafter PFDF) is one of the most frequent post-fire hazards [7–9].
They are gravity-driven mixtures of ash, sediment, and water, commonly including burnt
tree trunks, gravel, and boulders [10], which usually rush down on steep channels with a
high velocity and flow onto debris fans, showing great pressure to downstream transporta-
tion facilities and buildings [10,11]. According to statistics, forests with an area of more
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than 5 × 105 hm2 are burned every year around the world and PFDFs are more frequent
than flows in unburned areas, with a high occurrence proportion of 60% [12]. In addition,
the occurrence probability of PFDF in the burned area is 35–40% in the United States,
approximately 81% in Australia, and approximately 70% in China [13–17]. With global
warming, these events will continue to increase in frequency [9,18–20]. In the last five
years, this trend has been well proved by the increasing wildfires and subsequent PFDFs in
the mountainous areas of southwestern Sichuan, China. It causes economic losses worth
billions of dollars and dozens of casualties over the years [12,17,21–23]. Therefore, the
prediction of the occurrence probability of PFDFs is crucial for the formulation of disaster
prevention and mitigation measures.

Wildfires can radically alter the vegetation cover and soil hydraulic properties in
burned areas [1,2], burning the rainfall-intercepting canopy and leaf litter while decreasing
the soil infiltration, and soil erosion resistance [2,4,24,25]. These effects are dominated by
the severity of the wildfire, which is one of the key post-fire metrics affecting hillslope
runoff, erosion, and PFDF generation. Fire severity maps are usually obtained by remote
sensing interpretation of satellite images and adjusted and classified (low, medium, and
high) based on field investigations [26]. Serious fire increases dramatic runoff and erosion
on the hillslope surface. In addition, the PFDF initiated by debris slide or hillslope runoff
may persist for several years [27–32], which is associated with the recovery of vegetation
and soil hydraulic properties [33,34]. Some recent scholars study the trend over time of
these factors after the fire through model tests or simulations [2,25,35,36].

Insight into the relative likelihood of PFDFs as watersheds recover would further
improve our ability to predict and mitigate PFDF hazards [2]. Susceptibility mapping is an
effective approach to mitigate PFDF risk. It establishes an evaluation model through the
statistical analysis of PFDF data collected in the past and then predicts the probability of
PFDF occurrence in the same area and surrounding areas in the future to help emergency
personnel quickly isolate high-risk sites after a fire [37,38]. Generally, three methods are
used to predict the susceptibility to PFDF: (1) expert experience methods: analytic hier-
archy process, expert scoring method, etc. [17,39]; (2) mathematical-statistical methods:
information method, evidence weight method, deterministic coefficient method, etc. [40,41];
or (3) machine learning methods: logistic regression, naive Bayes, mixture discriminant
analysis, random forest, classification tree, etc. [7,8,10,42,43]. Of these prediction methods,
the logistic regression (LR) method is the most ubiquitously used because it considers sim-
ple linear relationships, performs faster calculations, is easy to explain, and has been widely
calibrated [7,8,37,44,45]. However, the majority of susceptibility prediction models only
focus on spatial probability in the specific period while ignoring the time-related changes,
such as soil permeability, soil erodibility, and other temporal factors, which will affect
the recovery rate of post-fire watershed [2,6–8,10,25]. The drawback is that the different
period of PFDF susceptibility is unclear. While we were able to quickly identify high-risk
watersheds following a fire based on previous PFDF susceptibility prediction models, it
is unclear how long the high threat period for PFDF in these watersheds lasts [2,8]. There
is no doubt that it will increase the difficulty and cost of PFDF disaster emergency man-
agement, and is not conducive to the improvement of model performance [2]. In addition,
the unbalanced sample dataset consisting of positive samples (debris flow) and negative
samples (non-debris flow) may also limit the model’s performance [7,42].

In light of the above knowledge gap, this study improves the predictive model by
introducing the temporal factor and establishing a spatio-temporal prediction model.
The area burned by the 30 March 2020 fire in Xichang City, China is selected as an illustrative
example, and the susceptibility of the PFDF was predicted for different periods of seven
months after the wildfires. The 2214 hydrological response events (181 debris flow events
and 2033 water events, non-debris flow) from the 82 watersheds are adopted to construct
the sample dataset. Seven conditioning factors consist of temporal factors and spatial
factors are extracted by the remote sensing interpretation, field investigations, and in situ
tests, after correlation and importance analysis. The logistic regression (LR) is adopted
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to establish prediction models through 10 cross-validations. This work will help land
managers and emergency responders in mountainous areas of southwest Sichuan Province,
China, to better understand the persistence and spatial distribution of PFDF disasters, so as
to develop reasonable and effective disaster warning standards and save costs.

2. Study Area
2.1. Geological Settings

The study area is located in Lushan Mountain, Xichang City, Southwest China, with
coordinates of 102◦12E′ to 102◦18′E, 27◦48N′ to 27◦52′N (Figure 1). The elevations of
the study area range from 1500 m to 2510 m, which is dominated by the mountains.
The mountainous area has incised gullies and rugged terrain, which belong to the middle-
elevation landform of tectonic erosion and denudation (Figure 1). Strata in the study area
include the Cretaceous mudstone, siltstone, and shale, as well as silty clay with gravel
belonging to the Quaternary–Holocene eluvium, and all of which are purple. The study
area is an old-growth forest with large vegetation coverage of about 90% (Figure 2a), mostly
comprising of Eucalyptus and Yunnan pine. The study area is located in the southwestern
Sichuan Plateau, which exhibits a unique subtropical southwest monsoon and plateau
climate. The temperature varies greatly with day, night, and elevation, which leads to
intense surface wind erosion and strong rock weathering. Furthermore, the mean annual
temperature is about 17.5 ◦C according to the data from local meteorological observations,
and the highest temperature can reach 35.5 ◦C. The strong wind and sunshine occurrences
from annual February to April. Therefore, the air is very dry from February to April, which
is a forest-fire-prone period (Figure 3) and approximately 81.1% of forest fires in Sichuan
Province occurred during this period [46]. The mean annual precipitation is 1013.5 mm
in the study area, and the daily maximum rainfall is 199.5 mm. The rainy season of the
study area is from May to October every year, and the storms at night contribute about
90% of the accumulated annual rainfall [17]. The monthly rainfall distribution in 2020 is
shown in Figure 3, and the rainfall during the rainy season accounted for 91.7% of the total
annual rainfall.
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Figure 1. Location of the “30 March 2020” fire burned area and distribution of 82 burned watersheds 
in Xichang, in which the red line represents the watersheds with post-fire debris flow (greater than 
or equal to once) and the blue line represents the watersheds without post-fire debris flow (only 
floods), and the monitoring time is the first post-fire rainy season (May to October 2020). 

Figure 1. Location of the “30 March 2020” fire burned area and distribution of 82 burned watersheds
in Xichang, in which the red line represents the watersheds with post-fire debris flow (greater than or
equal to once) and the blue line represents the watersheds without post-fire debris flow (only floods),
and the monitoring time is the first post-fire rainy season (May to October 2020).



Remote Sens. 2022, 14, 1306 4 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 27 
 

 

 
Figure 2. Fire and PFDFs scene photos of “30 March 2020” in Xichang. (a) Satellite image of the 
study area before the fire on 1 December 2019 (after Google Earth); (b) forest fire scene photo on 30 
March 2020; (c) Satellite image of the study area after the fire on 5 April 2020. The red dotted line is 
the shooting location of the fire scene in (b), and also the original location of the “30 March 2020” 
fire in Xichang; (d) The PFDF destroyed downstream houses and roads due to the lack of prevention 
works in the river watershed on 23 June 2020; (e) The uncompleted debris flow dam is filled due to 
the debris flow containing large rocks, tree trunks and sediment accumulation blocking the drainage 
holes on 23 June 2020. 

 
Figure 3. Monthly distribution of rainfall and PFDF occurrence ratio in the study area in 2020. 

Figure 2. Fire and PFDFs scene photos of “30 March 2020” in Xichang. (a) Satellite image of the
study area before the fire on 1 December 2019 (after Google Earth); (b) forest fire scene photo on
30 March 2020; (c) Satellite image of the study area after the fire on 5 April 2020. The red dotted line
is the shooting location of the fire scene in (b), and also the original location of the “30 March 2020”
fire in Xichang; (d) The PFDF destroyed downstream houses and roads due to the lack of prevention
works in the river watershed on 23 June 2020; (e) The uncompleted debris flow dam is filled due to
the debris flow containing large rocks, tree trunks and sediment accumulation blocking the drainage
holes on 23 June 2020.
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2.2. Thirtith March 2020 Forest Fire and Post-Fire Debris-Flow Events

On 30 March 2020, a catastrophic wildfire occurred in the research area (Figure 2b).
The wildfire lasted for three days, and the burned area was over 30 km2, accounting for
approximately 75% of the total watershed area of Lushan Mountain, and 84.7% of the
burned area was moderately or highly burned (Figure 2c). After the fire, the vegetation
coverage of the burned area was reduced to about 15%, and the ground surface was
exposed. A large amount of ash was accumulated on the hillslope surfaces (Figure 4a,b),
and a large number of dead branches and trunks were scattered on the hillslope surfaces
and in the main channel (Figure 4c). The possibility of PFDFs in the burned area is very
high during rainstorms, which seriously threaten important facilities such as schools, gas
stations, township government offices, and the Lushan–Qionghai scenic area near the
foot of the hillslope. In addition, the fire killed 19 people and caused economic losses of
approximately 100 million yuan.
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Figure 4. Characteristics of burned areas: (a) hillslope ash and loose soil layer formed by vegetation
burning and high-temperature baking; (b) a large amount of ash and loose sediment deposited at
channels and the junction of steep and gentle hillslopes; (c) distribution of dead branches and trunks
on channels and hillslopes; (d) distribution of gravel on channels and hillslopes.

In the first rainy season after the fire, the PFDF disasters did not cause casualties
due to timely evacuations. However, in many watersheds, as shown in Figure 2d, houses
and roads in the lower reaches were seriously damaged by the sudden debris flow due
to a lack of treatment works. Most of the emergency prevention and control engineering
facilities that were not completely developed were also buried or damaged by the debris
flow (Figure 2e), resulting in total economic losses of approximately 140 million yuan.
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3. Materials and Methods

A flow chart of this study is shown in Figure 5; the study is divided into four steps:
(1) Data preparation: compilation of PFDF inventory and conditional factors affecting PFDF
initiation. (2) By performing Pearson correlation test and random forest (RF) significance
analysis, the controlling factors of PFDF were extracted and the database was constructed.
(3) The database was randomly and evenly divided into 10 balanced datasets of posi-
tive and negative samples. The LR model was used to train the model and the optimal
model for predicting the probability of PFDF was obtained through 10 cross-validations.
(4) The prediction model of the optimal PFDF probability was used to calculate the oc-
currence probability of PFDFs in different post-fire periods for each watershed in the
study area. Susceptibility was graded according to different probability intervals. PFDF
susceptibility maps were generated for different periods (1 May, 1 June, 1 July, 1 August,
1 September, and 1 October).
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3.1. Database preparation
3.1.1. Post-Fire Debris Flow Inventory

Herein, using watersheds as assessment units, our field observations following each signif-
icant rainfall identified which watersheds produced debris flows or sediment-containing floods,
based on the sedimentological and physical criteria described by Pierson [47]. The burned
area was divided into 82 potential debris flow watersheds based on remote-sensing interpre-
tations and field investigations conducted immediately after the fire (4 April 2020). A PFDF
inventory was compiled based on the on-site investigation and aerial interpretation of the
occurrence of debris flows during the 27 rainstorm events of the first rainy season after the fire



Remote Sens. 2022, 14, 1306 7 of 25

(May–October 2020). Finally, we obtained 2214 hydrological response events, comprising 181
(~8.2%) debris flow events and 2033 non-debris flow events (all floods).

3.1.2. Post-Fire Debris Flow Conditioning Factors

No clear consensus is proposed on the PFDF-conditioning factors that should be
involved in the modeling because the provenance initiation and movement mechanisms of
PFDFs are extremely complex. According to previous studies and the data availability in
the research site [7,17,21,42], 17 conditioning factors (including temporal and spatial factors)
closely related to the formation process of PFDFs are selected, as shown in Table 1. Spatial
factors include the following: six watershed morphological characteristic factors {watershed
area (Area), relief ratio: the elevation change of the watershed divided by the length of
the main ditch (RR), watershed average gradient (Gradient), proportion of watershed area
with slope greater than or equal to 30% (Slope ≥ 30%), proportion of watershed area with
slope greater than or equal to 50% (Slope ≥ 50%), and watershed shape factor: the ratio
of the actual length of the watershed to the circumference of the same area circle of the
watershed (WS)}; three characteristic factors of burning severity {proportion of moderately
and severely burned area in the watershed (M/HS), proportion of the watershed burned
at high severity (HS), and proportion of watershed area that has been burned (Total
burned)}; four characteristic factors of rainfall intensity {maximum 10 min rainfall intensity
(max 10 min), maximum 30 min rainfall intensity (max 30 min), maximum 1 h rainfall
intensity (max 1 h), and maximum 24 h rainfall intensity (max 24 h)}; one vegetation-
distribution characteristic factor (VD); and one source materials distribution characteristic
factor (SMD). Temporal factors include the following two hillslope soil erosion factors
{early cumulative erosion depth of the hillslope soil (ECE) and erosion depth of the hillslope
soil during the last rainfall (LE)}. The method is as follows.

Table 1. Description and source of the influence variables of post-fire debris flow.

Variable Description Source

Watershed
morphology
characters

Area (km2) Watershed area

12.5 m DEM
(ASF, https://search.asf.alaska.edu/,

accessed on 12 April 2020)

RR (‰) Relief ratio
WS Watershed shape coefficient

Gradient (◦) Watershed average gradient
Slope ≥ 30% Proportion of watershed area with slopes ≥ 30%
Slope ≥ 50% Proportion of watershed area with slopes ≥ 50 %

Fire severity

HS Proportion of the watershed area burned at high severity

Sentinel-2 data (20 m pixel size)M/HS Proportion of the watershed area burned at moderate
and high severity

Total burned Proportion of watershed area that has been burned

Rainfall
intensity

Max 10 min (mm/h) Maximum 10 min rainfall intensity Radar rain gauges of Xichang
Meteorological Bureau

(Every 5 min)

Max 30 min (mm/h) Maximum 30 min rainfall intensity
Max 1 h (mm/h) Maximum 1 h rainfall intensity
Max 24 h (mm) Maximum 24 h rainfall intensity

Hillslope
soil erosion

ECE (mm) The cumulative erosion depth of the hillslope soil
before the PFDF occurs Field soil erosion monitoring test

(5 months, measured after each rainfall)LE (mm) The erosion depth of the hillslope soil during the
last rainfall

Source
materials

distribution
SMD The ratio of the supply length of the sediment along the

main channel in the watershed

Field
Investigation

(1 m resolution)

Vegetation
distribution VD The original pine tree coverage area in the watershed

Field
Investigation

(1 m resolution)

Watershed morphology characteristic factors: The steep topography directly affects
the erosion rate of hillslopes and channels as well as the stability of sediments and leads
to the surface runoff transited to a debris flow in the burned zone [8,48,49]. Based on the
12.5-m-resolution Digital Elevation Model (DEM), originated from the Alaska Satellite

https://search.asf.alaska.edu/
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Facility (https://search.asf.alaska.edu/, accessed on 12 April 2020), ArcGIS spatial analysis
tools were used to calculate the measured values of six watershed morphology factors
as potential explanatory variables. These watershed morphological variables include the
following: (1) area; (2) RR; (3) gradient; (4) slope ≥ 30%; (5) slope ≥ 50%; (6) WS.

Fire severity characteristic factors: The severity of wildfires is directly related to the
reduction of soil protection layer and deterioration of physical soil properties. At the same
time, it also increased the hillslope runoff response during rainfall and the hillslope suscepti-
bility to erosion processes [16,50]. Simultaneously, high-intensity wildfires can significantly
enhance the peak discharge in a post-fire watershed [16,51]. As shown in Figure 2a,c, the
vegetation coverage decreased significantly after the fire. Using monitoring indicators such
as the differentially normalized burning ratio (dNBR) constructed in the short-wave infrared
(SWIR) and near-infrared (NIR) bands of multispectral remote sensing data, the burning
severity of forest fires can be accurately calculated [52–54], which is a standard procedure
for assessing spectral fire effects [55]. In this research, we obtained L1C-tiles of Sentinel-2
data before (26 March 2020) and after (6 April 2020) fire in the study area via the Earth
Explorer (earthexplorer.usgs.gov, accessed on 12 April 2020) website. After atmospheric
correction using a standalone version of the Sen2Cor-Processor (ESA) [56], the 8a-band (NIR)
and 12-band (SWIR) were used to calculate dNBR by Equations (1) and (2) [55].

NBR =
NIR− SWIR
NIR + SWIR

(1)

dNBR = NBRpre−fire −NBRpost−fire (2)

Then, according to the fire intensity criterion proposed by Parsons, a field investigation
was carried out and dNBR boundary values of different fire intensities were adjusted [26].
The fire severity in the watersheds was divided into four grades (Figure 6, Table 2): un-
burned, slight severity, moderate severity, and high severity [26,52–54]. Finally, using the
ArcGIS spatial analysis tools, the three fire severity variables, M/HS, HS, and Total burned,
were calculated for each watershed as potential explanatory variables which influence the
initiation process of PFDF.

Table 2. Identification criteria of fire intensity in the burnt area: remote sensing interpretation and
field investigation of fire intensity characteristics.

Fire Severity Remote Sensing
Interpretation (dNBR) Field Characteristics

Unburned <0.12 There was no change in the surface cover before and after the wildfire
Low 0.12–0.33 More than 50% of the litter is incompletely burned

Moderate 0.33–0.48 Most of the litter is burned; however, most of the crude fuel is incompletely burned
High >0.48 Litter and crude fuel are completely burned and the surface is covered with ashes

Rainfall intensity characteristic factors: PFDFs are usually triggered by short-term heavy
rainfall [8,49,57,58]. Cannon et al. (2008) also pointed out that defining the rainfall thresholds
for the rainfall intensity measured in a shorter duration (<20 h; Cannon et al., 2008) is neces-
sary. Therefore, we selected four rainfall intensity variables having different durations (max
10 min, max 30 min, max 1 h, and max 24 h) as explanatory variables of rainfall conditions.
These data derived from the radar rainfall monitor stations located within the 2-km radius of
each watershed are interpolated using the ArcGIS10.5 software inverse distance weighting
method to obtain rainfall data for each watershed in the study area [49,59].

https://search.asf.alaska.edu/
earthexplorer.usgs.gov


Remote Sens. 2022, 14, 1306 9 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 6. Characteristics and spatial distribution of fire severity in the study area. 

 
Figure 7. The temporal evolution laws of the average of ECE and occurrence frequency of PFDF in 
27 rainfall events of the first rainy season after the fire in the study area. 

Source materials distribution characteristic factors: Loose solid materials are one of 
the three basic preconditions for the development of debris flow. Abundant surface ash 
and a loose sand layer formed on the hillslope after the wildfire destroyed the tree canopy 
and surface deciduous layer (Figure 4a,b). The soil structure of the hillslope is disturbed 
by high-temperature baking. During a rainstorm, the ash and loose sediment on the 

0 5 10 15 20 25
0

2

4

6

8

10   Average of ECE     
  Proportion of PFDF

Number of the post-fire rainstorm events

A
ve

ra
ge

 o
f E

CE
 (m

m
)

0

5

10

15

20

25

30

 P
ro

po
rti

on
 o

f P
FD

F 
(%

)

Figure 6. Characteristics and spatial distribution of fire severity in the study area.

Hillslope soil erosion characteristic factors: After a wildfire, the rate of runoff and sed-
iment transport on a hillslope will increase significantly compared with similar unburned
areas [60,61]. The primary cause for this is that wildfires severely damage vegetation,
causing the vegetation canopy, surface litter, and root layer to be partially or completely
burned [62], and the high temperature of the burning causes the deterioration of soil
properties making the surface soil of the hillslope loose, fragile, and easily eroded [54,63].
Generally, wildfires only affect soil to a depth of a few centimeters below the surface.
Slope runoff scour and rill erosion after wildfires can thin or disappear fire-affected soil
during heavy rains [64]. The resulting decrease in slope sediment availability may re-
duce the likelihood of debris flow [2,65,66]. Meanwhile, with the gradual restoration of
vegetation after a fire, the properties of the hillslope surface soil will be improved and
the soil permeability and erosion resistance will be enhanced. The hillslope runoff and
erosion amount of the burned area will gradually decrease with time, thus reducing the
susceptibility to PFDFs [2,25,28]. Figure 7 illustrates that the average of early cumulative
erosion depth (ECE) increases while the PFDF occurrence frequency decreases with the
increase of post-fire rainfall events (or time). Hence, ECE shows a negative correlation with
PFDF susceptibility, which can be considered a temporal factor affecting the formation of
PFDFs. We selected two hillslope soil erosion factors (ECE and LE) as potential explana-
tory variables that affect the initiation of PFDFs. The soil erosion factors of the hillslope
are obtained from in situ tests. We first set the experimental plots in a hillslope of some
watersheds in the study area, where the geological environmental conditions were similar,
and the slope surface was relatively undamaged; set up erosion monitoring plots in areas
with various fire severity, hillslope gradient, and hillslope length; and placed a total of
1600 erosion pins. Then, we measured the hillslope erosion depth after each rainstorm and
obtained a total of twelve sets of data through continuous in situ tests during the entire
rainy season (May to October 2020). Using a nonlinear fitting method, the computing model
of hillslope erosion on different fire severities of the burned area is obtained (Equation (3)),
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which quantitatively describes the hillslope soil erosion depth in different watersheds of
the research area. Finally, the spatial analysis tool in the ArcGIS platform is conducted to
calculate the ECE and LE of each watershed.

D = 0.1753·EXP(dNBR)· ln ∑ R·S0.2176·L0.1302 (3)

n = 985, R2 = 0.6558, P < 0.001

where D is the hillslope erosion depth (mm), ∑ R refers to the accumulated rainfall erosivity
(MJ·mm/(ha·h)), S is the slope gradient (◦) and L is the slope length (m) (Note: The deriva-
tion Equation (3) was presented in the paper titled: “Characteristics and calculation of
the dynamic reserves of hillslope erosion materials in burned areas in Xichang, China, on
30 March 2020”, which is currently under minor revision at Catena).
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Figure 7. The temporal evolution laws of the average of ECE and occurrence frequency of PFDF in
27 rainfall events of the first rainy season after the fire in the study area.

Source materials distribution characteristic factors: Loose solid materials are one of
the three basic preconditions for the development of debris flow. Abundant surface ash and
a loose sand layer formed on the hillslope after the wildfire destroyed the tree canopy and
surface deciduous layer (Figure 4a,b). The soil structure of the hillslope is disturbed by high-
temperature baking. During a rainstorm, the ash and loose sediment on the hillslope will
be easily initiated to cause a PFDF. Simultaneously, the ash flow increases the bulk density
of the mud and rock fluid, which in turn increases its ability to carry larger rocks [67].
The dynamic material sources distributed near the gully, such as loose sediment, ash,
fragments of gravel, dead branches and trunks, and other loose materials (Figure 4b–d), are
easy to initiate under the influence of an ash flow, which will increase the erosive capacity of
the debris flow and easily block the gully, resulting in the amplification effect of debris flow
blocking. Therefore, through a 20-day field measurement (GPS fixed point measurement)
on the burned area immediately after the fire, the Dynamic material source distribution
in each watershed was recorded and the specific value between the supply length of the
sediment along the main channel and the main channel length in the watershed was
selected as the potential explanatory variable for the initiation of PFDF, which is a variable
that can be divided into four types according to the Investigation Standard of Specification
of Geological Investigation for Debris Flow Stabilization [68]. Categories 1–4 characterize
this variable as <10%, 10–30%, 30–60%, and >60%, respectively [21].
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Vegetation distribution characteristic factors: Wildfire induces the manufacture or
improvement of soil water repellency. It decreases the soil permeability and enhances
the hillslope runoff, thus, aggrandizing the susceptibility to PFDFs [31,32]. The water
repellency of soil in a pine forest increases considerably after wildfires compared with
other forest vegetation [69]. During the field survey of the burned area, we tested the water
repellency of soil through Water Drop Penetration Time (WDPT) and found that soil water
repellency of pine forest fire areas significantly increased (most are severe to extreme in
water repellency) [70]. For other vegetation types, such as eucalyptus, populus, and shrubs,
the soil water repellency is mostly light to severe whereas the soil under grass has no water
repellency (Figure 8). Concurrently, the content of pine oil is higher and the branches are
flammable and burn more violently, resulting in more serious burns to the soil structure
and vegetation roots and increasing the soil’s erodibility [54]. Hence, through aerial image
interpretations and field investigations, combined with data provided by the local forestry
department, the species and vegetation distribution in each watershed were obtained and
the percentage of the primordial pine covered area (before the fire) in the watershed was
selected as the potential explanatory variable for the initiation of PFDF, which was allocated
into five categories and the categories 1–5 represent the variable in the watershed as <20%,
20–40%, 40–60%, 60–80%, and 80–100%, respectively [21].
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3.2. Selecting the Post-Fire Debris Flow Conditioning Factors

Owing to the fact that redundant information may generate noise in modeling and
reduce the prediction ability, selecting appropriate conditioning factors for PFDF suscep-
tibility modeling is vital. Therefore, the Pearson correlation coefficient (PCC) and the RF
method were employed to select the PFDF conditioning factors herein.

PCC is usually used to measure the linear correlation of two variables as an efficient
method. Its value ranges from −1 to 1, and the absolute value will exceed 0.5 if the two
variables have a strong correlation. The RF algorithm developed by Breiman (2001) is a
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nonparametric statistical technique utilized for regression and classification and has been
widely used in the modeling of debris flows, landslides, and other disasters [9,21,71,72].
Furthermore, the RF model can play an important role in ranking the importance of
variables and measuring the importance of selected conditioning factors by obtaining the
Gini coefficient [73]. This study is based on the Scikit-Learn library in the Python3.6.5
environment for RF modeling. The main model parameters “n_estimators”, “max_features”
and “max_depth” were set as “500”, “17” and “10”, respectively. Besides, the output value
of “feature_importances” showed the importance of each conditioning factor [21,72].

Therefore, we first modeled all sample data (2214) and calculated the “feature_importances”
(importance or contribution) of each PFDF conditioning factor based on the RF model (repeating
10 times and taking the average). Then PCC was utilized to precisely describe the correlation of
all the conditioning factors. If one of them shows a strong correlation with other factors (absolute
value >0.5), it will be regarded as an unnecessary redundant factor. If two or more two factors
show a significant correlation, only the factors with higher importance could remain. Finally, the
LR model was established according to the remaining conditioning factors.

3.3. Model

The LR algorithm is a classical machine learning algorithm, which is usually used
for modeling the statistical likelihood of a binary response variable. Especially, it has
been widely used to predict the occurrence possibility of PFDFs in the Western United
States [7,8,38,44,45,74,75]. The LR approach is advantageous because it is computationally
simple and can provide the statistical possibility for the occurrence of debris flows for
different magnitudes of a storm in a geospatial format at the scale of a stream segment
or watershed [8]. In addition, the predictive model can be presented more intuitively
compared with other machine learning methods, which is convenient for engineering
applications. The probability of occurrence (P) of PFDFs according to LR is given as

P =
ex

1 + ex , (4)

where P is a number ranging from 0 to 1, representing the statistical possibility of the
occurrence of PFDFs (where values approaching 1 indicate an increasing possibility) and x
is determined by the link function:

x = β + C1X1 + C2X2 + . . . + CnXn, (5)

where β and C1, C2, . . . , Cn are empirically derived parameters and X1, X2, . . . , Xn
represent independent explanatory variables that impact the occurrence of the PFDF event.

3.4. Model Training and Validation

Herein, the LR model is used to model the susceptibility to PFDF. First, 2033 moni-
tored non-debris flow events were evenly and randomly divided into 10 negative samples,
which were combined with 181 debris flow events to form 10 sample datasets. The 70%
data of each dataset were divided into the training samples, and the remaining 30% data
were divided into validation samples. The unbalanced binary results were interpreted
using stratified random sampling [76]. Then, the LR model was adopted (different ran-
dom seed numbers were selected) to conduct the same modeling training for 10 sample
datasets in the following two steps: (1) Through 100 iterations of model training (10 sample
datasets× 10 times of random training), the training model Mij that simultaneously reaches
the maximum values of TS, Sensitivity, AUC, and Accuracy in each sample dataset is
screened and named as candidate model Mi (where i represents the ith sample data set, j
represents the number of random seeds of the jth LR model, and i and j are integers ranging
from 1 to 10). (2) Each candidate model Mi is cross validated in turns with 10 sample
datasets 10 times, and an optimal candidate model which has the maximum magnitude
of average values of the model evaluation indexes TS, Sensitivity, AUC, and Accuracy is
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selected, that is, the final prediction model M. Finally, the map of PFDF susceptibility is
generated. The Python language with a 3.6.5 environment was used for developing the
predicted model and preprocessing geospatial data.

To evaluate the model performance, the contingency table (Table 3) was employed to
measure the number of correct and false events in the predicted outcomes. True positive
(TP) is the sum of the outcomes that correctly predict debris flow events, and true negative
(TN) is the number of the non-debris flow events correctly predicted. False positive (FP)
represents the falsely predicted number of all debris flow events, and false negative (FN)
indicates the number of the non-debris flow events which were wrongly predicted in debris
flow. According to Table 3, the metrics, such as accuracy, sensitivity, TS, and AUC were
calculated herein to evaluate the predictive performance of the model. Those indexes were
widely used to evaluate and validate the PFDF prediction models in the previous study
and can be obtained from the following equations [8,10,42].

Accuracy =
TP + TN

TP + FP + TN + TP
(6)

Sensitivity =
TP

TP + FN
(7)

TS =
TP

TP + FN + FP
(8)

Table 3. Contingency table.

Observed

Debris Flow No Debris Flow

Predicted
Debris flow TP FP

No debris flow FN TN

Among them, accuracy (ACC) represents the number of samples with correct classifi-
cation/the number of all samples; sensitivity (also known as true positive rate) corresponds
to the number of positive samples predicted to be positive/the actual number of positive
samples. TS (critical success index) represents a measure of the overall performance of the
classifier model where a perfect model score would equal one, and each incorrect prediction
(FP or FN) will reduce the value of TS [77]. The area under the curve (AUC) value is the
common index to evaluate the overall performance of the prediction model, which can
be classed as follows: poor (50–60%), moderated (60–70%), good (70–80%), very good
(80–90%), and excellent (90–100%) [8,10,42,72].

4. Results
4.1. Modeling Factor Selection

Figure 9 illustrates the correlation coefficients among the 17 initial conditioning factors,
and Figure 10 illustrates the importance (or contribution) ranking of each conditioning
factor using the RF method (the average of 10 calculations). Based on the results obtained
from importance analysis, max 10 min is the primary conditioning factor (0.1375) impact-
ing the prediction the occurrence of PFDFs, followed by ECE (0.1334), max 1 h (0.1221),
SMD (0.1150), LE (0.1022), max 24 h (0.0893), M/HS (0.0494), total burned (0.0395),
WS (0.0383), HS (%) (0.0357), area (0.0308), max 30 min (0.0268), VD (0.0179), slope ≥ 50%
(0.0171), RR (0.0162), slope ≥ 30% (0.0152), and gradient (0.0135). Therefore, in addition to
the rainfall factors, ECE, SMD, LE, and M/HS are the main controlling factors affecting the
formation of PFDFs.
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According to the results of correlation analysis, there are three groups of multiple
factors in the initial conditioning factors that are strongly correlated with each other.
These groups include four watershed morphology factors (RR, gradient, slope ≥ 50%, and
slope ≥ 30%), three fire severity factors (HS, M/HS, and total burned), and four rainfall
intensity factors (max 10 min, max 30 min, max 1 h, and max 24 h). Based on the impor-
tance of the conditioning factors (Figure 10), we only retained the conditioning factor that
contributed the most to the prediction of the PFDF among the three groups of conditioning
factors: slope ≥ 50%, M/HS, and max 10 min. Furthermore, the correlations between
area and SMD and between ECE and LE are extremely significant. Similarly, we retained
SMD and ECE, which have a greater contribution to the prediction of PFDF. The remaining
factors, WS and VD, are not significantly related to any other factors; thus, they were
also retained. The seven remaining conditioning factors are the final PFDF susceptibility
modeling factors: max 10 min, ECE, M/HS, SMD, WS, VD, and slope ≥ 50%.

4.2. Optimal Probability Prediction Model Selection

To obtain the optimal training model for the prediction of PFDF susceptibility, we fixed
the number of random seeds to perform the same modeling training on 10 sample datasets.
First, 10 candidate models Mi were selected through 100 repetitions of model training
(10 sample datasets × 10 times of random training). Then, each candidate model was
cross-validated with 10 sample datasets, 10 times each. The cross-validation results are
shown in Figure 11, which shows that the 10 candidate models all show good predictive
performance, indicated by the AUC and ACC that are greater than 0.915 and 0.83, respec-
tively. M1 performed the best, with average values of AUC, sensitivity, ACC, and TS in
the cross-validation results being 0.924, 0.89, 0.859, and 0.749, respectively, which were
the maximum values among the 10 candidate models. Therefore, M1 is determined as the
final PFDF probability prediction model (Equation (9)), and the verification results of the
prediction performance of M1 are shown in Figure 12 and Table 4. The results show that
the M1 exhibits a good predictive performance for which the AUC is 0.935, the sensitivity
is 0.964, the accuracy is 0.887, and the TS is 0.806.
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Table 4. Validation results of LR model prediction performance.

Metrics AUC Sensitivity Accuracy TS

Result 0.935 0.964 0.887 0.806

In order to verify the advantages of the modeling method in this study, we compared
the prediction effects of the spatiotemporal prediction model (the optimal prediction model
of this study, named M) with a spatial prediction model (the modeling factors do not include
ECE; however, the model uses the same training, named M′) during the modeling process.
We also directly conducted model training on unbalanced samples (total sample dataset)
and verified the training with the total sample dataset. The results show that the prediction
performance of the spatial prediction model without considering the temporal factor is
significantly lower than that of the spatiotemporal prediction model, in which Sensitivity,
AUC, TS, and ACC are decreased by 14.3%, 1.4%, 10%, and 5.2%, respectively (Figure 13).
Compared with the balanced sample modeling, the accuracy of the unbalanced sample
model is increased by 8.7%; however, its sensitivity, TS, and AUC are lowered by 61.9%,
8.9%, and 1.5%, respectively (Table 5). This implies that the model built with unbalanced
samples not only reduces the overall prediction performance of the prediction model but
also greatly increases the false-negative rate of debris flows. Rather than reducing the false
positive rate, it is more practical to avoid the increase of the false-negative rate.

P =
e0.393−1.314X1+2.357X2+2.744X3+0.448X4+0.182X5−0.51X6+0.035X7

1 + e0.393−1.314X1+2.357X2+2.744X3+0.448X4+0.182X5−0.51X6+0.035X7
, (9)

where P represents the occurrence probability of a PFDF; X1 is the watershed shape coeffi-
cient (WS); X2 is the proportion of burn watershed area with slope ≥ 50%
(slope ≥ 50%); X3 is the proportion of the watershed area burned at moderate and high
severity (M/HS); X4 is the ratio of the supply length of the sediment along the main channel
in the watershed (SMD); X5 is the original pine tree coverage area in the watershed (VD);
X6 is the cumulative erosion depth of the hillslope soil before the PFDF occurs (ECE (mm));
X7 is the maximum 10 min rainfall intensity (max 10 min (mm/h)).
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Table 5. Comparison of prediction performance evaluation results of the models established by the
balanced and unbalanced sample datasets.

Metrics Balanced Sample Model Unbalanced Sample Model D-Value

Sensitivity 0.878 0.259 0.619
AUC 0.922 0.907 0.015

TS 0.303 0.215 0.089
ACC 0.835 0.922 −0.087

4.3. Susceptibility Mapping

To explore the evolution behaviors of PFDF susceptibility over time and space, this study
is based on the optimal prediction model (M1) of the occurrence probability for PFDF, and
all PFDF conditioning factors (rainfall intensity set as the average value of max 10 min in
27 rainstorm events) are substituted into M1 during the 27 rainstorm events after the fire.
The occurrence probability (P) of PFDF in each watershed is calculated for different post-fire
periods. Then, P is equally divided into five levels corresponding to susceptibility to PFDF:
very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0).
Finally, ArcGIS is used to map the susceptibility to PFDF in 82 watersheds in the research
area at different post-fire periods (1 May, 1 June, 1 July, 1 August, 1 September, and 1 October;
see Figure 14 and Table 6). Figure 15 shows the behavior of the percentages of each PFDF
susceptibility level over time. As is shown in Figures 14 and 15, the susceptibility to PFDF
decreases with the increase of the number of post-fire rainfall events (i.e., the increase of time).
At the beginning of the rainy season (Figure 14a), among the 82 potential PFDF watersheds in
the study area, the numbers of very low, low, moderate, high, and very high susceptibility
watersheds were 1, 3, 20, 19, and 39, respectively, accounting for 1.2%, 3.7%, 24.4%, 23.2%, and
47.6%, respectively. At the end of the rainy season (Figure 14f), the proportion of very high
and high susceptibility watersheds decreased to 0 whereas the proportion of very low, low,
and moderate susceptibility watersheds increased to 35.4%, 35.6%, and 28.1%, respectively.
May–July (about the first six rainstorm events after the fire) was a period of significant
attenuation of PFDF susceptibility in each watershed (Figure 14a–c), almost all watersheds
moved to a lower susceptibility level (except those that were already very low). By 1 August,
the very high susceptibility watersheds had completely disappeared (Figure 14d) and most
of the high susceptibility watersheds had turned into low to moderate susceptibility. As of
1 October, all the high and very high susceptibility watersheds have been transformed into
very low to moderate susceptibility watersheds (Figure 14f).
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Table 6. Percentage of each PFDF susceptibility level in 82 watersheds in the study area in different
post-fire periods.

Date Number of the Post-Fire Rainstorm Events Very Low
(%)

Low
(%)

Moderate
(%)

High
(%)

Very High
(%)

1 May 1 1.22 3.66 24.39 23.17 47.56
1 June 2 1.22 29.27 17.07 29.27 23.17
1 July 7 8.54 26.83 28.05 34.15 2.44

1 August 16 21.95 31.71 39.02 7.32 0.00
1 September 21 34.15 31.71 32.93 1.22 0.00

1 October 27 35.37 36.59 28.05 0.00 0.00

4.4. Validation of Susceptibility Evaluation Results

Figures 3 and 16 show the in-site investigation of the PFDF occurrence regularity in
the first rainy season following the fire. As shown in Figures 3 and 16, May–July is the peak
rainfall stage of the rainy season, and it is also the high susceptibility period for PFDFs.
Approximately 50% of the watershed has high or very high susceptibility (Figure 15).
Therefore, the rainfall threshold for PFDF in this stage is not high (the average max 10 min
rainfall intensity reaches 19.3 mm/h, and the lowest max 10 min rainfall intensity is about
8.4 mm/h), and the incidence of PFDFs is as high as 85.6% of all PFDFs in the entire
rainy season. Although August is still the peak rainfall stage of the rainy season, the early
rainstorms not only mobilized a large number of material sources on the hillslope but also
moisturized the soil and enabled the vegetation to quickly recover. This will significantly
increase the permeability and erosion resistance of the hillslope soil and greatly weaken
the susceptibility to PFDFs. As shown in Figures 14 and 15, the watersheds with very high
susceptibility to PFDFs had completely disappeared by 1 August (Figure 14d) and most of
the high susceptibility watersheds had become low to moderate susceptibility. Therefore,
the occurrences of PFDFs in August only accounted for 14.4% of the total occurrences and
the rainfall threshold (max 10 min) was as high as 72 mm/h. From September to October,
almost all of the high and very high susceptibility watersheds were transformed into very
low to moderate susceptibility watersheds and approximately 72% of the watersheds were
very low to low susceptibility watersheds (Figure 14e, f). Therefore, there were no PFDFs
even when the max 10 min rainfall intensity reached 24.4 mm/h at this stage. In summary,
the temporal evolution of PFDF susceptibility in different watersheds presented by the
prediction model is basically consistent with the development behavior of on-site PFDFs.
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5. Discussion

In this paper, based on the logistic regression (LR) model, a quantitative prediction
model of PFDF susceptibility in each watershed at different post-fire periods was estab-
lished. It gives insight into the evolution law of PFDF susceptibility after wildfire and
further improves our ability to predict and mitigate PFDF disasters according to the fol-
lowing aspects: (1) We analyzed all the modeling variables and found the most influential
variables. (2) The modeling variables of the prediction model include one temporal factor
and six spatial factors, which endow the model with spatio-temporal prediction ability;
(3) The prediction accuracy of the model is improved by using balanced positive and
negative sample data.

The difference between our study and previous similar studies is how to introduce the
temporal factors (ECE) into the traditional susceptibility mapping method. This study used
the in-situ tests during the entire rainy season (May to October 2020) to obtain the data
containing a total of 1600 erosion pins. Based on these data, we obtained the average of
early cumulative erosion depth (ECE) in the different post-fire periods. The ECE is defined
as Equation (3), which is associated with the cumulative rainfall, fire intensity, hillslope
gradient, and hillslope length. The different period of ECE after the fire is shown in Figure 7.
Compared with other temporal factors (e.g., hillslope surface vegetation recovery rate, soil
water repellency and permeability) [29,36,78,79], ECE data is easier to obtain, quantify, and
apply to other burned watersheds. As the integrated factor, ECE can directly reflect the
response of runoff to changes in hillslope soil characteristics and the availability of hillslope
sediment [2,65]. According to the above advantage, this study selected the ECE as the
temporal factor to reflect the tendency of PFDF susceptibility over time, which is generally
ignored in the previous models [6–8,10]. The importance analysis based on the RF model
shows that the ECE is the most important factor except the rainfall (Figure 10). In addition,
the ECE factors can effectively improve the predictive model performance, as shown in
Figure 13. Compared to the M′ model, the sensitivity, AUC, TS, and ACC of the M model
increase 14.3%, 1.4%, 10%, and 5.2%, respectively.

The study area is located at the junction of town and forest and has been seriously
threatened by the PFDF after the fire. In a traditional prevention strategy, the high-risk area
can be identified but the duration of the threat of PFDF is unclear. During the whole rainy
season after the fire, as soon as it rained, downstream communities were forced to evacuate.
The proposed model by this study can help decision-makers to plan specific and improved
prevention strategies in different post-fire periods.

A review of discharge-based recovery times following wildfire found a typical range
of two to seven years for watershed hydrologic recovery [29]. However, the hydrological
recovery of the watershed in the study area is very rapid. From Figures 14 and 15, it can
be seen that the PFDF in the study area has a short duration, about 85.6% of the debris
flow occurred in the first three months after the fire (in the first six rainfall events). About
4.5 months after the fire, the ECE value of the watershed became basically stable (Figure 7).
After that and until the end of the second rainy season, the recorded hydrologic response
events in the study area are dominated by floods. This study suggested that human
activities play an important role in the recovery of watersheds after the fire, which caused
this phenomenon [29]. For example, the drone seeding of grass seeds and artificial planting
of trees accelerated the natural recovery of vegetation and soil, which significantly reduced
the duration of PFDF disasters in the study area. In addition, suitable climatic environments,
such as moderate altitude, sufficient sunshine, and rain, moderate rainfall in the first month
of the rainy season also accelerated the natural recovery of vegetation and soil properties
after a fire.

According to statistics, the majority of PFDFs are initiated by hillslope runoff [38],
almost 85% of PFDFs occurred within the first 12 months following a wildfire, and 71%
occurred within the first six months [80]. In general, the recovery of vegetation and soil
in the watershed may need two years or more. Although the data used by this study
only contains seven months, the proposed model also has the potential to predict more
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than one rainy season after fires. In the follow-up study, we will continue to monitor the
temporal evolution of hillslope erosion in burned areas and add new experimental sample
plots to obtain more test data for the medium- to long-term prediction model development.
Lithology, soil thickness, and other factors were not taken into account due to the limitations
of data availability, which will consider in the following study.

To ensure the prediction accuracy of the model, the high spatial resolution of DEM and
remote sensing images should be used to calculate the topographic data
(Slope ≥ 50% and WS) and the fire severity data (M/HS). The accuracy of rainfall in-
tensity (max 10 min) depends on the rainfall monitoring equipment. It is better to collect
rainfall data per minute and set the rainfall monitoring station within 1 km from the water-
shed. VD and SMD should be acquired through on-site investigation and classified and
quantified, so there may be certain challenges and subjective errors in the data acquisition
process. In future research, the higher resolution remote sensing image will be used to
eliminate the error of data acquisition. In addition to the fitting function (Equation (3)),
the acquisition of ECE can also be used to monitor the average cumulative erosion of
hillslope soil via high-resolution change detection technologies [81]. To sum up, most of the
modeling variables of the prediction model in this study are composed of publicly available
geospatial data and rainfall data. The method proposed in this study can be applied to the
development of spatio-temporal prediction models for the susceptibility of post-fire debris
flows in other regions.

6. Conclusions

In this paper, 82 watershed areas burned by the “30 March 2020” fire in Xichang City,
Sichuan Province are selected as an illustrative example. Seven conditioning factors consist
of temporal factors and spatial factors are extracted by the remote sensing interpretation,
field investigations, and situ test, after correlation and importance analysis. The logistic
regression (LR) is adopted to establish prediction models through 10 cross-validations.
The main conclusions are as follows:

(1) Max 10 min is the primary factor impacting the initiation of post-fire debris flow
(weight: 0.1375), ECE (0.1334), SMD (0.1150), and M/HS (0.0494) are the primary
controlling factors affecting the initiation of post-fire debris flow except for rainfall.

(2) The validation results show that the LR has good prediction performance, in which
the AUC is 0.935, the Sensitivity is 0.964, the Accuracy is 0.887, and the TS is 0.806.

(3) The susceptibility of PFDF has significantly reduced over time. After two months of
wildfire, the proportions of very low, low, moderate, high, and very high suscepti-
bility are 1.2%, 3.7%, 24.4%, 23.2%, and 47.6%, respectively. After seven months of
wildfire, the proportions of high and very high susceptibility decreased to 0, while
the proportions of very low to medium susceptibility increased to 35.4%, 35.6%, and
28.1%, respectively.

(4) Human activity plays an important role in the recovery of watersheds after the wildfire.
The drone seeding of grass seeds and artificial planting of trees accelerated the natural
recovery of vegetation and soil, which significantly reduced the duration of PFDF
disasters in the study area.

This study can give insight into the evolution mechanism of PFDF over time and
reflect the important influence of human activity after the wildfire. Although the study
focuses on the specific area, the method proposed by this study can guide the planning of
mitigating the PFDF risk on the other burned area.
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