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Abstract: This study develops Near-Infrared Spectroscopy (NIRS) and Mode-Cloning (MC) for the
rapid assessment of the nutritional quality of bamboo leaves, the primary diet of giant pandas
(Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To test the NIR-MC approach, we evaluated
three species of bamboo (Phyllostachys bissetii, Phyllostachys rubromarginata, Phyllostachys aureosulcata).
Mode-Cloning incorporated a Slope and Bias Correction (SBC) transform to crude protein prediction
models built with NIR spectra taken from Fine–Ground leaves (master mode). The modified models
were then applied to spectra from leaves in the satellite minimal processing modes (Course–Ground,
Dry–Whole, and Fresh–Whole). The NIR-MC using the SBC yielded a residual prediction deviation
(RPD) = 2.73 and 1.84 for Course–Ground and Dry–Whole sample modes, respectively, indicating a
good quantitative prediction of crude protein for minimally processed samples that could be easily
acquired under field conditions using a portable drier and grinder. The NIR-MC approach also
improved the model of crude protein for spectra collected from Fresh–Whole bamboo leaves in
the field. Thus, NIR-MC has the potential to provide a real-time prediction of the macronutrient
distribution in bamboo in situ, which affects the foraging behavior and dispersion of giant and red
pandas in their natural habitats.

Keywords: bamboo leaves; calibration transfer; forage grasses; giant panda; nutrition; red panda;
sampling

1. Introduction

Forage grasses and legumes supply energy and nutrients to various ruminants and
non-ruminants by providing the protein, vitamins, and minerals necessary for growth and
metabolism [1]. Near-infrared spectroscopy (NIRS) has been used widely in assessing the
forage quality of livestock, and in recent years, an increase in studies of forage nutrition for
wild species [2–4]. Importantly, the determination of the nutritional value of forage grasses
can be used to understand the nutritional drivers of wild-animal movement in situ [5]. For
such studies, miniaturized NIR spectrometers designed for in-field spectral collection are
more practical for real-time assessment than bench-top systems [6–8].

NIRS is a cost-effective and rapid technique for measuring the nutritional quality
of many forage grasses, including bamboo [9,10]. The quantitative nutrient composition
of forages can be obtained using NIRS combined with mathematical transformations to
generate calibration models for nutrient prediction [11]. However, sample processing
emphasizes different contributions to the spectral profile of the sample, which can then
affect the model performance and prediction results. In standard practice, NIR spectra
are collected from forage samples that are entirely dried at temperatures from 55 to 70 ◦C
because samples with high moisture generate a strong water absorption signal that overlaps
and obscures other spectral features, which causes peak shifts and results in non-linear
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responses [1,12,13]. Several studies in soil and forage analysis have found that NIR results
from wet samples have higher standard errors of calibration compared with dried samples
and hence have lower prediction accuracy [13,14]. Moreover, the size, shape, and uniformity
of particles in a sample can change the surface light scattering and affect the slope of
the NIR spectra [15], as well as cause absorption flattening [16,17]. Under laboratory
conditions, isotropic and uniform sized particles can be obtained by grinding in a cyclone
mill to minimize scattering noise in the spectrum. The grinding process also increases
homogenization and provides the highest accuracy in prediction equations from spectral
data [18].

Although NIR spectra and model prediction of nutrient quantities from dried, highly
ground samples can be more accurate, the sample processing steps require time, labor,
and unwieldy equipment that is unsuitable for in situ applications. Field studies require a
simplified procedure for minimal or unprocessed fresh samples. The calibration transfer of
a master prediction model generated for fine-ground samples may be applicable to non-
ground or even wet samples [19]. However, in some cases, the model cannot be applied
directly to new datasets because the gaps between the existing and new types of samples
cause variation between the spectra, leading to biased predictions. For example, different
processing methods of the same sample can cause a change in the physical properties of
the sample, such as particle size or surface texture [20]. Here, we propose an NIR-Mode
Cloning (NIR-MC) approach that consists of calibration transfer based on mathematical
and statistical techniques to correct for differences caused by various processing modes [21].
One method commonly used for correcting predictions is the simple univariate Slope and
Bias Correction (SBC), in which the prediction model is developed based on the Master
mode and can then be modified to correct predicted values in a satellite mode [22,23]. The
SBC model transfer was applied to the leaves of bamboo, which is a wild forage grass for
numerous species. The predictive performance of the SBC model transfer has been shown
to be similar to that of other spectral correction methods such as direct standardization
(DS), piecewise direct standardization (PDS), and external parameter orthogonalization
(EPO) corrections [24–26].

Bamboo is the primary food source for the giant panda (Ailuropoda melanoleuca) and red
panda (Ailurus fulgens), representing 99% and 91.4–99.1% of their diet, respectively [27–29].
Bamboos are distributed throughout the panda habitat and are cold-tolerant and ever-
green [30,31], serving as the primary food source throughout the year, especially in the
winter. The amount of protein and fat that either panda species can acquire from a diet
of bamboo is limited because bamboo is a low-nutrition/energy food source with crude
protein composing only 7.0–21.6% of total dry matter and crude fat only 1.6–4.2%, with
the remaining content composed of complex carbohydrates and digestible sugars [9,32].
Giant pandas and red pandas have a relatively short gastrointestinal tract (GIT), typical of
carnivores, and the low abundance of cellulases and endo-hemicellulases in the carnivore
digestive system make it difficult to digest cellulose into usable nutrients or to extract
the protein and fat constituents [31–33]. The digestive efficiency of bamboo leaves is less
than 30% in giant pandas and red pandas [34,35], resulting in the need to consume large
quantities of bamboo each day.

The variation in nutrient content across different bamboo species and habitats can
affect giant and red panda diet quality and dietary selection. For example, studies have
shown that captive giant pandas prefer culm over leaves in spring due to the seasonal
changes in carbohydrate distribution within different parts of the bamboo plant [36].
Moreover, giant pandas shift between consuming bamboo leaves and shoots of varying
bamboo species throughout the year, as the concentrations of primary energy constituents
and critical elements such as calcium, phosphorus, and nitrogen shift within the plant
structure, potentially influencing annual patterns of migration [37]. Red pandas also
prefer bamboo leaves in the summer and fall, as leaves contain the highest levels of
crude protein and fat during these seasons [32]. A better understanding of the bamboo
foodscape can assist wild-population management through habitat conservation and the
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establishment of protected areas to account for the seasonal foraging behavior, migration,
and population distribution changes. The direct assessment of forage quality in situ for
giant and red panda population management is possible by using portable NIRS and
sampling processing devices. To test the NIR-MC approach, we evaluated three species
of bamboo from the genus Phyllostachys that are endemic to China and that serve as the
primary forage of both panda species. Once the calibration models for predicting nutritional
parameters were built using spectra from highly processed samples, the NIR-MC method
was applied to fit spectra from minimally processed bamboo leaves with calibration transfer
and mathematical correction. Building predictive models using SBC transforms that adjust
for sample processing modes and are transferable to spectra collected from bamboo leaves in
situ willenable real-time assessment of the bamboo nutritional landscape of panda habitat.

2. Materials and Methods
2.1. Bamboo Sampling and NIR Spectra Collection

The leaves from three bamboo species, Phyllostachys bissetii (Bissetii), Phyllostachys
rubromarginata (Rubro), and Phyllostachys aureosulcata (Sulcata), were selected and collected
bi-weekly over 20 months from established cultivars at the Memphis Zoo Bamboo Farm
(Agricenter, Memphis, TN, USA). Fresh live leaves (n = 10) were randomly selected from
different rows throughout the plot for each species and NIR spectra (n = 10/ scans per leaf)
were taken in the field from both sides of each leaf to create the Fresh–Whole mode dataset
(Figure 1A) using an ASD FieldSpec®3 Vis-NIRS portable spectrometer (350–2500 nm,
50 scans with a 34 ms integration time, approximately 1 nm resolution) and a 20 mm in
diameter ASD low-intensity ‘plant probe’ specially designed for heat-sensitive targets such
as plant tissues. The selected leaves were collected and dried in an air-forced oven at 60 ◦C
to constant weight for 48 h and pressed for NIR spectra (n = 10 scans/per leaf) to generate
the Dry–Whole leaf mode dataset (Figure 1B). Next, dried leaves were coarsely ground
with a Wiley mill (Figure 1C) and then finely ground into 0.1 mm isotropic particles with
a cyclone mill (Figure 1D, Udy Corporation, Fort Collins, CO, USA). The NIR spectra of
dried and ground samples were then collected (n = 3 replicates/ sample). In the standard
procedures of this study, each ground sample mode was scanned three times as replicates,
as those samples were homogeneous and in small volumes. However, extra scans were
collected from different parts of the whole leaves of Dry–Whole and Fresh–Whole sample
modes (n = 10 replicates/sample) to cover the structural variation of the tissue in the
whole bamboo leaf. All the samples and spectra were classified into four processing
modes: the Fine–Ground samples are considered the Master mode, while the minimally
processed Coarse–Ground, Dry–Whole, and Fresh–Whole are considered satellite modes.
The Fresh–Whole samples are unprocessed, while Dry–Whole and Coarse–Ground samples
can be simply processed by a portable dryer and coffee grinder, which are practical in situ
(Figure 2). Cyclone milling to obtain the Fine–Ground samples is not feasible for in-field
applications as the equipment is not portable, and the samples are easily contaminated or
lost during processing.
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tering from variable particle size and shape. 

2.2. Chemical Analysis 
The ground samples were sent for proximate analysis to generate the chemical refer-

ence data needed to calibrate the NIR Master mode (Forage Labs, Cumberland MD). The 
dry matter (DM) content was determined after the ground subsamples were weighed and 
dried at 100 °C for 24 hours. Crude protein (CP) is the total protein and was determined 
using the micro-Kjeldahl method [38]. The percentage of nitrogen was calculated using a 
Leco Nitrogen Analyzer (model FP-2000, Leco Corporation, St. Joseph, MI) (AOAC, 1995), 
and the percentage of CP was obtained by multiplying the percentage of nitrogen by a 
standardized factor of 6.25 as protein averages approximately 16 % nitrogen. In addition, 
a randomized set of samples (n = 10) were split and measured separately to calculate the 
standard error of the laboratory values (SEL) [39]. 
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Ground, and (D) Fine–Ground.
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Figure 2. Flow chart of the sample processing for NIR data collection from field samples to the most
processed for obtaining the best NIR spectra. The sample processing steps eliminate complicating
factors in the NIR spectrum, such as overlapping water signals, mixture inhomogeneity, and scattering
from variable particle size and shape.

2.2. Chemical Analysis

The ground samples were sent for proximate analysis to generate the chemical refer-
ence data needed to calibrate the NIR Master mode (Forage Labs, Cumberland, MD, USA).
The dry matter (DM) content was determined after the ground subsamples were weighed
and dried at 100 ◦C for 24 h. Crude protein (CP) is the total protein and was determined
using the micro-Kjeldahl method [38]. The percentage of nitrogen was calculated using a
Leco Nitrogen Analyzer (model FP-2000, Leco Corporation, St. Joseph, MI, USA) (AOAC,
1995), and the percentage of CP was obtained by multiplying the percentage of nitrogen by
a standardized factor of 6.25 as protein averages approximately 16 % nitrogen. In addition,
a randomized set of samples (n = 10) were split and measured separately to calculate the
standard error of the laboratory values (SEL) [39].
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2.3. Chemometric Analysis
2.3.1. Calibration Models

Before the application of chemometrics, an outlier detection analysis was performed,
in which outlier samples were removed from the database. The spectra collected from
each leaf under the conditions of each sample processing step were averaged and arranged
into four balanced databases (Table 1). The databases were equally weighted by random
sampling within each species for calibration and internal validation. Spectra in Database 1
contained equal numbers of samples from the three bamboo species and were randomly
divided into calibration (23 samples for each bamboo species) and internal validation sets
(6 samples for each species) comprising 80% and 20% of the original samples, respectively.
In databases 2–4, spectra from two bamboo species were combined such that 80% of
samples were randomly selected to establish calibration models (n = 23 for Rubro and
Sulcata, n = 31 for Rubro and Bissetii, n = 23 for Bissetii and Sulcata), and the remaining 20%
of samples were used as internal validation sets (n = 47 for Bissetii, n = 29 for Sulcata, n = 39
for Rubro). Spectra collected from the third species were used as the external validation
set, with 47 samples from Bissetii, 29 samples from Sulcata, and 39 samples from Rubro in
Databases 2–4, respectively. The mathematical pre-treatments of Standard Normal Variate
(SNV) with de-trending and a second derivative (Savitzky–Golay smoothing, symmetric
points = 16, smoothing points = 33) were applied on the full data spectrum (350–2500 nm).
Principal Component Analysis (PCA) and wavelength-range evaluation were applied to
the databases to determine dominant peaks in the loadings using the Unscrambler® X v.11,
Aspen Technology Inc, MA, USA. The Partial Least Squares Regression (PLSR) algorithm
for each processing mode was applied on the transformed spectra associated with the
crude protein information (1000–2500 nm) from the balanced databases to predict the crude
protein values. The models were calibrated and validated using the calibration set and
internal validation set, respectively, while the prediction results were obtained from the
external validation set.

Table 1. Balanced databases containing NIR spectra collected from each bamboo species under each
processing mode. Databases 2–4 are generated using spectra from two bamboo species and the
calibration models were tested on spectra collected from the third bamboo species.

Database Species Calibration for
Each Processing Mode

Validation for Each
Processing Mode

External Validation for
Each Processing Mode

1
Rubro 23 6 0
Bissetii 23 6 0
Sulcata 23 6 0

2
Rubro 23 6 0
Sulcata 23 6 0
Bissetii 0 0 47

3
Rubro 31 8 0
Bissetii 31 8 0
Sulcata 0 0 29

4
Bissetii 23 6 0
Sulcata 23 6 0
Rubro 0 0 39

2.3.2. NIR Mode Cloning (NIR-MC) Using Slope and Bias Correction (SBC)

The NIR-MC was carried out in Unscrambler® X v.11 (Aspen Technology Inc, MA,
USA). The best calibration model for the master (Fine–Ground) mode to predict the crude
protein values was applied to the three satellite sampling modes. Additionally, models
built with samples from the Coarse–Ground mode were applied to the satellite modes
Dry–Whole and Fresh–Whole, and the best-fit calibration model for the Dry–Whole mode
was applied to the Fresh–Whole samples (Figure 2). The SBC was performed on predicted
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Y-values only, without correcting the spectral matrix. The correction of the predicted
values and model evaluation was performed using R studio (Version 1.2.5019, RStudio,
Inc., Boston, MA, USA). With the SBC, it is assumed that a linear relationship exists
between the predictions of spectra measured from the master (Fine–Ground) mode samples
and the predictions obtained from the satellite (Coarse–Ground) samples using the same
PLSR model built on the Fine–Ground mode. The SBC was conducted using the external
validation set in Database 2 containing the predicted CP values of Fine–Ground and Coarse–
Ground samples using the same Fine–Ground PLSR model. Database 2 was divided
into two subsets, a training set and a test set, comprised of 70% and 30% of the dataset,
respectively. With ordinary least squares, the training set was used to build a linear
regression between the predictions of the Fine–Ground samples and the predictions of the
Coarse–Ground samples using the same Fine–Ground model:

yfg = bias + slope ∗ ycg (1)

where yfg is the predicted CP values of Fine–Ground samples using the Fine–Ground
calibration model, and ycg is the predicted CP values of Coarse–Ground samples using the
Fine–Ground calibration model. Slope and bias coefficients were computed using a linear
regression between those two sets of predictions.

Then, in the test set, the predicted values of Coarse–Ground samples were corrected
by the slope and bias (intercept) based on the linear equation:

ycg. corr = bias + slope ∗ ycg (2)

where ycg. corr is the corrected predictions of Coarse–Ground samples.
The same procedures were applied to the mode cloning from the Fine-Ground model to

Dry–Whole and Fresh–Whole samples, from the Coarse–Ground model to Dry–Whole and
Fresh–Whole samples, and from the Dry–Whole model to Fresh–Whole samples (Figure 2).
The root mean square error of prediction (RMSEP), standard error of prediction (SEP), bias,
the coefficient of determination (R2), and the residual prediction deviation (RPD) were
used to summarize the accuracy of the prediction. The RPD is the standard deviation (SD)
of the sample’s reference values divided by the root mean square error of prediction [40].
The RPD value is used as the criteria for evaluating model performance, a model with
an RPD value higher than 1.8 is considered a good model for quantitative prediction of a
constituent such as crude protein, and RPD > 2.5 indicates an excellent model [41].

3. Results
3.1. Sample Statistics

The CP content of all the bamboo samples varied from 11.6% to 22.8%, with an
average of 17.1% and an SD of 2.1%, determined by the chemical analyses. The frequency
distribution plots of CP values are shown in Figure 3. The histogram shows a normal
distribution of CP values overlapping across the three bamboo species. The histogram also
shows a broad range of CP values was available to build reliable calibration models for
predicting CP values in bamboo samples. The Tukey’s test (p > 0.05) showed no significant
difference between species in the means. The standard error of laboratory (SEL) was 0.49,
calculated using the technical duplicates of the same samples.
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3.2. Spectral Characteristics

Figure 4 shows the averaged raw and transformed spectra collected from the four
evaluated processing modes, grouped by species. Several major bands can be observed
in the raw spectra. For Fresh–Whole samples, the two prominent peaks appeared near
the wavelength ranges of 1460–1500 nm and 1850–1950 nm are the dominant and broad
near-IR absorption bands of water [42,43]. The major absorption bands of protein can be
observed near the wavelength ranges of 1640–1680 nm, 2050–2100 nm, and 2290–2390 nm,
which are assigned to the amide A-amide II combination and high-frequency aliphatic CH
stretching bands [44,45].
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The transformation helped accentuate the spectral response to chemical changes in
the samples. Transformed spectra show that the absorbance at around 1425 (first overtone
of O-H and N-H in amino and amide groups), 1650–1680 (CH), 1900 (NH), 2050–2060
(ROH/NH), and 2060 (carbonyl stretch of the primary amide) nm have more substantial
peaks as the protein content increased [45,46]. These protein signals would be an important
factor in building the calibration models for determining CP content in bamboo samples
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but are masked by the water signal in Fresh-Whole samples. Thus, the overlapping water
signals would have to be factored out in transferring calibration models from dry samples
to fresh samples.

The raw and transformed spectra of the three dried modes (Fine–Ground, Coarse–
Ground, and Dry–Whole) shared similar major absorption bands. Considering that there
is no significant difference between bamboo species in their mean reference CP values
suggests that it is possible that SBC without spectra correction between processing modes
can provide acceptable results in mode cloning.

3.3. NIR Modeling across Species

The PCA scores plots and loadings for all the processing modes are shown in
Figures 5 and 6. In the Fine–Ground (Figure 5A), the first two PCs account for 73% of
the variance when the three species were not well distinguished, indicating different
bamboo species exhibit overlapping confidence intervals. In this case, the PCA loadings
(Figure 5B) showing the prominent peaks that explained the trends in the scores plot
accounted for PC-1 = 59%, PC-2 = 14% of the variance Similarly, in the Coarse–Ground
plot (Figure 5C), the three species of bamboo overlap with PCA loadings explaining 58%
and 14% of the variation for PC-1 and PC-2, respectively (Figure 5D). In these two ground
modes, the PCA loadings plots (Figure 5B–D) show that wavelengths from the regions
1400–1425, 1900–1950, and 2310–2340 nm are essential for the first and second PC loading
values, which are the dominant peaks influencing the trends in the prediction of crude
protein. Likewise, in the two whole modes, the scores from the three bamboo species
overlap (Figure 6A–C), and the regions 1900–1950 and 2310–2340 nm in the loadings are
shown as crucial for PC-1 and PC-2 values (Figure 6B–D).
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The statistical summary of the calibration models for predicting CP across species
is shown in Table 2, and contains RMSEC, RMSECV, RMSEP, SEC, SECV, SEP, R2, and
RPD values. The main goal was to test if the calibration models based on samples from
two species could be directly transferred to the third species of the same genus. For the
Fine-Ground, all three calibration models (Databases 2–4) transferred to the third species
well, with R2 ranging from 0.82 to 0.99, and RPD ranging from 2.14 to 12.8 in the cali-
bration, cross-validation, validation, and external validation sets, indicating an excellent
quantitative predictive performance. The Dry–Whole and Fresh–Whole in Database 4
provided a very poor prediction of CP values, with RPD values lower than 1.0. When
Database 4 was excluded, it showed that Coarse–Ground models had good performance
in quantitative prediction of CP contents (0.76 < R2 < 0.98, 1.86 < RPD < 9.10) in the cali-
bration, cross-validation, validation, and external validation sets. Though the Dry–Whole
and Fresh–Whole models still performed well in the calibration and cross-validation set
(0.71 < R2 < 0.92, 1.78 < RPD < 3.53; 0.83 < R2 < 0.97, 2.50 < RPD < 6.19, respectively), they
failed to provide good performance in the validation and external validation set. The
Dry–Whole models had fair performance in predicting CP values (0.25 < R2 < 0.75,
1.04 < RPD < 2.00) in the validation and external validation sets, whereas the Fresh–Whole
models had less accuracy (0.21 < R2 < 0.39, 1.09 < RPD < 1.13). The ratio of RMSEP and
RMSECV (RMSEP/RMSECV) in databases 1–3 ranged from 0.46 to 1.60, 0.78 to 3.13, 0.94 to
2.13, and 1.38 to 3.06 in Fine–Ground, Coarse–Ground, Dry–Whole, and Fresh–Whole mode,
respectively. An RMSEP/RMSECV ratio larger than 1.2 might suggest that the acquired
calibration set is not large enough to properly capture the variance of the population [47].
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Table 2. Prediction results of the PLSR models for predicting the quantity of crude protein across
bamboo species. The calibration model of each processing mode was applied to its corresponding
sample type in all databases. In Database 1, spectra from all bamboo species were combined to
generate calibration models. Calibration models for crude protein were built from Sulcata and Rubro
and used to predict Bissetii in Database 2; models were built from Bissetii and Rubro and used to
predict crude protein in Sulcata in Database 3, and models built from Bissetii and Sulcata were used
to predict crude protein in Rubro in Database 4.

Predicted
Species

Calibration
Model PCs

Calibration Cross-Validation Validation External-Validation

R2 RMSEC SEC RPD R2 RMSECV SECV RPD R2 RMSEP SEP RPD R2 RMSEP SEP RPD

Database 1
—3 species
combined

FG model 6 0.97 0.34 0.34 6.29 0.96 0.43 0.43 5.00 0.88 0.69 0.70 2.89
CG model 9 0.97 0.38 0.38 5.70 0.94 0.57 0.57 3.79 0.82 0.88 0.89 2.26
DW model 9 0.90 0.63 0.64 3.25 0.80 0.94 0.94 2.20 0.42 1.48 1.52 1.34
FW model 9 0.96 0.36 0.36 5.28 0.83 0.75 0.76 2.50 0.22 1.78 1.84 1.11

Database 2
—Bissetti

FG model 7 0.98 0.25 0.25 8.15 0.96 0.40 0.41 5.09 0.92 0.59 0.61 3.60 0.91 0.65 0.65 3.37
CG model 9 0.98 0.21 0.21 9.10 0.96 0.47 0.47 3.98 0.81 0.90 0.93 2.36 0.91 0.82 0.70 2.65
DW model 6 0.85 0.77 0.78 2.58 0.71 1.12 1.13 1.78 0.75 1.06 1.11 2.00 0.68 1.26 1.16 1.73
FW model 9 0.96 0.34 0.34 5.03 0.89 0.65 0.66 2.61 0.21 1.96 2.05 1.09 0.39 1.93 1.82 1.13

Database 3
—Sulcata

FG model 7 0.96 0.29 0.29 4.92 0.93 0.39 0.39 3.64 0.93 0.47 0.46 3.58 0.96 0.70 0.70 3.59
CG mode 9 0.97 0.27 0.27 5.86 0.92 0.45 0.46 3.50 0.95 0.36 0.38 4.59 0.76 1.34 1.37 1.86

DW model 7 0.92 0.42 0.42 3.53 0.72 0.79 0.79 1.87 0.25 1.61 1.65 1.04 0.61 1.53 1.56 1.63
FW model 9 0.97 0.21 0.21 6.19 0.88 0.47 0.48 2.78 0.37 1.47 1.40 1.13 0.29 2.30 2.33 1.09

Database 4
—Rubro

FG model 6 0.97 0.40 0.41 5.75 0.93 0.62 0.63 3.70 0.99 0.29 0.26 12.80 0.82 0.65 0.65 2.14
CG model 6 0.97 0.41 0.41 5.86 0.94 0.59 0.60 4.06 0.76 1.88 1.91 1.95 0.84 1.20 0.56 1.16
DW model 6 0.91 0.57 0.58 3.33 0.61 1.26 1.29 1.51 0.44 2.75 2.83 1.33 0.30 1.43 1.45 0.97
FW model 11 0.96 0.46 0.46 5.05 0.58 1.44 1.46 1.61 0.80 2.01 2.10 1.82 0.34 1.44 1.38 0.97

The root mean square error of calibration (RMSEC), standard error of calibration (SEC), the coefficient of de-
termination (R2), and the residual prediction deviation (RPD). The root mean square error of cross-validation
(RMSECV), standard error of cross-validation (SECV), the coefficient of determination (R2), and the residual
prediction deviation (RPD). The root mean square error of prediction (RMSEP), standard error of prediction (SEP),
the coefficient of determination (R2), and the residual prediction deviation (RPD). Fresh–Whole (FW), Dry–Whole
(DW), Coarse–Ground (CG), Fine–Ground (FG).

Thus, it can be concluded that, for the three bamboo species used in this study, the cross-
species model transfer can be applied directly without performing any standardization
procedure in Databases 2 and 3. However, when transferring the calibration model built
for Bissetii and Sulcata samples to Rubro samples in Database 4, only the Fine–Ground and
Coarse–Ground modes performed well enough for quantitative prediction of CP, while
the two whole-leaf modes all had poor prediction results in the validation set. For further
testing of NIR-MC across processing modes, Database 4 was excluded and since Database
2 had higher RPD values in calibration, cross-validation, and validation sets in general,
compared with Database 3, it was selected to apply NIR-MC in the following steps.

3.4. NIR-MC and SBC across Processing Modes

The prediction statistics of CP values after applying NIR-MC and SBC on Database 2
are shown in Table 3 and Figures 7 and 8. Figure 7 shows that all the transferred models
after SBC had lower RMSEP values and increased RPD values than models without SBC.
The improved model performances after SBC indicated the necessity of standardizing
predicted values in mode cloning. Table 3 shows that, when applying the Fine–Ground
Master model to Coarse–Ground bamboo samples, the prediction results were excellent
before (RMSEP = 0.83, RPD = 2.62) and after SBC (RMSEP = 0.79, RPD = 2.73). The RPD
values increased by 0.74 and 1.07 after SBC when applying the Fine–Ground model to
Dry–Whole and Fresh–Whole samples. When transferring the Coarse–Ground model to
Dry–Whole and Fresh–Whole samples, RPD values increased after SBC. When applying
the Dry–Whole model to Fresh-Whole samples, the prediction results also improved, with
the RPD value increasing after SBC.
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Table 3. Prediction results of the PLSR models for crude protein transferred across processing modes
before and after the slope and bias correction (SBC) were applied to Database 2. The calibration
model from the Master mode (Fine–Ground) was applied to each of the three satellite modes. The
calibration model from the Coarse–Ground mode was applied to the Dry–Whole and Fresh–Whole
modes, and the calibration from the Dry–Whole mode was applied to the Fresh–Whole mode.

Calibration Model Slope Offset Correlation R2 RMSEP SEP Bias RPD

FG sample–FG model 0.85 2.59 0.96 0.91 0.65 0.65 0.02 3.37

CG sample−FG model—before SBC 0.96 0.51 0.93 0.87 0.83 0.82 −0.23 2.62
CG sample–FG model—after SBC 0.82 3.19 0.93 0.87 0.79 0.80 0.16 2.73

CG sample–CG model 0.80 3.93 0.95 0.91 0.82 0.70 0.44 2.65

DW sample–FG model—before SBC 0.60 8.43 0.85 0.73 1.99 1.19 1.62 1.10
DW sample–FG model—after SBC 0.58 7.26 0.85 0.73 1.19 1.20 0.20 1.84

DW sample–CG model—before SBC 0.41 12.51 0.72 0.51 2.67 1.53 2.21 0.80
DW sample–CG model—after SBC 0.31 12.40 0.72 0.51 1.62 1.62 0.38 1.32

DW sample–DW model 0.57 7.27 0.83 0.68 1.26 1.26 −0.16 1.73

FW sample–FG model—before SBC 0.70 −9.30 0.66 0.44 14.42 1.77 −14.32 0.15
FW sample–FG model—after SBC 0.26 12.96 0.66 0.44 1.72 1.67 0.56 1.22

FW sample–CG model—before SBC 0.68 −13.33 0.53 0.28 19.05 2.45 −18.91 0.11
FW sample–CG model—after SBC 0.19 14.41 0.53 0.28 1.85 1.86 0.36 1.16

FW sample–DW model—before SBC 0.50 −6.15 0.77 0.59 14.59 1.42 −14.52 0.15
FW sample–DW model—after SBC 0.40 10.22 0.77 0.59 1.46 1.50 0.09 1.49

FW sample–FW model 0.57 6.68 0.62 0.39 1.93 1.82 −0.68 1.13
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(DW) models. RMSEP and SEP values decrease after SBC, and RPD values increase after SBC.
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Figure 8. Predicted vs. Reference values of CP. Fine–Ground samples using Fine–Ground model (A),
Coarse–Ground samples using Fine–Ground and Coarse–Ground models (B), Dry–Whole samples
using Fine–Ground and Coarse–Ground models (C), and Fresh–Whole samples using Fine–Ground,
Coarse–Ground, and Dry–Whole models (D). SBC was used in each mode cloning.

By comparing the performances of the original model generated for each processing
mode and the models using the NIR-MC approach (Figure 8 and Table 3), we found the
best-fit model for each sampling process. For Coarse–Ground samples, the transferred
Fine–Ground model after SBC (RPD = 2.73) had a better performance than the original
Coarse–Ground model (RPD = 2.65). For Dry–Whole samples, the transferred Fine–Ground
model after SBC (RPD = 1.84) provided better prediction than either the original Dry–
Whole model or the transferred Coarse–Ground model after SBC (RPD = 1.73, 1.32). For
Fresh–Whole samples, the transferred Dry–Whole model after SBC (RPD = 1.49) was better
than the original Fresh–Whole model, the transferred Coarse–Ground model after SBC, and
the transferred Fine–Ground model after SBC (RPD = 1.13, 1.16, 1.22). Thus, the transferred
Fine–Ground models after SBC were the best-fit models to predict CP values of samples of
Coarse–Ground and Dry–Whole samples, while the transferred Dry–Whole models after
SBC had the best performance in Fresh–Whole samples.

4. Discussion

The NIR-MC approach was used across bamboo species and sample processing modes
to determine the CP content in bamboo leaves. The model transfer, and Slope and Bias
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Correction (SBC), were applicable to a model generated from Fine–Ground samples to
predict CP values of less-processed bamboo samples across species. Constructing a master
calibration model based on an extensive database containing different bamboo species
and Fine–Ground samples under laboratory conditions that are transferable through NIR-
MC allows a fast and accurate CP prediction of new bamboo samples under various
circumstances and eliminates the need for creating additional models specific to sample
processing states. Currently, NIR mode cloning or calibration transfer techniques are
primarily applied to address variation in sample physical or chemical composition due to
batch differences, instrumental changes, or environment change over time [22]. Only a few
investigators have performed mode cloning from ground samples to non-milled samples
using spectral correction methods [19]. This study demonstrates that the simple SBC,
without complex spectra correction, was capable of achieving good prediction accuracy
when transferring the calibration model from Fine–Ground to Coarse–Ground and even
Dry–Whole forage samples. The target subject matter of bamboo leaves makes our study
unique and applicable to ecophysiology as this is the first time the NIR-Mode cloning
method has been used as a rapid tool in assessing the CP contents of the primary food
sources of the giant panda and red panda.

We showed that NIR could be applied directly across bamboo species from the same
genus. Phyllostachys is one of the easiest bamboo genera to identify and can be defined
by its taxonomic and morphological characteristics. For example, compared with the
tropical Bambusa group, Phyllostachys species are less fibrous [48]. In leaf anatomy, they
lack fusoid cells, adaxial ribs, expanded leaf margins, and well-developed abaxial papillae
and prickles [49]. Due to the similarities in leaf morphology and chemical composition, the
spectra patterns between species are similar, showing no significant separation in the PCA.
Furthermore, the distribution and means of CP values do not show significant variance.
The similarities in spectra and reference data enable us to use calibration models across
species, even in less-processed samples. However, when applying the same models to
Pseudosasa japonica, which is from a different genus, all the transferred models showed poor
performance in predicting CP values (RPD ≤ 1.54, R2 ≤ 0.80). We found that the mean
amount of CP in Pseudosasa japonica (15.32% DM) was significantly different (p < 0.05) than
in the Phyllostachys species (16.35, 17.19, 17.31% DM), which would cause an error in the
calibration if this species were added into the spectral databases. A micromorphological
study has revealed distinct characteristic variations in the leaf surface between the two gen-
era as well. For example, there are no papillae around the stomata in Phyllostachys species,
while in Pseudosasa japonica, the stomata are surrounded by 4–10 elongated papillae [50].
The differences in micromorphological features might lead to spectra variation between
the two genera, affecting the model performance for whole leaves. Therefore, we need a
different calibration model for Pseudosasa or other genera in future studies.

When considering the RPD value as the criterium for evaluating model performance, a
model with an RPD value higher than 1.8 indicates a good model for quantitative prediction
of a constituent such as crude protein, and RPD > 2.5 indicates an excellent model [41].
We found that, with the NIR-MC method, the master Fine–Ground model is the best-fit
model for all three satellite modes. It can also provide more-accurate predictions than
using the original satellite models directly. The RPD values were higher than 2.5 when
applying the Fine–Ground model to both Fine–Ground and Coarse-Ground samples with
NIR-MC after SBC. This demonstrated that the cloned model has a similar prediction ability
in predicting CP contents using Coarse–Ground samples as the laboratory-standard Fine–
Ground samples. The Fine–Ground model transferred and standardized to Dry–Whole
samples had an RPD value larger than 1.8, indicating that this model met the standard for
quantitative prediction. None of the models applied to Fresh–Whole samples were good
enough for quantitative predictions, with RPD < 1.8 (Figure 7).

In this study, we have established a database containing three bamboo species and four
levels of processing. Although the Fine–Ground model applied to Fine–Ground samples
yields the best accuracy in predicting protein content, it is time-consuming and requires
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a laboratory cyclone mill grinder, which is not amenable to field studies. We also show
that the Fine–Ground Master model has good performance in predicting protein content
of the satellite modes Coarse–Ground and Dry–Whole. Therefore, the Fine—Ground
model obtained from the existing databases built in the laboratory can be applied to new
field samples of satellite processing modes by NIR-MC using SBC. According to various
environmental and practical situations, we can choose between processing modes to obtain
predictive results of CP content. The drying process is required to obtain good predictions
of CP values as the water signal overlaps that of protein. However, Dry–Whole bamboo
leaves can be acquired by drying with a portable drier or natural sunlight. To obtain
higher-quality predictions of CP values with similar prediction ability as the laboratory
standard, grinding the dried samples with a portable coffee grinder is necessary. This
Coarse–Ground processing can be performed in situ using dried samples.

The differences between the evaluated processing modes affected the performance
of the NIR-MC. The calibration model transferred from Fine–Ground to Coarse–Ground
mode had the best performance of predicting CP values because Coarse–Ground samples
were similar to Fine–Ground samples in particle size and distribution. The differences
between Dry–Whole and Fine–Ground modes were more significant as the Dry–Whole
samples were not homogenous and still maintained the original physical structure of the
bamboo leaves, which can cause more significant variation in spectra dependent on where
and how the spectra are collected from the leaves. However, all the dry modes (Fine–
Ground, Coarse–Ground, and Dry–Whole) shared a similar spectral pattern and similar
major absorption bands. The similarity of spectra patterns presented in the three dried
modes indicated that a simple univariate correction of slope and bias is enough without
the spectral correction. The moisture in Fresh–Whole samples caused the variation of
spectra, particularly in the shifts of some absorption bands related to water, thus limiting
the application of NIR-MC by having strongly biased predictions. To remove the effects of
moisture from NIR spectra, a mathematical algorithm is needed to project all the spectra
of wet samples orthogonally to the space of unwanted variation [51]. We propose that
external parameter orthogonalization (EPO) or a model transfer tool of combining direct
orthogonal signal correction with slope and bias correction (DOSC–SBC) [52] can be applied
on Fresh–Whole samples to remove the spectral variation caused by water before using the
NIR-MC.

We chose to analyze the CP of bamboo leaves as a nutritional parameter of the diets
of giant and red pandas because it affects their forage behavior and seasonal movement.
Both species maintain a carnivorous digestive tract but have evolutionarily adapted to a
diet of bamboo; as such, these two foragers depend on the changes in the nutrient content
distribution in the bamboo plant based on species and season [32,36]. Dietary proteins
that giant and red pandas can obtain from bamboo leaves are limited because the bamboo
leaf is a high-fiber and low-nutrition food. To meet this nutritional requirement, during
the adaptation to becoming bamboo specialists, specific genes helped by increasing the
efficiency of releasing lysine and arginine from dietary proteins and amino acid recycling,
thus offsetting the limited protein content in the bamboo diet [53]. Despite the low protein
content (7.0% to 17.9%) in bamboo leaves, energy utilization of giant pandas is sourced
primarily from protein (61%), with the remainder split between carbohydrates (23%) and
fats (16%) [54]. Red pandas also have a foraging behavior to increase protein intake by
selecting certain bamboo species with higher protein content [55]. The macronutrient
composition of giant and red pandas’ diets with high dietary protein-energy is similar to
other carnivore diets, showing the importance of assessing the CP values of bamboo as
an indicator of their diet quality. The NIR-MC technique provides real-time assessment
of protein values without the time-consuming procedures of chemical analysis or sample
processing, potentially allowing rapid in-field decisions for the management of panda
habitat based on forage structure and nutrient patterns.

Crude protein is not the only necessary nutrient for giant and red pandas. Previous
studies found that the changes in carbohydrates (culm starch and bound glucose) of bamboo
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caused the changes in giant pandas’ foraging behavior during spring [36]. The changes
in calcium, phosphorus, and nitrogen concentrations also affected giant panda annual
migration patterns as they switch their diet between the leaves and shoots of bamboo
species. The NIR-MC is not limited to crude protein analysis, nor is it limited to analysis of
bamboo, but has potential for application of other nutrient parameters and other forage
systems, such as that of the eucalyptus and koala [56].

5. Conclusions

In this study, the viability of the NIR-MC approach was examined in predicting
the crude protein values of bamboo leaves. With databases containing different bamboo
species and sample processing modes, we demonstrated the possibility of using NIR across
different bamboo species sharing similar leaf morphology. We also demonstrated the
potential of NIR-MC in transferring the Master mode to less-processed satellite modes.
For future studies in the evaluation of bamboo nutrition, with the help of NIR-MC and
SBC, new spectra of field samples processed with a portable dryer and grinder could be
fitted into the existing database of the master model, allowing a real-time prediction of diet
quality available to the giant panda and red panda.
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