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Abstract: Land Surface Phenology is an important characteristic of vegetation, which can be in-
formative of its response to climate change. However, satellite-based identification of vegetation 
transition dates is hindered by inconsistencies in different observation platforms, including band 
settings, viewing angles, and scale effects. Therefore, time-series data with high consistency are nec-
essary for monitoring vegetation phenology. This study proposes a data harmonization approach 
that involves band conversion and bidirectional reflectance distribution function (BRDF) correction 
to create normalized reflectance from Landsat-8, Sentinel-2A, and Gaofen-1 (GF-1) satellite data, 
characterized by the same spectral and illumination-viewing angles as the Moderate-Resolution Im-
aging Spectroradiometer (MODIS) and Nadir BRDF Adjusted Reflectance (NBAR). The harmonized 
data are then subjected to the spatial and temporal adaptive reflectance fusion model (STARFM) to 
produce time-series data with high spatio–temporal resolution. Finally, the transition date of typical 
vegetation was estimated using regular 30 m spatial resolution data. The results show that the data 
harmonization method proposed in this study assists in improving the consistency of different ob-
servations under different viewing angles. The fusion result of STARFM was improved after elimi-
nating differences in the input data, and the accuracy of the remote-sensing-based vegetation tran-
sition date was improved by the fused time-series curve with the input of harmonized data. The 
root mean square error (RMSE) estimation of the vegetation transition date decreased by 9.58 days. 
We concluded that data harmonization eliminates the viewing-angle effect and is essential for time-
series vegetation monitoring through improved data fusion. 
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1. Introduction 
Land surface phenology (LSP) is an important indicator of climate change [1]. In the 

past few decades, affected by global climate change, the phenology of terrestrial vegeta-
tion has undergone significant changes. European deciduous forest leaf unfolding is 4.2 
days earlier every ten years on average [2]. In China, the time of leaf unfolding in decid-
uous forests is an average of 5.5 days earlier every ten years, which is a greater rate of 
phenological change than in Europe [3]. Vegetation monitoring can clarify the dynamics 
of different vegetation types and then reveal the spatial and temporal characteristics of 
climate change [2]. Therefore, accurate and detailed phenological information is of great 
value for regional and global climate change studies [4]. 

Many studies have obtained satellite-based remote-sensing datasets for vegetation 
monitoring. Data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) 
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have been widely used to obtain phenological information from different types of vegeta-
tion [5,6]. Long-term Data Record (LTDR) Advanced Very High-Resolution Radiometer 
(AVHRR) observations have been successfully used to monitor distinct phenological 
events on a global scale [7,8]. The Visible Infrared Imaging Radiometer Suite (VIIRS) in-
strument onboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) was also 
used to extend the long-term LSP data records that began with AVHRR and MODIS [9,10]. 
Although the data have a relatively coarse spatial resolution (≥250 m), the short revisit 
time gives the data an advantage in LSP retrieval [11,12]. 

However, owing to the comparatively coarse spatial resolution of these various sat-
ellite sensors, detecting phenological dynamics in heterogeneous landscapes can be diffi-
cult [10,13]. For a simulation analysis, the variance of the finer pixels in one coarse pixel 
for the start of the season can be as high as 40 days [14]. The coarse spatial resolution of 
remote-sensing data makes it difficult to capture the phenology in regions with multiple 
types of vegetation owing to the mixed-pixel problem, and the ground-measured data 
cannot be well-matched with the remote-sensing LSP derived by the coarse spatial reso-
lution data [15]. 

High-resolution data have more detailed spatial information and have been used 
widely in vegetation phenology mapping [16]. However, high-spatial-resolution data of-
ten have a long revisit period, which cannot effectively capture the rapid changes in veg-
etation [11]. Furthermore, optical remote-sensing systems would face constant data loss 
in vegetation regions that are often clouded during the growing season. In the mid-lati-
tude region, the average yearly cloud-free probability was 21.3% [17]. The above two 
points make the use of high-spatial-resolution data for phenological monitoring ineffec-
tive. 

Integrating imagery from various remote-sensing platforms is a feasible method to 
compensate for a lack of data, which increases the frequency of observations and therefore 
collects more data [18,19]. In addition, it uses a variety of data types, including spatial 
detail [20], temporal information [9], and spectral ranges [21]. Harmonized Landsat Sen-
tinel-2 (HLS) data have been widely used for monitoring vegetation [18,22,23]. Through 
the combination of the two sensors, a data-set with a repeat cycle of 3.2 days and a 30 m 
spatial resolution can be formed, which provides a stable data source for high-spatial-
resolution LSP monitoring [24]. However, using different types of data in terms of spec-
tral, spatial resolution, and illumination-viewing geometries will likely introduce uncer-
tainties, which will eventually be passed onto vegetation monitoring based on the vege-
tation index (VI) [10,25]. Therefore, different remote-sensing datasets cannot be combined 
directly, and the inconsistencies between different datasets should be taken into consid-
eration [26]. 

Spatio–temporal data fusion is another methodology for integrating imagery from 
various remote-sensing platforms [27]. Fusion models, such as the spatial and temporal 
adaptive reflectance fusion model (STARFM), use the spatial and temporal information 
provided by different satellite data to reconstruct high spatio–temporal resolution data, 
resulting in higher spatial resolutions and time sampling frequencies for remote-sensing 
data [28]. However, most applications of STARFM do not consider the difference in the 
illumination-viewing geometries of the input data [29]. Therefore, the MODIS nadir bidi-
rectional reflectance distribution function adjusted reflectance (NBAR) and Landsat series 
data provide the major input data for the similar spectral settings and illumination-view-
ing geometry of these two datasets [28,30]. However, owing to the influence of cloud 
cover, high-spatial-resolution data are often unavailable. Therefore, the input data sources 
of the fusion model need to be enhanced to improve the stability of the output results of 
the model [31,32]. However, the difference between different high-spatial-resolution data 
in terms of illumination-view geometries and spectral characteristics will increase the un-
certainty in the fused result [28]. 

VI is a useful reference for vegetation monitoring [33], and constructing a time-series 
VI curve is the main step in phenological retrieval. However, time-series VI is heavily 
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influenced by the differences in the spectral and illumination-viewing geometries of the 
observations [34]. Different satellite observations may vary significantly owing to differ-
ences in spectral and illumination-viewing geometry. The difference caused by the spec-
trum is determined by the spectral range and relative spectral response (RSR) [35], and 
the difference caused by the illumination-view geometry is determined by the surface bi-
directional reflectance distribution function (BRDF) [36]. Nagol et al. (2015) [37] revealed 
that the difference in reflectance before and after the vegetation growing season in the red 
and near-infrared (NIR) bands of Landsat-5 can exceed 30% caused by the variation in the 
solar zenith angle (SZA). Moreover, the VI in a nadir viewing usually increases with an 
increase in the SZA [38]. Yang et al. (2017b) [39] showed that the reflectance of the MODIS 
red band under the same SZA and relative azimuth angle (RAA) differed by up to 15% 
with different view zenith angles (VZA). 

In this article, we proposed a data harmonization method for normalizing different 
high-spatial-resolution reflectances with similar spectral and illumination-viewing prop-
erties. The STARFM was then applied to the harmonized data to produce time-series and 
high-spatio–temporal-resolution reflectance data. Finally, the transition date of the typical 
vegetation types was determined using the fused 30 m spatial resolution reflectance data. 
The objectives of this study are as follows: (1) to propose a data harmonization algorithm 
to eliminate the spectral and angular variations among different remote-sensing data, (2) 
reconstruct the time-series and fine-resolution reflectance data, and (3) investigate the 
viewing-angle effects in remote-sensing data with different VZAs and improve the accu-
racy of vegetation phenology detection. 

2. Materials and Methods 
2.1. Materials 
2.1.1. In Situ Measurement 

Near-surface digital repeat photography is an important data source for vegetation 
monitoring, and can also provide an assessment of phenological information obtained 
from satellite data [40,41]. The PhenoCam tracks vegetation status every 30 min from 
dawn to dusk using digital photographs [42] (https://phenocam.sr.unh.edu/webcam/, ac-
cessed on 10 February 2022). To ensure the reliability of the conclusions, we monitored 
different vegetation types across various climatic regions. The in situ measurements were 
collected from nine PhenoCam sites with different climate and vegetation types (Table 1), 
and the spatial distribution of in situ sites is shown in Figure 1. Digital photographs were 
used to provide in situ measurements to evaluate satellite-derived vegetation phenologi-
cal information. The digital images were acquired between 10:00 a.m. and local solar noon 
from 1 January to 31 December 2020, every day, which was consistent with the acquisition 
time of the corresponding remote-sensing data in situ. 

Table 1. Overview of the nine PhenoCam study sites. 

Site Name Latitude (°) Longitude (°) Elevation (m) Country Vegetation Type 
arsbrooks10 (arsb) 41.9749 −93.6905 312 USA agriculture 
arsmorris2 (arsm) 45.6270 −96.1270 338 USA agriculture 

burdetterice1 (burd) 35.8284 −89.9879 70 USA agriculture 
lethbridge (ileth) 49.7092 −112.9403 950 Canada grass 

millhaft (mill) 52.8008 −2.2988 137 UK deciduous forest 
montebondonepeat (mont) 46.0177 11.0409 1563 Italy wetland 

oakville (oakv) 47.8993 −97.3161 268 USA grass 
pace (pace) 37.9229 −78.2739 100 USA deciduous forest 

slovenia2karstsecforest (slov) 45.5432 13.9162 436 Slovenia deciduous forest 
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Figure 1. The locations of the selected in situ PhenoCam sites. 

2.1.2. Satellite Data 
Multiple types of satellite data were used in this study. The Landsat-8 data used in 

our study are the atmospherically corrected surface reflectance data downloaded from the 
United States Geological Survey (USGS) archive (http://earthexplorer.usgs.gov/, accessed 
on 10 February 2022), generated from the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS) [43,44]. The Sentinel-2A Multi-Spectral Instrument (MSI) L2A 
data were distributed by the European Space Agency Open Access Hub (https://scihub.co-
pernicus.eu/, accessed on 10 February 2022). The Gaofen-1 (GF-1) wide-field viewer 
(WFV) L1A data were collected from the China Center for Resources Satellite Data and 
Application (CRESDA) (http://www.cresda.com/CN/, accessed on 10 February 2022), and 
the surface reflectance of GF-1 was obtained by 6S atmospheric correction model [45]. De-
tailed information on the above three kinds of data is shown in Table 2, and the red (R) 
and NIR bands RSR of the different sensors are shown in Figure 2. The auxiliary satellite-
based data include the MODIS collection V006 500 m spatial resolution daily gridded 
NBAR [46] and Ross-Li kernel-driven parameter product (MCD43A1) [36,47], and MODIS 
aerosol products (MOD04_L2) [48]. NBAR, MCD43A1, and MOD04_L2 were downloaded 
from NASA’s official website (https://search.earthdata.nasa.gov/, accessed on 10 February 
2022). 

Table 2. Basic information about the three fine-resolution satellite sensors. 

Properties Landsat-8 OLI GF-1 WFV Sentinel-2A MSI 

Wavelength 
(nm) 

Blue band 450–515 450–520 485–523 
Green band 525–600 520–570 543–578 
Red band 630–680 630–690 650–680 
NIR band 845–885 770–890 785–900 

Other properties 

Spatial resolution (m) 30 16 10 
Revisit period (d) 16 2 10 

Swath (km) 185 800 290 
Quantization (bits) 12 10 16 
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Figure 2. Comparison of RSRs for MODIS, OLI, MSI, and WFV. 

In this study, the image acquisition time ranged from 1 January to 31 December 2020, 
and only images without cloud cover in the study area were used. Each PhenoCam site is 
defined by its center and a 45 × 45 km square (i.e., 1500 × 1500 pixels of Landsat-8 OLI) is 
taken as the spatial range. The cloudless observations in this range are used as effective 
observations for vegetation monitoring. The count of effective observations of Landsat-8 
OLI, Sentinel-2 MSI, and GF-1 WFV at nine PhenoCam sites is shown in Figure 3a. The 
day of the year of the three datasets is shown in Figure 3b. It can be seen from Figure 2 
that under different climate types, the number of effective observations in each PhenoCam 
is quite different. The average number of effective observations at the nine stations was 
15 in 2020. From the perspective of time distribution, most PhenoCam sites lack effective 
observations during the start of the season (i.e., March and April). For example, arsb has 
only one effective observation, while the leth and oakv sites do not have effective obser-
vations. Moreover, during the middle of the season (i.e., June and July), some PhenoCam 
sites lacked effective observations. There were no observations at arsb and mont and only 
one observation at the burd. The lack of effective observations during the growing season 
creates uncertainty in remote-sensing vegetation phenology mapping [12]. Therefore, it is 
critical to reconstruct the intensive observation data. 

 
Figure 3. Count of effective observations (a) and the DOY (b) of Landsat-8 OLI, Sentinel-2 MSI, and 
GF-1 WFV at nine PhenoCam sites. The red is Sentinel-2 MSI, the blue is Landsat-8 OLI, and the 
green is GF-1 WFV. The name of the site is abbreviated corresponding to the name in Table 1. 
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2.2. Methods 
First, the PhenoCam digital photographs were processed to produce time-series 

ground measurements. Second, a data harmonization method involving band conversion 
and BRDF correction was proposed to normalize the multisource 30 m satellite data. Daily 
30 m reflectance data were further derived by applying the STARFM algorithm to the 
harmonized data and MODIS NBAR. Third, we extracted the vegetation phenology by 
applying a piecewise linear fitting algorithm to the daily 30 m VI data and time-series in 
situ measurements, respectively. Finally, we validated the vegetation transition date de-
rived from the harmonized and unharmonized 30 m data respectively using phenological 
information extracted from digital repeat photographs. The workflow is shown in Figure 
4 and each step is described in the following sections. 

 
Figure 4. Land surface phenology retrieval workflow chart. 

2.2.1. Processing In Situ PhenoCam Data 
The objective of digital photograph preprocessing is to obtain the green chromatic 

coordinates (GCC), which is a commonly used index for measuring green vegetation in 
near-sensing images [42]. The digital number (DN) of the digital photograph was con-
verted to the adjusted DN value using Equation: 

DNA = DN √E⁄  (1) 

where DNA is the adjusted DN value, DN is the pixel value of the digital photograph, and 
E is the exposure time, which can be obtained from the metadata of the photo. To eliminate 
the influence of mixed pixels, we selected the vegetation pixels in the photograph and 
manually determined the region of interest (ROI). 

When the ROI is determined, the GCC of all pixels of the phenological camera photos 
in the ROI can be calculated using Equation: 

GCC = 
DNg

DNr+DNg+DNb
 (2) 
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where GCC represents the green chromatic coordinates, and DNr, DNg, DNb are the red, 
green, and blue components of the adjusted DN value. As the phenology camera made 
observations every half an hour, and the selected time of the photograph data is 2 h, there 
will be multiple GCC values for a day. Therefore, the average GCC value for each day is 
selected as the GCC value of the day. 

2.2.2. Harmonizing Satellite Data 
The inconsistent observations registered by different sensors are mainly due to the 

different characteristics of the spectral and illumination-viewing geometries [24]. The ob-
jective of data harmonization is to solve the problem of inconsistent observations from the 
input data, which is not addressed in STARFM. Since the Landsat-8 and Sentinel-2A have 
similar characteristics on overpass time and observation angles [49,50], this study focused 
on the harmonization of MODIS NBAR and GF-1. The data harmonization includes (1) 
adjusting data to represent the response from a common spectral band, and (2) normaliz-
ing illumination-viewing geometry via BRDF correction. In this study, the MODIS NBAR 
was chosen as the reference to harmonize the Landsat-8 OLI, Sentinel-2A MSI, and GF-1 
WFV. Each substep was elaborated on below. 
1. Band conversion 

The differences in the observations of different sensors that arise from different RSRs 
need to be considered. Even for wavelengths designed to have similar coverage, the spec-
tral reflectance can be substantially different because of the RSR [51]. Thus, the sensor 
signal difference arising from the RSR difference must be considered. As shown in Figure 
1, the GF-1 WFV has a broad spectral coverage among the red and NIR bands when com-
pared with the other sensors, and has a significant variation in RSR, especially in the NIR 
band. Thus, spectral matching should be conducted to mitigate the differences in RSRs. 
The reflectance for an object in a certain band can be estimated using: 

ρ = 
∫ f(λ)Γ(λ)dλb

a

∫ Γ(λ)dλb
a

 (3) 

where is ρ the simulated reflectance of a certain band, λ is the wavelength, Γ(λ) is the 
relative spectral response, a and b are the spectral range of a specific band, and f(λ) is the 
in situ measured spectrum. In this paper, 245 surface reflectance spectrum samples were 
collected from the United States Geological Survey (USGS) and advanced spaceborne 
thermal emission and reflection radiometer (ASTER) spectral libraries [52]. These samples 
included vegetation, soil, rock, water, snow, and ice [35,53]. The surface spectrum was 
then used to establish the relationship between the reference sensor and target sensor us-
ing a linear regression model: 

ρMODIS
(i) = k�j�·ρ�j� + ε(j) (4) 

where ρMODIS is the simulated reflectance of MODIS, i is the band index of MODIS includ-
ing red and NIR bands, k and ε are the band conversion coefficients, and j is the band 
index corresponding to MODIS red and NIR bands of the high-spatial-resolution data. 
2. BRDF correction 

The illumination-viewing geometries of the center pixels of each PhenoCam site are 
plotted in Figure 5. It was observed that the satellite overpass times of all PhenoCam sites 
were close, and the time difference was approximately 2 h. Among the effective observa-
tions of all PhenoCam sites in 2020, the VZAs of Landsat-8 OLI and Sentinel-2A MSI are 
relatively concentrated, and the values are fixed within 7° and 9°, which can be considered 
to be nadir viewing sensors. However, the VZAs of GF-1 WFV vary greatly, and the max-
imum value can exceed 35°. The average difference in the VZAs of the images obtained 
by the three sensors at all PhenoCam sites was 26.20°. Such a high amplitude of variation 
in VZAs of the remote-sensing data will inevitably affect the consistency of the 
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observation results, so the viewing-angle effect between different observations needs to 
be eliminated. 

 
Figure 5. Illumination-viewing geometries of different satellite data used in this study. The triangles 
represent the location of the sensor, and the circles represent the location of the sun. The blue rep-
resents Landsat-8 OLI, the red represents Sentinel-2 MSI, and the black represents GF-1 WFV. 

To implement the BRDF correction of different data, the following steps were per-
formed: First, MCD43A1 was used to estimate the surface reflectance of the two instru-
ments. The theoretical basis of this product is that the surface reflectance observed from a 
certain direction can be simulated as a sum of three kernels representing basic scattering 
types: isotropic, volumetric, and geometric-optical surface [54–56]. The equation is as fol-
lows: 

R(θs, θv, φ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv)+ fgeo(λ)Kgeo(θs,θv,φ) (5) 

where R is the surface directional reflectance; fiso, fvol, and fgeo are the coefficients; θs, θv, and 
φ are the SZA, VZA, and RAA of the sensor and the sun, respectively. The simulation of 
surface reflectance in any specific illumination-view geometry can be performed using the 
MODIS BRDF parameters MCD43A1 (fiso, fvol, and fgeo), when the SZA, VZA, and RAA were 
determined. 

We then established the relationship between R and NBAR. The spatial resolution of 
MCD43A1 is 500 m, and considering the “mixed-pixel” effect, we chose the homogeneous 
pixels in the R and NBAR to build the BRDF correction model. An objective and automatic 
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method for selecting homogeneous pixels was proposed in this study. First, a 30 × 30 win-
dow was built on the GF-1 WFV surface reflectance based on the selected pixels on R. The 
homogeneous pixels were chosen by the coefficient of variation (CV), which was calcu-
lated as follows: 

CV =
σ
µ

  (6) 

where σ and µ are the standard deviation and average value of surface reflectance in the 
window, respectively. If the CV of the pixels within the window is less than 1%, then the 
coarse MODIS pixel related to the pixels in this window could be considered a homoge-
neous pixel pair [57]. 

Due to the non-linear relationship between the directional reflectances under differ-
ent illumination-viewing geometries of GF-1 WFV and MODIS NBAR, we built a piece-
wise linear model to calculate the BRDF correction coefficient between R and NBAR. It 
was assumed that the same land cover type has the same BRDF shape, but the magnitude 
of reflectance may vary [34,58,59]. The normalized difference vegetation index (NDVI) 
was used as an index to distinguish different land cover types (e.g., bare soils, vegetation, 
snow/ice, and water). For the same land cover type, variations in the BRDF shape through-
out the year were limited and linked to the NDVI [60,61]. The homogeneous pixels were 
divided into several classes with an interval of 0.2 (>0, 0–0.2, 0.2–0.4, 0.4–0.6, and >0.6) 
based on NDVI [34]. Then, a linear model was built on each class for each band in R and 
NBAR, as shown in Equation (7). Equation (8) shows a combined set of regression coeffi-
cients for all NDVI intervals for a spectral band: 

Rij
’  = Rij·Pij + Qij (7) 

P = P1∪P2∪P3∪⋯Pi; Q = Q1∪Q2∪Q3∪⋯Qi (8) 

where R’ is the surface reflectance of MODIS NBAR, P and Q are the BRDF correction 
coefficients for a specific spectral band and NDVI interval, i is the class index, and j is the 
band index. After the linear models of all classes were built, the piecewise linear BRDF 
correction model for a spectral band in a scene was obtained. 

To apply the BRDF correction coefficients derived by the R and R’ to the true obser-
vations of GF-1 WFV, we assumed that the BRDF shape is dependent on land cover type 
and independent of the spatial resolution [62]. Then, we calculated the NDVI of the sur-
face reflectance of GF-1 WFV and divided it into several classes with an interval of 0.2. We 
applied P and Q to the same class in each band derived from the surface reflectance of the 
GF-1 WFV: 

pij = Pij; qij= Qij (9) 

where p and q are the BRDF correction coefficients for the surface reflectance of GF-1 WFV. 
Therefore, the directional reflectance under the illumination-viewing geometry of MODIS 
NBAR can be simulated by the surface reflectance of GF-1 WFV as follows: 

  ρ(θs, θv = 0, φ) =ρ (θs’, θv’, φ’)·p + q (10) 

where ρ (θs, θv = 0, φ) is the 16 m spatial resolution harmonized directional reflectance 
under the illumination-viewing geometry of MODIS NBAR, and ρ (θs’, θv’, φ’) is the true 
surface reflectance of the GF-1 WFV. For a more detailed description of the data harmoni-
zation algorithm, we refer to Lu et al. (2022) [26]. 

2.2.3. Generating Time-Series Vegetation Index Data 
In this study, the daily 30 m spatial resolution surface reflectance data were recon-

structed using STARFM. STARFM is the earliest developed data fusion method based on 
the weight function which determines how much each neighboring pixel contributes to 
the estimated reflectance of the central pixel [27]. STARFM assumes that changes in 
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reflectance are consistent and comparable at different spatial scales over a homogeneous 
surface. This means that fluctuations existed in coarse spatial resolution data can be intro-
duced directly to the estimation at high resolution. 

STARFM uses a linear model to establish the relationship between high-spatial-reso-
lution data (e.g., Landsat) and coarse spatial resolution data (e.g., MODIS). First, MODIS 
data were reprojected and resampled to fit the Landsat data format. Second, a moving 
window was built on Landsat data to identify similar neighboring pixels. Third, a weight 
was assigned to each similar neighbor based on the difference between the surface reflec-
tances of the Landsat-MODIS image pair, which includes the spectral difference, the tem-
poral difference, and the spatial Euclidean distance between the neighbor and the central 
pixel. Finally, the central pixel can be predicted at a high spatial resolution by the equation 
below: 

 L �xω 2⁄ ,yω 2⁄ ,t0� = � � � Wijk × (M�xi,yi,t0� + L�xi,yi,tk� − M�xi,yi,tk�)
n

k=1

ω

j=1

ω

i=1

 (11) 

where L is the estimated Landsat surface reflectance, (xi, yi) is the pixel location, ω is the 
window, t0 is the prediction date, Wijk is the weight function, M is the MODIS true obser-
vation, and tk is the true observation date. For a more detailed description of the STARFM 
algorithm, we refer to Gao et al. (2006) [27]. 

Several VIs have been implemented to monitor the dynamics of vegetation, including 
the normalized difference vegetation index (NDVI) [5], enhanced vegetation index (EVI) 
[63], and soil adjusted vegetation index (SAVI) [64]. The two-band enhanced vegetation 
index (EVI2) has the capability to reduce background noise and has enhanced sensitivity 
over dense vegetation canopies. In addition, EVI2 has been shown to have advantages for 
LSP detection over the commonly used NDVI [65,66]. Therefore, after reconstructing the 
daily 30 m spatial resolution reflectance data through STARFM, we calculated EVI2 using 
Equation (12) and constructed the time-series EVI2 data as an indicator of vegetation dy-
namics. 

EVI2 = 2.5
ρNIR − ρred

ρNIR+ 2.4·ρred+ 1 (12) 

where ρNIR and ρred are the surface reflectance of the NIR and red bands, respectively. The 
EVI2 time-series usually fluctuates and presents missing values owing to the interference 
of atmospheric factors such as aerosols, dust, clouds, and snow. Therefore, it was tempo-
rally filtered before the phenology extraction. A Savitzky–Golay (S–G) filter is applied first 
to remove outliers in the EVI2 series. This was performed twice. The local window size 
was set to 65, 45 and the polynomial degree was set to 2 and 4, respectively. Finally, a gap-
filling method based on inverse distance weighted using the two nearest EVI2 values was 
performed. 

2.2.4. Vegetation Phenology Detection and Validation 
In this study, we estimated the following transition date of the different vegetation 

types over different regions: (1) greenup, the date photosynthesis started; (2) maturity, the 
date when the plant has the largest green leaf area, (3) senescence, the date when photo-
synthetic activity and green leaf area begin to decrease rapidly; and (4) dormancy, the date 
when physical activity approaches zero [5]. The piecewise logistic function is a widely 
used method for VI data fitting, and can be modeled using a function of the form: 

  y(t) = 
c

1 + ea+bt + d (13) 

where t is time in days, y(t) is the VI data at time t, a and b are fitting parameters, c + d is 
the maximum VI value, and d is the initial background VI value. After curve fitting using 
the piecewise logistic model, the vegetation transition date can be identified by the curva-
ture and rate of change of curvature. For calculation of the two values, we refer to Zhang 
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et al. (2003) [5]. For each growth cycle, the rate of change in the curvature of the fitted 
logistic model was calculated. Four transition dates were then extracted. Greenup and 
maturity were identified during the growth phase, and senescence and dormancy were 
identified during the senescence phase. 

We calculated the bias and root mean square error (RMSE) to evaluate the vegetation 
transition date detection results based on multisource remote-sensing data. The vegeta-
tion transition dates retrieved by PhenoCam data were taken as the true value, and a com-
parison of in situ vegetation transition dates with the corresponding pixel in the image 
was made. The calculation formulas of bias and RMSE are given by Equations (14) and 
(15): 

  Bias = 
1
n

� (
yi − xi

xi
)

n

i=1

 (14) 

RMSE = �
∑ (yi − �̅�𝑥𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

𝑛𝑛
 (15) 

where xi and yi are the transition dates of the validation site derived from in situ Pheno-
Cam data and remote-sensing data, respectively, �̅�𝑥𝑖𝑖 is the average value of the transition 
dates, and n is the number of the transition date. 

3. Results 
3.1. Data Harmonization Result 

The calculation of EVI2 requires information on the reflectance in the red and NIR 
bands. We used simulated surface reflectance of MODIS as the standard to calculate the 
conversion coefficients of the red and NIR bands of Landsat-8, Sentinel-2A, and GF-
1WFV. As shown in Figure 6, the spectral differences between the red and NIR bands of 
MODIS and Landsat-8 OLI are relatively small, with the slope of the linear model close to 
1, while the spectral differences between the corresponding bands of Sentinel-2A MSI and 
GF-1 WFV are relatively high. 

 
Figure 6. Band conversion coefficients of red (a)–(c) and NIR (d)–(f) bands of different sensors with 
the corresponding MODIS bands. The x-axis is the simulated reflectance of the 245 ground types of 
each sensor, and the y-axis is the simulated reflectance of MODIS. 
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The input data of STARFM include MODIS NBAR and high-spatial-resolution data, 
and the VZA of all pixels was 0°. Therefore, in this study, the reflectance of Landsat-8 OLI, 
Sentinel-2A MSI, and GF-1 WFV was harmonized to the reflectance under the nadir view. 
We used the Landsat-8 OLI image as the reference to evaluate the data harmonization 
results of Sentinel-2A MSI and GF-1 WFV as the Landsat-8 OLI is considered a nadir view 
sensor. To investigate whether data harmonization is beneficial to the accuracy of VI data, 
we calculated the EVI2 using the Sentinel-2A MSI and GF-1 WFV reflectance with and 
without BRDF correction and compared it to the EVI2 derived from Landsat-8 OLI. The 
results are shown in Figure 7. 

 
Figure 7. Comparison of the surface reflectance and EVI2 without (a)–(f) and with (g)–(l) BRDF 
correction. The GF-1 WFV data (center latitude and longitude: 38.716, −97.021) was obtained on day 
323 of 2020. The Landsat-8 OLI data (path/row: 029/034) was obtained on day 325 of 2020, and the 
Sentinel-2A MSI data (Tile: T14SNG) was obtained on day 323 of 2020. 

As shown in Figure 6, the RMSE of the red band reflectance between Sentinel-2A MSI 
and Landsat-8 OLI decreased by 37.5% while the NIR band decreased by 22.7% after BRDF 
correction. The RMSE of the red band reflectance between GF-1 WFV and Landsat-8 OLI 
decreased by 31.3%, while the NIR band decreased by 51.6% after BRDF correction. More-
over, the RMSE of EVI2 between Sentinel-2A MSI and Landsat-8 OLI decreased by 47.6% 
while the GF-1 WFV dropped by 60.3% after BRDF correction. The improvement of Sen-
tinel-2A MSI was not as obvious as that of GF-1, and the improvement of EVI2 was better 
than that of reflectance. Therefore, as shown in Figure 6, the data harmonization method 
proposed in this study can help improve the consistency between the high-spatial-
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resolution data and can eliminate the inconsistency in VI caused by the huge difference in 
illumination-viewing geometries. 

To demonstrate the contribution of harmonization to data fusion, we randomly se-
lected a scene of GF-1 WFV data and compared the fused GF-1 reflectance with and with-
out data harmonization to Landsat-8 OLI data. The difference in data acquisition time 
between GF-1 and Landsat-8 was 4 days, allowing an assumption of no change to the 
ground. It can be seen from Figure 8 that the R2 of the red and NIR bands are improved 
by 8.0% and 11.2%, respectively, the bias decreased by 71.1% and 70.8%, and the RMSE 
decreased by 58.5% and 41.9%, respectively. By inputting the harmonized data into 
STARFM, the output results on the predicted date could be improved compared with the 
true reflectance of the predicted date. The improvement of the NIR band was higher than 
that of the red band. Data harmonization improved the consistency of the fusion result. 

 
Figure 8. Comparison of the fusion result without (a,b) and with (c,d) data harmonization. The x-
axis (ρOLI) is the reflectance of Landsat-8 OLI on day 237, 2020, and the y-axis is the fused reflectance. 
The ρWFV is the fused reflectance with the input of original GF-1 WFV reflectance on day 233, 2020, 
and the ρ�WFV is the fused reflectance with the input of harmonized GF-1 reflectance. 

To explore whether data harmonization is beneficial for the consistency of the EVI2 
curve calculated by the output of STARFM, the high-spatial-resolution data (Landsat-8 
OLI, Sentinel-2A MSI, and GF-1 WFV) and the harmonized data were fused with MODIS 
NBAR to generate two different time-series EVI2 curves. Meanwhile, we calculated the 
standard time-series EVI2 using the MODIS EVI2 data. As the missing values of the orig-
inal MODIS NBAR will cause the missing of fusion results, we chose the fusion results of 
the nine PhenoCam sites to obtain the time-series EVI2 curve in 2020, and the two different 
types of time-series EVI2 were compared to the MODIS NBAR EVI2 curve. The results are 
presented in Figure 9. As shown in Figure 9, the R2 of the EVI2 time-series increased by 
6.7%, the bias decreased by 18.7%, and the RMSE decreased by 11.3%. Therefore, with the 
input of the harmonized high-spatial-resolution data, the consistency of the EVI2 curves 
is improved. Moreover, specific to different vegetation types, the decrease in bias and 
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RMSE of cropland was 50.0% and 2.5%, respectively, and the improvement in R2 was 3.0%. 
The decrease in bias and RMSE of grassland was 58.6% and 21.5%, respectively, and the 
improvement in R2 was 5.0%. As for the deciduous forest, the decrease in bias and RMSE 
was 123.5% and 10.8%, respectively, and the improvement in R2 was 14.0%. The improve-
ment of the statistical indicators reveals that the consistency of the EVI2 curves was im-
proved with the input of the harmonized data, and this is especially obvious in deciduous 
forests. 

 
Figure 9. Comparison of fused EVI2 in time-series with the input of harmonized and unharmonized 
data in the nine PhenoCam sites. The red points and the statistical indicators are the fused EVI2 with 
the input of unharmonized data. The blue points and the statistical indicators are the fused EVI2 
with the input of harmonized data. n is the count of available fusion results in 2020. 

3.2. Vegetation Phenology Retrieval Result 
The vegetation phenology detection results in this study include in situ and remote-

sensing LSP datasets. PhenoCam data are first converted to GCC, and then the transition 
dates within the year are confirmed by the time-series in situ GCC through the transition 
date detection method proposed in this study. The in situ phenology detection results are 
shown in Figure 10. 
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Figure 10. Phenological extraction results of the 9 PhenoCam sites. The gray points are daily in situ 
GCC. The vertical lines are the transition dates. The letters on the vertical lines are G: greenup; M: 
maturity; S: senescence; D: dormancy. 

The single-point phenology extraction algorithm was applied to the daily 30 m spa-
tial resolution fused EVI2 data to achieve high-spatial-resolution phenological mapping 
in the study area. To investigate the viewing-angle effects on vegetation monitoring using 
remote-sensing data with large differences in VZAs, we extracted the vegetation phenol-
ogy using the fused EVI2 constructed by the harmonized and unharmonized data, respec-
tively. 

As shown in Figure 11, the filtered EVI2 curve derived from the fused data with and 
without data harmonization shows a significant difference. The average R2 of the nine 
PhenoCam sites was 0.94, the average bias was 0.01, and the average RMSE was 0.06. Ad-
ditionally, the transition dates of the two filtered EVI2 curves also have a large difference, 
and there is a significant misalignment in the time of peak appearance in the mill and oakv 
datasets. 
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Figure 11. Filtered EVI2 curve and the transition date of the nine PhenoCam sites. The red and blue 
lines are the filtered EVI2 curves derived by the fused data without and with data harmonization, 
respectively. The red and blue squares are the vegetation transition dates derived by the corre-
sponding EVI2 curves. 

In this study, in situ phenology was also used to evaluate the accuracy of phenology 
data extracted from remote-sensing images. To explore the impact of data normalization 
on the accuracy of phenology extraction, we compared the two sets of transition dates 
based on different data in Figure 11 with the results of the in situ measurements. As shown 
in Figure 12, the R2 improved by 7.5%, the bias decreased by 8.75 days, and the RMSE 
decreased by 9.58 days. Therefore, with the input of harmonized high-spatial-resolution 
data, the accuracy of vegetation monitoring was improved. 
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Figure 12. Evaluation result based on the in situ transition date. The x-axis is the in situ transition 
date. The y-axis is the transition date derived by fused data. The stars and circles are the transition 
date derived by the fused data without and with data harmonization. The red and blue statistical 
indicators represent the evaluation results of the transition date derived by the fused data without 
and with data harmonization. 

4. Discussion 
Different illumination-viewing geometries result in inconsistencies in the observa-

tion results of the same target introduced by the BRDF effect [34]. When the two viewing 
angles differ greatly, the BRDF effect in the NIR band is more obvious than that in the red 
band. In Figure 7, the RMSE of the NIR band of GF-1 WFV and Landsat-8 OLI is higher 
than that of the red band, and the RMSE of the NIR band of GF-1 WFV is also higher than 
that of Sentinel-2A MSI. In addition, the difference caused by the BRDF effect is propa-
gated on to the calculation of VI. The RMSEs of EVI2 of Sentinel-2A MSI and GF-1 WFV 
were higher than the surface reflectance of the red and NIR bands; thus, the difference in 
EVI2 at different viewing angles even exceeds the band reflectivity (Figure 7). Thus, VI 
increases the BRDF effect. 

Since its establishment, STARFM has been widely implemented [28]. However, when 
designing the weight function, the variations in the spectral and illumination-viewing ge-
ometries between different input data sources were not considered. The input data of 
STARFM mainly concentrated on the Landsat-8 and MODIS NBAR, owing to the high 
consistency of the two datasets. In this study, STARFM was implemented on images from 
two different satellite sensors. These images are different in terms of spatial resolution, 
bandwidth, spectral response function, atmospheric conditions, and illumination-viewing 
geometry [24]. Here, we focused on the harmonization of spectral and illumination-view-
ing geometries between different images. After data harmonization, the consistency be-
tween the high-spatial-resolution data and the MODIS NBAR was improved (Figure 6).  
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The data harmonization method proposed in this paper eliminated the influence of 
different viewing angles on the VI data. However, the solar angle also affects phenological 
monitoring [25]. We only harmonized the reflectance of different sensors to a nadir view-
ing condition and ignored the influence of SZA variation on vegetation monitoring during 
the year. In the study area, the variation of SZA over the entire year can exceed 60°; there-
fore, this factor must be taken into consideration for data harmonization. 

By comparing the fused time-series EVI2 derived from harmonized and unharmo-
nized data (Figure 9), results showed that in nine PhenoCam sites, the improvement of 
forest LSP data was greater than that of grassland and cultivated land. This is mainly be-
cause the BRDF effect of forest land is more obvious than that of grassland and cultivated 
land [67]. The data harmonization eliminated the BRDF effect, so the improvement of for-
est land was more obvious than that of grassland and cultivated land. 

In this study, only pure pixels containing a single land cover type were selected to 
implement and evaluate the BRDF correction. This effectively reduced the impact of the 
difference in spatial resolution of different sensors. However, the correction effect of pix-
els was not evaluated in heterogeneous areas. We also assumed that the PhenoCam site 
and the corresponding pixels were homogeneous, and therefore the transition date re-
trieval by the PhenoCam site and the corresponding pixels could be compared directly. 
However, the scale effect of the PhenoCam in situ measurement has not been fully ad-
dressed [15]; therefore, an important issue for future research is the spatial representative-
ness of the PhenoCam in situ measurements as well as the spatio–temporal matching to 
the remote-sensing data. 

5. Conclusions 
This research proposed a harmonization method to normalize the variations in spec-

tral and illumination-viewing characteristics of high-spatial-resolution reflectance data 
derived from various satellite sensors. A data fusion method was then performed on the 
harmonized reflectance data to generate time-series reflectance with high spatio–temporal 
resolutions. Finally, the daily 30-m reflectance data were used to detect the transition dates 
of different vegetation types across multiple climate types. It was observed that the view-
ing angle could affect the accuracy of vegetation phenology monitoring. The proposed 
data harmonization method can eliminate the inconsistency between fine-resolution re-
flectance data acquired by different sensors under various illumination-viewing geome-
tries, which further improved the consistency of VI data. The data fusion result of 
STARFM also benefited from the data harmonization, and the R2 increased by 8.0% and 
11.2% for the red and NIR band, respectively. The time-series VI derived from the fused 
reflectance showed less fluctuations. By using the harmonized reflectance and fused VI 
data, the accuracy of the vegetation phenology monitoring was improved, with the R2 
increased by 7.5% and the RMSE decreased by 9.58 days. We concluded that the proposed 
data harmonization method should be adopted when using multisource satellite data to 
monitor vegetation phenology over a large spatial extent. 
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