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Abstract: Grasslands and shrublands exhibit pronounced spatial and temporal variability in 

structure and function with differences in phenology that can be difficult to observe. Unpiloted 

aerial vehicles (UAVs) can measure vegetation spectral patterns relatively cheaply and repeatably 

at fine spatial resolution. We tested the ability of UAVs to measure phenological variability within 

vegetation functional groups and to improve classification accuracy at two sites in Montana, U.S.A. 

We tested four flight frequencies during the growing season. Classification accuracy based on 

reference data increased by 5–10% between a single flight and scenarios including all conducted 

flights. Accuracy increased from 50.6 to 61.4% at the drier site, while at the more mesic/densely 

vegetated site, we found an increase of 59.0 to 64.4% between a single and multiple flights over the 

growing season. Peak green-up varied by 2–4 weeks within the scenes, and sparse vegetation classes 

had only a short detectable window of active phtosynthesis; therefore, a single flight could not 

capture all vegetation that was active across the growing season. The multi-temporal analyses 

identified differences in the seasonal timing of green-up and senescence within herbaceous and 

sagebrush classes. Multiple UAV measurements can identify the fine-scale phenological variability 

in complex mixed grass/shrub vegetation. 

Keywords: accuracy; classification; four-dimensional (4D) structure-from-motion (SfM); grassland; 

sagebrush; semi-arid; UAV; remote sensing 

 

1. Introduction 

Rangelands are widely distributed globally and contribute significant ecosystem 

services [1]. The grasslands, shrublands, and other ecosystems that make up rangelands 

are comprised of diverse plant species with divergent life-history strategies (e.g., annual 

vs. perennial), structural differences (e.g., grass vs. shrub), and photosynthetic pathways 

(e.g., C3 vs. C4), which creates pronounced spatial variability in plant function and high 

biodiversity [2–4]. Interannual variability in climate, coupled with community and abiotic 

differences, can lead to large interannual variability in rangeland vegetation function [5–

8]. Due to the collective variability and complexity of vegetation communities, 

understanding of the drivers of rangeland vegetation processes (e.g., carbon 

accumulation, reproduction, productivity, nutrient availability, etc.) across scales is 

needed to develop effective management strategies and predictive models of changes in 

a dynamic world [9,10]. Ground-based measurements provide crucial information for 

understanding these processes but are limited in scope. Linking in situ measurements 
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with remotely sensed data can expand the geographic extent of observation, furthering 

the ability to prioritize management efforts and aid in answering key ecological questions 

[11–13]. 

Data collected at high temporal frequencies and fine spatial extents may be necessary 

to detect complex patterns and ecologically relevant processes [14,15]. Multi-temporal 

analyses based on remote sensing are increasingly used to monitor ecosystems and their 

dynamics over multiple time steps and improve the thematic resolution of remote sensing 

products. For example, analyses of multiple remotely sensed images from within the same 

year are used to improve classification accuracy [16–18], measure species composition and 

coverage in shrublands [19], classify crop types [20], examine yields and performance 

[21,22], differentiate tree species in an urban environment [23], identify plants with C3 

versus C4 photosynthetic pathways [24], detect invasive species [25], and examine the 

number of annual green-up cycles across ecosystems [26]. Importantly, examining 

continuous patterns can reveal new dynamics of a system across seasons and over 

multiple years [26–28].  

Understanding the timing, magnitude, and duration of life-history events, 

phenology, forms a key aspect of the assessment of the function of vegetation 

communities [29]. Changes in phenology can lead to ecological disruptions, plant-

herbivore mismatch, alterations to competitive interactions, and disrupted nutrient fluxes, 

e.g., [30–33]. Phenology and production of rangelands assessed at the community level 

has identified important spatial and temporal variability and trends [34–37]. However, 

differences in growing season length and timing exist among and within vegetation 

functional groups: aggregations of species with similar characteristics and ecosystem 

roles. Measuring heterogeneity at smaller spatial extents provides the ability to observe 

differences in species and functional groups such as temporal patterns in green-up, peak 

production, and senescence [38]. Measurement at the functional group level is needed for 

quantifying phenological mismatches, timing management and restoration actions, 

understanding the species-specific impacts of climate change, and connecting 

phenological processes between scales [32,38–40]. However, the spatial and temporal 

resolution needed to identify phenological events at smaller spatial scales, such as within 

species and functional groups, precludes many satellite-based remote sensing approaches 

[41,42]. In situ approaches can be time-consuming and logistically difficult across large 

spatial areas, which compromises our ability to observe ecosystem dynamics at all 

relevant scales in space and time [29].  

The use of an unpiloted aerial vehicle (UAV) can examine such questions at 

appropriate spatial resolutions, link to aerial- and satellite-based systems [23,43–45], and 

build upon ground-based surveys [46–49]. Multi-flight UAV approaches can measure 

seasonal changes, e.g., [22,50,51], variability between individual plants and/or species 

[52,53], and can increase accuracy of classifications [54]. However, UAV approaches are 

not a panacea; there are multiple challenges and questions about approaches to be 

resolved. Phenology can be difficult to measure in dryland systems [55]. The sensors on 

UAVs, normally utilizing visible color and near-infrared (NIR) bands, work best for 

classifying dominant species, whereas rare species and some herbaceous species can be 

hard to identify [44], requiring additional specific data collection [51]. While using multi-

temporal images can improve classification, matching scenes between UAV flights can be 

challenging, e.g., [42]. Furthermore, flight times and sensor payloads are limited on 

lightweight UAVs [43,56], constraining the size of sampling areas. Aerial systems (planes 

and helicopters) are used to map large extents of vegetation at fine spatial scales [45,57,58], 

measure canopy structure [59–61], and survey for wildlife [62]. While aerial platforms can 

carry larger payloads for longer time periods, they are more limited in takeoff and landing 

locations and come with increased costs [56]. Appropriate application of UAVs should 

consider survey area, the need for repeat flights, and research questions [43]. For example, 

UAVs are demonstrated to be particularly well suited to sampling ecosystem indicators 

in rangeland settings, e.g., [44,46,51].  
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Understanding phenology implies measuring vegetation at multiple intervals, which 

of course, incurs a cost. It is important to understand what inference can be gained (or 

lost) by measuring more (or fewer) times within a growing season. Due to onboard GPS 

accuracy limitations, approaches such as manual co-registration to known surface models 

[52], ground control points (GCPs) [22,51,63,64], photogrammetric image orientation 

[65,66], and identifying objects post-flight [42] are used to successfully align imagery from 

multiple UAV flights. Object-based and/or supervised image classification techniques 

demonstrate utility for high-resolution imagery, e.g., [54,67,68]. However, the lack of prior 

knowledge of classes within a scene can impact accuracy [69] and complicate classification 

decisions. Furthermore, some rangeland species (e.g., sagebrush, Artemisia tridentata) 

show intra-canopy variability from different growing season lengths for new versus prior 

season perennial leaves and semi-deciduous phenology [70,71]. However, while 

supervised classification techniques are often used for increased accuracy and a better 

understanding of classes, e.g., [72], unsupervised approaches identify spectral variation 

within a dataset [73] and may be better suited for detecting the phenological heterogeneity 

that exists among and within vegetation functional groups. 

Therefore, a deeper investigation into the ability to use UAVs to identify within 

functional group phenological variability is a needed step in linking information across 

scales, approaches, and components of rangeland systems. Specifically, identification 

within-group phenological variability at fine spatial scales is a key component for 

monitoring and downscaling vegetation relationships to climate, providing scale-

appropriate data on management, and studying ecological consequences of phenological 

change , e.g., [29,38,52]. The goal of this study is to examine tradeoffs in classification 

depth (e.g., identification of phenological differences) and accuracy between collecting 

data from individual versus multiple UAV flights during the growing season in 

rangelands. Multiple UAV flights were used to: (1) compare vegetation classification 

based on a single flight versus multiple flights, (2) examine the timing variations of green-

up, peak productivity, and senescence within vegetation functional groups, (3) determine 

the increased information gained from various, multiple flight scenarios over a growing 

season, and 4) quantify the increased logistical and analytical effort of various flight 

scenarios. The prediction was that multiple flights over the growing season would 

increase classification accuracy due to detection of differences in phenology among 

vegetation functional groups and by accounting for spatial variability within functional 

groups, thus enabling better spectral differentiation of classes. In addition, accuracy 

improvement could be achieved with flights over the first half of the growing season, 

which would capture green-up variation and initial differences in senescence that would 

improve the differentiation of functional groups.  

2. Materials and Methods 

2.1. Study Areas 

We selected two rangeland sites in southwestern Montana (Mont.), U.S.A., to capture 

two levels of precipitation of shrub-grassland sites in the region (Figure 1). Argenta, a 

drier and lower-elevation site, is located 20 km west of Dillon, Mont., in upland sagebrush 

steppe with primarily alluvial alfisols, sandy-loam soils, at approximately 1900 m 

elevation [74]. Mean monthly temperatures range from −7.3 to 16.4 °C with annual 

average precipitation of 283 mm (PRISM Climate Group, Oregon State University, 

http://prism.oregonstate.edu, created July 2012, accessed on 12 December 2019) [75]. The 

wetter, cooler, and higher elevation Virginia City site is located 5 km east of Virginia City, 

Mont., at an elevation of approximately 2240 m. Mean monthly temperatures range from 

−6.9 to 14.6 °C with annual average precipitation of 588 mm (PRISM Climate Group, 

Oregon State University, http://prism.oregonstate.edu, created July 2012, accessed on 12 

December 2019) [75]. Soils are primarily mollisols with a mix of gravelly loam and stony 

loam on the steeper slopes [74]. Both sites are composed of sagebrush steppe; however, 
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Virginia City generally has taller sagebrush, denser grasses, and less bare ground than 

Argenta. 

 

Figure 1. Locations of the Argenta and Virginia City, Montana, study sites where unpiloted aerial 

vehicle (UAV) flights were conducted over the growing season of 2018. Land cover data from the 

2016 National Land Cover Dataset (MLRC.gov). 

2.2. Data Collection and Processing 

We conducted numerous UAV flights (Table 1), each consisting of multiple missions 

per site (individual takeoff and landing to replace batteries, change camera settings, etc.), 

over the 2018 growing season from early May until October at each of the study sites. We 

flew a solo quadcopter (3DR, Berkeley, CA) with a RedEdge-M (MicaSense, Seattle, WA) 

multispectral camera, which captures five-band images (one band per lens corresponding 

to the following wavelengths, blue: 475 nm with 20 nm width, green: 560 nm with 20 nm 

width, red: 668 nm with 10 nm width, NIR: 840 nm with 40 nm width, and red edge 717 

nm with 10 nm width). We programmed our UAV missions in Mission Planner (1.3.52, 

Ardupilot.org) to cover an approximately 300 × 300 m scene at each site. We recorded 

images of a calibrated reflectance panel (provided with the camera from MicaSense) 

before and after each mission to correct for illumination during processing. We conducted 

flights using a flight altitude of 43 m and airspeed of 5 m/s with the camera programmed 

to capture pictures every 2 s. This produced images with 65% forelap and sidelap and a 

roughly 3 cm ground sample distance (pixels). In addition, the RedEdge-M camera 

included an upward-facing light sensor that collected corresponding illumination data 

with each set of five-band images. We distributed GCPs at five marked locations across 

our scene to provide spatial referencing between flight dates. 

At Argenta, we collected data over nine flights, covering the entire growing season 

(Table 1). Due to weather and snow cover, we were unable to collect early season data at 

Virginia City for flights 1 and 2 but were able to collect data for flights 3 through 9. 
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However, a camera malfunction during flight 4 at Argenta and flight 7 at Virginia City 

resulted in missing data for portions of these scenes. Therefore, all multi-flight UAV 

classifications described hereafter are based on up to eight flights at Argenta and six at 

Virginia City (Table 1).  

Table 1. Information for the unpiloted aerial vehicle (UAV) flight dates and for which flights were 

used in the four classification scenarios at Argenta and Virginia City sites in 2018. Flights with dots 

indicate good data quality, and the number and color of dots indicate for which classification 

scenario(s) these data were used. Light green dots –all flight classification; orange dots –limited 

classification; purple dots –spring growing season classification; dark green dots—peak growing 

season, single flight UAV classification; grey bar—flights conducted but poor data quality; black 

bar—no flights conducted. 

Flight 1 2 3 4 5 6 7 8 9 

Site/Date May-2 May-30 June-12 June-27 July-19 Aug-4 Aug-19 Sep-10 Oct-1 

Argenta                     

Virginia City                          

For each flight, we used MicaSense Python tools 

(https://github.com/micasense/imageprocessing) to convert images to aligned, corrected 

five-band stacks. This process included us using the calibration panel images to convert 

radiance values to reflectance values, correct for camera lens effects, and align each 

individual band together into a single image. We then inputted these images into 

Metashape (v1.5.2, Agisoft, St. Petersburg, Russia) for photogrammetric processing. 

Although the flights at each site followed the same flight plan, minor differences in extent 

and resolutions existed between the orthomosaics; therefore, we exported all 

orthomosaics for each site to the smallest extent and largest resolution identified across 

all flights to facilitate additional raster calculations. We transferred Metashape-produced 

products (e.g., orthomosaics, Digital Elevation Models (DEMs)) into ArcGIS 10.6 (ESRI, 

Redlands, CA) for additional processing steps as detailed below. 

We employed a four-dimensional structure-from-motion approach (4D SfM) for our 

multi-date imagery [65,66] and used ground targets to assess the performance of image 

and flight alignment. The 4D SfM technique works by including survey photographs from 

all flights (i.e., dates) in the alignment, camera calibration, and georeferencing of ground 

control steps of the photogrammetry process. The process located objects (e.g., plants, 

rocks, litter, etc.) that remained in fixed locations through the entire time series. 

Effectively, 4D SfM identified thousands of ground control points that are consistent 

through the temporal period of the imagery to reference all photographs prior to building 

orthomosaics and other output products [65,66]. Following the 4D SfM alignment, we 

separated images by date and site to complete the remaining photogrammetry steps 

(generation of point cloud, surface models, orthomosaics, etc.). This process resulted in 

single five-band orthomosaics for each flight date: eight for Argenta and six for Virginia 

City. We calculated the normalized difference vegetation index (NDVI) for each UAV 

orthomosaic in ArcGIS using Image Analyst with associated red and NIR bands. 

Active remote sensing sensors and structure-from-motion techniques utilized in 

aerial image processing produce three-dimensional models of the target scene, which 

allows for structural representations of vegetation [59,61,76]. The use of UAVs is 

expanding for mapping forest canopy structure, e.g., [60,76], and more recently, these 

techniques were applied to other vegetation types, e.g., [51,68,77,78]. In rangeland 

environments, shrub and grass structures may help in differentiating vegetation types 

[68]; therefore, we produced a canopy height model for our study sites. We estimated the 

vegetation height at each site from the UAV flight at the peak of the growing season (Table 

1). We used the automatic Classify Ground Points function in Metashape, which classifies 

points within the dense point cloud as ground or other (i.e., vegetation) using three user-

defined inputs. We explored multiple combinations of inputs (max angle, max distance, 
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and cell size) to balance the ability of the classification algorithm to correctly assign the 

full canopy of shrubs while not missing a significant portion of ground points (e.g., being 

misclassified as vegetation). We created a digital surface model (DSM) from all points in 

the dense cloud and a digital terrain model (DTM), which uses only ground points and 

interpolates the elevation beneath vegetation. We calculated vegetation height using the 

raster calculator in ArcGIS by using the difference in DEMs technique, effectively 

subtracting the DTM from the DSM.  

To provide additional information for classification, we created a texture raster layer 

based on the peak growing season flight for each site. We first created a single band image 

using the grayscale function from Image Analyst in ArcGIS. We equally weighted the red, 

green, and NIR bands from the peak growing season flight, effectively creating a grayscale 

version of a color infrared image. Then, using the focal statistics tool from Spatial Analyst, 

we calculated the standard deviation of a circular five-pixel region of the color infrared 

grayscale (single band) image. Window size and shape were chosen after testing other 

buffer distances for edge and scale effects [79,80]. Vegetation height and texture were 

normalized to match the range of NDVI values.  

2.3. Image Classification 

We classified vegetation for four sets of UAV flights (Table 1) to compare 

phenological information and classification accuracy differences between four scenarios 

of flight timing and frequency. These scenarios include (1) a single flight at the presumed 

peak of the growing season (hereafter “single”), (2) three flights over the growing season 

consisting of an early, peak, and end of season flight (hereafter “limited”), (3) flights 

during the early and core part of the growing season to cover initial green-up and the 

beginning of senescence (hereafter “spring”), and (4) using all available data covering the 

full growing season (hereafter “all flights”). We performed an iterative self-organized 

(ISO) unsupervised data analysis classification using NDVI from the selected flight(s) and 

vegetation height and texture data derived from the flight at the peak of the growing 

season. We allowed for a maximum of 30 classes. We repeated this approach for the 

multiple flight scenarios but included additional NDVI values with the same normalized 

vegetation height and texture. For Argenta, the all flights classification was based on 10 

inputs (8 flights), the spring classification on 7 inputs (5 flights), and the limited 

classification on 5 inputs (3 flights). For Virginia City, the all flights classification was 

based on eight inputs (six flights), the spring classification on six inputs (four flights), and 

the limited classification on five inputs (three flights). 

For each scenario, we examined the mean height and NDVI of the resulting classes 

along with visual interpretation to assign classes and collapsed classes together that could 

not be categorized into separate vegetation types, densities, or phenological patterns. For 

the single flight scenario, we used a single mean NDVI value; however, we used the mean 

NDVI values across included flight dates (i.e., a partial phenological curve) for each 

included flight for multiple flight scenarios. We first classified the image to identify a base 

set of six functional groups: bare ground, litter, sparse, medium, and dense herbaceous, 

and sagebrush. Differentiation between sparse, medium, and dense herbaceous categories 

was based on mean NDVI of the class (NDVI or peak NDVI for sparse between 0.2 and 

0.3, medium between 0.3 and 0.4, and dense > 0.4), supplemented by visual inspection of 

pixels and areas of the class. Sagebrush classes also had an NDVI or peak NDVI of about 

0.45, but vegetation height was higher (mean about 0.3 m versus < 0.1 m for herbaceous). 

Soil and litter classes were identified based on NDVI patterns that showed only minor 

deviations over the growing season (due to changes in moisture content and possible pixel 

mixing), height (for standing litter), and visual inspection of color and/or location in the 

scene. In addition, if possible for a given scenario, we identified subcategories of each of 

these classes to reflect differences in green-up and senescence timing and height.  

We chose to use NDVI as our primary input into our classification algorithms as it is 

a surrogate for plant photosynthetic activity and was an indicator that matched our 
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objective of examining phenological differences. In addition, even after post-processing, 

we had illumination differences due to clouds and shadows among flights which caused 

discontinuities on the five original bands produced by the MicaSense RedEdge-M camera 

that can impact the classification algorithms. Illumination differences were greatly 

reduced or eliminated by employing a ratio of bands such as NDVI, which removed 

brightness issues within and across flights. 

2.4. Accuracy Assessment 

To assess the accuracy of our classification scenarios, we performed analyst-based 

classification to derive reference data following recommendations for using the same 

orthomosaics as used for our classification, see [81,82]. At each study site, we created a 

stratified random sample of 1000 points, stratified on the classes derived from the all 

flights scenario. We used zonal statistics to calculate the mean NDVI for all flight classes 

for each flight date to create NDVI curves representing the phenological pattern for each 

class. Then, for each sample point, we extracted NDVI values at each flight date and 

vegetation height as derived from the peak growing season flight. Then, at each sample 

point, we deduced the reference classification for the point by comparing NDVI curves, 

height ranges, and RGB images from available flights. These reference data were then 

used to create a confusion matrix for each classification scenario at each site. Although 

reference data were based on all flight classifications (with subcategories), we collapsed 

subcategories into the main class to allow comparison across the full set of scenarios. In 

addition, we used our base set of six functional groups (bare ground, litter, sparse, 

medium, and dense herbaceous, and sagebrush) as a standard comparison of scenarios, 

as the single flight classification approach contains no subcategories. For all confusion 

matrices, we also calculated the kappa statistic (the classification agreement relative to 

random allocation) as a measure of accuracy [73, but see 81 for limitations] 

3. Results 

3.1. Flight Classifications 

The single flight classifications based on the June 12th, 2018, flight at Argenta and the 

June 27th, 2018, flight at Virginia City resulted in our base set of six functional groups. 

Most multi-flight scenarios could identify different phenological patterns within 

functional groups, i.e., subcategories (Figure 2, see also Appendix A). Subcategories were 

defined in several ways because we found that areas within the same functional group 

were actively growing (or peaking) at different time periods. Subcategories were defined 

by differences in the length of the growing season (i.e., how long pixels had NDVI values 

above baseline), the timing of green-up (NDVI increase), peak values (day of peak NDVI), 

and senescence (when NDVI begins to quickly decline). Furthermore, at the Virginia City 

site, sagebrush heights covered a larger range, and we could differentiate sagebrush into 

two height classes that also coincided with the magnitude of NDVI values. Including 

subcategories, we differentiated 9 vegetation classes at Argenta (Figures 2, 3, and A1) and 

10 classes at Virginia City (Figures 2, 4, and A2), using the all flights scenario for each site. 

In the sparse flights scenario, we were unable to identify subcategories at Argenta, which 

resulted in the 6 main classes (Figure A3); however, we identified the same 10 classes as 

in the all flight scenario at Virginia City (Figure A4). For the spring scenario, we could 

partially differentiate the 6 classes at Argenta, with differences observed in the herbaceous 

class but not in the sagebrush class (Figure A5), and fully differentiate all 10 classes at 

Virginia City (Figure A6). 

Subcategories were identified within the herbaceous and sagebrush classes and 

represent different phenological responses within these functional groups (Figures 2, 3, 

and 4). At Argenta, NDVI slowly increased between flights 1 and 2, rapidly increased to 

a peak at flight 3, and then declined, with differences within herbaceous functional groups 

related to NDVI decline. The subclass ‘short season’ quickly declined after the peak at 
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flight 3, whereas the moderate season remained close to peak values at flight 4, then 

declined quickly after flight 5. Flights 3 and 4 were 15 days apart, so these phenological 

differences represent at least two additional weeks of increased photosynthesis. 

Sagebrush short and moderate seasons were similar to herbaceous classes but shifted one 

additional week into the growing season (short season declines after flight 4, moderate 

after flight 5).  

At Virginia City, senescence dates across classes were similar, and herbaceous 

subcategories were differentiated by early or late green-up dates. Early season herbaceous 

had a peak value at flight 3 (the first available at Virginia City) and slowly declined 

through flight 7, whereas late-season continued to increase through flights 4 and 5 before 

declining. Flights 3 and 5 were 37 days apart, representing a peak green-up value about a 

month later for the late-season phenological subcategories. Differences in sagebrush 

subcategories were related to height, with a short class (mean height about 0.1 m, 

primarily in the upslope portions of the scene) and a tall subcategory (mean height about 

0.25 m). In addition, there was one class where pixels were mixed between sagebrush and 

herbaceous vegetation with an early peak green-up at flight 3 (from herbaceous 

vegetation) and a long season with plateaued NDVI values through flight 5 and a drop 

after, similar to sagebrush, and with height values (mean height of 0.24 m), similar to the 

tall class. 
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Figure 2. Comparisons at Argenta and Virginia City of Iterative Self-Organized (ISO) unsupervised 

classifications utilizing a single unpiloted aerial vehicle (UAV) flight at the peak of the growing 

season (single) and flights across the growing season (limited, spring, and all, see Table 1) in 2018. 

Upper left and right images are orthomosaics from the peak growing season flight at Argenta and 

Virginia City, respectively. Input variables are normalized difference vegetation index (NDVI; one 

or multiple dates, respectively), vegetation height, and texture. Masked areas, in white, cover the 

UAV ground control station and/or vehicles. S—short duration growing season, M—moderate 

duration growing season. E—early green-up, L—later green-up, U—upslope/shorter, Mix—mixed 

herbaceous and sagebrush, T—tall. 



Remote Sens. 2022, 14, 1290 10 of 30 
 

 

 

Figure 3. Mean normalized difference vegetation index (NDVI) values by day of the year (DOY) for 

the nine vegetation classes produced through an iterative self-organized (ISO) unsupervised 

classification of imagery from nine unpiloted aerial vehicle (UAV) flights at the Argenta site in 2018. 

Dots and arrows at flight date 274 represent the class mean vegetation height and one standard 

deviation. Colors are assigned to match Figure 2. Herb—herbaceous, S—short duration growing 

season, and M—moderate duration growing season. 
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Figure 4. Mean normalized difference vegetation index (NDVI) values by day of the year (DOY) for 

the 10 classes produced through an iterative self-organized (ISO) unsupervised classification of 

imagery from 7 unpiloted aerial vehicle (UAV) flights at the Virginia City site in 2018. Dots and 

arrows at flight date 274 represent the class mean vegetation height and one standard deviation. 

Colors are assigned to match Figure 2. Herb—herbaceous, E—early green-up, L—later green-up, 

U—short (generally upslope), T—tall, Mix—mixed herbaceous and sagebrush. 

3.2. Accuracy, Class Differentiations, and Comparisons between Scenarios 

To compare the four scenarios, we initially assessed the accuracy of each scenario in 

identifying the six base land cover classes (Tables 2, A1–A8). The accuracy from the single 

flight classifications at the Argenta site (50.6%) was marginally improved under the 

limited flights scenario (51.9%) and spring scenario (52.2%). However, the all flight 

scenario improved by almost 10% (61.4%). The accuracy of the all flight scenario, when 

including subcategories (the full nine identified including phenological differences), was 

similar to the single flight and other multiple flight scenarios (Table A9, overall accuracy 

= 51.8%). We were unable to identify any phenological differences (i.e., no subcategories) 

under the limited flights scenario. However, we were able to identify seasonal differences 

within the herbaceous categories with the spring scenario but with limited accuracy 

(45.6%).  
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Table 2. Summary of accuracy results from confusion matrices derived from vegetation 

classification scenarios at sites near Virginia City and Argenta, Montana. Base categories include 

bare ground, litter, sparse, medium, and dense herbaceous, and sagebrush. Subcategories include 

differences between green-up and senescence timing and/or height within a base class. 

 Scenario 

Site 
Single Limited Spring All 

Overall Kappa Overall Kappa Overall Kappa Overall Kappa 

Argenta 

Base Categories 50.6% 0.50 51.6% 0.51 52.5% 0.52 61.4% 0.61 

Subcategories --- --- --- --- 45.6% 0.46 51.8% 0.52 

Virginia City 

Base Categories 59.0% 0.59 60.2% 0.60 61.6% 0.62 64.4% 0.64 

Subcategories --- --- 44.9% 0.39 46.6% 0.40 53.2% 0.53 

At the Virginia City site, a similar class comparison (with six classes) resulted in an 

overall accuracy of 59.0% for the single flight scenario, 60.2% for the limited scenario, 

61.6% for the spring scenario, and 64.4% for the all flight scenario (Table 2). When 

considering phenological differences, we were able to identify the same 10 classes in each 

of the multiple flight scenarios, but the overall accuracy of the limited (38.5%) and spring 

(40.0%) were poor compared to the all flight scenario (53.2%, Table A10).  

Typically, the lowest class-specific accuracy rates at both sites were for the litter class 

across all scenarios (Tables A1–A10), with improvement in most situations between the 

single and multi-flight approaches (Table 2). The misclassification of litter was primarily 

with bare ground and sparse herbaceous classes. Herbaceous misclassification errors 

tended to be between densities (sparse, medium, and dense), in addition to some errors 

between dense herbaceous and sagebrush misclassifications at Argenta and to a lesser 

extent at Virginia City. The identification of phenological subcategories resulted in 

increased classification errors within the multi-flight classifications. These errors tended 

to be between the phenological classes (e.g., short versus moderate season length 

herbaceous); however, at Argenta, we also found classification errors between herbaceous 

and sagebrush classes. More flights (i.e., moving from single, to limited, to spring, to the 

all flights scenario) improved the classification of subcategories within functional groups 

(Tables 2, A9, and A10). 

4. Discussion 

This study examined the ability of UAVs to identify fine-scale phenological 

heterogeneity, can be used to inform logistical decisions of future UAV studies (timing, 

number of flights, etc.), and illustrated options to effectively process data from multiple 

UAV flights. This approach successfully identified plant level phenological differences 

(i.e., differences in growing season length and timing within vegetation functional 

groups) and demonstrated improved classification accuracy by utilizing multi-flight UAV 

classification approaches. At both study locations, multi-flight scenarios improved 

vegetation classification accuracy over a single flight, mainly due to asynchronies in the 

timing and duration of herbaceous cover. Two main findings emerge from this study: 1) 

phenological heterogeneity at fine spatial scales can be identified by UAV flights, and 2) 

heterogeneity in phenological timing causes accuracy issues between class designations. 

The implications of these results include the ability to use these data to make finer scale 

ecological comparisons than satellite-based land surface phenology measures. In addition, 

while land surface phenology measures from satellite remote sensing can be influenced 

by the proportion of vegetation functional group, which may exhibit different 

phenological patterns, within a pixel [83], this study’s results suggest that within 

functional group heterogeneity needs to be considered as well. Furthermore, UAV-based 
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studies provide phenological information at the plant or sub-plant level to compliment 

the broader spatial coverage available from satellite-based systems [22,42,52].  

4.1. Phenological Heterogeneity within Functional Groups 

Remote sensing is increasingly used to measure land surface phenology, which 

incorporates the mixed response of vegetation and background materials (e.g., soil and 

litter) within a sensor’s spatial resolution [83–85]. This study demonstrated the ability to 

examine patterns within functional groups at a fine resolution. Many of our multi-flight 

classification scenarios based on NDVI at multiple points during the growing season 

identified spatial variation within functional groups. These differences highlighted the 

role of topographic variations in phenology. For example, small valleys at Argenta have 

a longer growing season than upland locations, and there are seasonal asynchronies in 

herbaceous species between south-facing slopes and other areas at Virginia City. A study 

in marsh vegetation also found phenological differences in timing and duration within 

close spatial proximity, with implications for restoration and management [86]. 

Additional asynchronies in plant responses identified from remote sensing include 

differences in photosynthetic pathways [24], water use efficiency [28], growing conditions 

within fields [22], and variable intra- and inter-specific phenology [52]. Changing or 

variable vegetation phenology has consequences to other species and processes within the 

ecosystem [30–33,87]. Fine-scale measurement of variable vegetation functional group 

phenology is needed to inform restoration planning [86] and to better quantify the degree 

of phenological mismatch between members of an ecosystem under a changing climate. 

Understanding plant-level phenological differences as demonstrated here helps advance 

understanding of these processes.  

At the drier Argenta site, there were functional group differences when plants were 

senescing and differences in the timing of green-up at the more mesic Virginia City site. 

These differences in limiting factors between sites may be difficult to identify a priori. In 

other sagebrush systems, communities in meadow (more mesic) locations had longer 

growing seasons compared to upland communities, with the difference due to earlier start 

of season dates [70]. In addition, new growth on sagebrush has a longer growing season 

[70], matching some of the sub-canopy variation identified herein, possibly also tied to the 

semi-deciduous pattern of sagebrush [71]. Phenology differences between and within 

species can be highly variable [23,52], asynchronies can be in the spring [70] or fall [42], 

and can be driven by variable growing conditions [22,70]. Building on phenology, 

temporal rangeland assessments can aid in ecological and land use studies. For example, 

high spatial resolution imagery can be used for within-season forage utilization [51], 

monitoring vegetation trends over time [44], and identifying invasive species [25]. 

4.2. Accuracy and Tradeoffs of Single Versus Multi-Flight Approaches 

Utilizing multiple flights over the growing season increased the accuracy of our 

classifications by up to 5–10% when comparing the different multi-flight scenarios to the 

single-flight scenarios (Table 2). In a single-flight classification, shadows are difficult to 

classify accurately [88], and spectral differences through time cannot be utilized. Multi-

temporal UAV imagery improved accuracy in other cases, resolving issues with flowering 

and shadows, as well as utilizing phenology to identify different spectral signatures over 

time [25,54]. While our overall accuracy was higher at the more densely vegetated site 

(mesic), the greatest increase in accuracy occurred at the sparser, drier site. The improved 

accuracy at both sites was from increasing the correct classifications of short duration 

herbaceous, bare ground, and litter, with these classes covering more of the land surface 

at Argenta. Specifically, the spectral patterns of soil and litter pixels separate out over the 

growing season. Sparse, short-duration herbaceous material may be missed with one 

flight, even at the presumed peak of the growing season, as it is spectrally similar to litter 

or soil except for a short time period, which may differ temporally across a scene. This 

study only included two sites; therefore, to further test the hypothesis of increased 
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accuracy at drier sites but better overall accuracy at wetter sites, a study examining 

accuracy across a precipitation gradient would be advantageous.  

Even with multiple flights, classification challenges remain between spectrally 

similar classes, such as bare ground and sparse vegetation [17]. Likewise, the phenological 

cycle is very similar between dense herbaceous and sagebrush groups (Figures 3 and 4), 

which also had overlapping height distributions, leading to some misclassification errors 

between these categories. Overall, classification errors were more likely between similar 

classes or subcategories (e.g., bare ground vs. litter, the density of herbaceous classes, and 

length of the growing season) than distinct classes (e.g., herbaceous vs. bare ground or 

sagebrush vs. litter). However, due to scene heterogeneity, fuzzy class boundaries, and 

possible mixed pixels, these errors exist between distinct classes in the classification. 

Classification of our rangeland sites, even with high spatial resolution, still had challenges 

(Figure 5), and we note several specific issues for our study areas.  

First, some of the hardest pixels to identify are edges (e.g., sagebrush exterior pixels), 

as these were often mixed vegetation types, despite our small pixel size (~3 cm). An 

example of mixed classes within a pixel is grass growing up through sagebrush or through 

sagebrush skeletons. The mixing of desired classes within a pixel results in classification 

challenges and complicates the creation of reference data. Second, shadows move through 

time-series data and complicate the classification even when using NDVI to limit these 

effects. Third, the shapes of the phenology curves are highly variable; very few actually 

match up with the calculated class mean curves (Figures 3 and 4). Fourth, relatively small 

plants (or short sagebrush) can be hard to visually classify or separate between classes. 

The advantage of the multiple flight approach is while accuracy drops when classifying 

based on within functional group heterogeneity, this accuracy is the same as the single 

flight but provides more information about the timing and duration of when herbaceous 

and sagebrush classes are photosynthesizing. 
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Figure 5. Ground photos showing examples of mixed and/or hard to classify areas that likely created 

between-class errors in our single- and multiple-flight vegetation classifications from unpiloted 

aerial vehicle (UAV) imagery collected during 2018 in Montana, U.S. (A) Mixed litter, sparse 

herbaceous, and bare ground, (B) mixed litter and herbaceous, (C) mixed sparse herbaceous and 

variable substrate bare ground, and (D) mixed sagebrush and herbaceous. A and C are from the 

Argenta site, and B and D are from Virginia City (Photos by co-author David Wood). 

We tested the limited and spring flight scenarios to assess whether reducing the 

frequency of flights or concentrating flights during the primary growing season would 

have similar accuracy and ability to identify within-group phenological heterogeneity as 

compared to the all flights scenario. While we predicted that we could achieve similar 

accuracy for the classification of both vegetation categories and subcategories containing 

phenological differences, we instead only found increased land-cover (at the class level) 

accuracy with the spring and limited scenarios. We found limited accuracy and/or ability 

to identify subcategory phenological differences, as the timing of the flights was key for 

identifying these within functional groups phenological differences. In our approach, late-

season flights helped separate sagebrush (higher NDVI in the early and late season as 

most leaves stay on) from herbaceous classes (fully brown/senesced). Sagebrush and 

herbaceous (medium and dense classes) had similar green-up timing and midseason 

patterns, as well as overlapping heights in some cases, so differences between these classes 

occurred in late summer. The limited scenario worked better at the higher elevation 

Virginia City site indicating the timing of flights should be concentrated during the green-

up period (near the peak rather than the early season when there is little activity). For a 

study in the nearby U.S. Great Basin, accurately separating invasive species and other 

classes from fine spatial resolution multi-flight UAV imagery was found to be tied to 

having the correct timing of flights that captured phenological differences, more than 

increased spectral information from any given point in time [25]. In addition, the growing 

season at Virginia City (with the exception of the NW part of the scene) was longer than 

at Argenta, increasing the window to capture flights that are diagnostic in separate classes. 

In differentiating between herbaceous, especially sparse, limited duration classes, and 

bare ground/litter classes, there was often only a short window (i.e., short green/growing 

season) that was asynchronous across the scene. Classification accuracy can be improved 

with multiple flights, and these should be focused on a combination of spring and late 

season flights. However, accurately differentiating subcategories required flights across 

the whole growing season in our study and was more successful in areas of the scene 

without herbaceous species mixed within the shrub canopy. 

Tradeoffs between the single and multiple flight approaches beyond the type of 

information gained are primarily logistical and processing-time based. We reused flight 

plans and marked ground target locations with rebar for easy relocation. However, 

despite increased efficiency in operations through the growing season, multiple flights 

take up a significant amount of time and should be weighed against specific objectives. 

Specifically, in our case, we conducted 16 total flights, and with ideal flight conditions, 

theoretically could have mapped vegetation distribution at 16 sites instead of two with a 

similar effort but with lower accuracy. It took us twofour missions to cover each site based 

on battery life of 9–10 min, wind speed, cloud cover, and other operational factors (e.g., 

software issues, clear air space, etc.). Including setup/takedown, the time to swap 

batteries, and reacquire GPS position, our total operation took between 40 and 60 min per 

site, per round. Processing time also increased with multiple flights, although most of this 

effort was in increased background processing. After initial loading and the creation of 

project workspaces in Python and Metashape, we utilized batch processing. Therefore, 

manual input time was marginally increased, while total processing time was increased 

by approximately a factor of six–eight (representing the number of flights at each site). 

However, in many situations, these increased data collection and processing times can 

greatly increase the accuracy of classification approaches [17,23,54]. Specific applications 

and study questions will dictate required information, accuracy, precision, and sample 
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size. Individual applications must weigh these factors and make a decision that balances 

economy with accuracy needs.  

Multi-temporal UAV analyses can complement and build on techniques from multi-

temporal satellite-based remote sensing, e.g., [14,89]. Furthermore, high-resolution 

imagery was used to create training data for satellite-based image classification, e.g., 

invasive species in [90], relatively pure signals for spectral unmixing, e.g., [91], and to 

validate continuous cover models, e.g., [92]. However, additional research is needed to 

improve accuracy and application, as well as to capture spatial and temporal variability 

to answer questions such as measuring the success of management actions, identifying 

consequences of a changing climate, and quantifying impacts to ecosystem functions and 

services. Other approaches such as object-based classification [54], are used in multi-

temporal classification; however, the variety of scales of vegetation sizes, and desire to 

identify possible  within canopy phenological differences in sagebrush [70], precluded 

use in this study. Additional improvements to classification approaches such as 

classification based on vegetation functional groups with continuous values for 

phenology (e.g., start of spring vs. early green-up), as well as object-based approaches that 

can capture fine scale phenological differences are needed. UAVs are a tool to sample the 

high spatial variability of rangeland ecosystems, and emerging areas of research and 

application of multi-flight UAV studies show great promise for improving monitoring 

and assessment of these systems. 
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Figure A1. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 27 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from 8 unpiloted aerial vehicle (UAV) flights (all flights scenario) 

in 2018 at the Argenta site, Montana. Classes are reordered to place final classes next to each other; 

the original classification can be found in the upper right-hand corner of each panel. A dashed line 

at 0.2 is provided for reference between panels. S—short duration growing season, and M—

moderate duration growing season. 
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Figure A2. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 27 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from 6 unpiloted aerial vehicle (UAV) flights (all flights scenario) 

in 2018 at the Virginia City site. Classes are reordered to place final classes next to each other; the 

original classification can be found in the upper right-hand corner of each panel. A dashed line at 

0.3 is provided for reference between panels. Herb—herbaceous, E—early green-up, L—later green-

up, U—short (generally upslope), T—tall, Mix—mixed herbaceous and sagebrush. 
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Figure A3. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 28 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from three unpiloted aerial vehicle (UAV) flights (sparse flights 

scenario) in 2018 at the Argenta site. Classes are reordered to place final classes next to each other; 

the original classification can be found in the upper right-hand corner of each panel. A dashed line 

at 0.2 is provided for reference between panels. 
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Figure A4. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 30 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from three unpiloted aerial vehicle (UAV) flights (sparse flights 

scenario) in 2018 at the Virginia City site. Classes are reordered to place final classes next to each 

other; the original classification can be found in the upper right-hand corner of each panel. A dashed 

line at 0.3 is provided for reference between panels. Herb—herbaceous, E—early green-up, L—later 

green-up, U—short (generally upslope), T—tall, Mix—mixed herbaceous and sagebrush. 
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Figure A5. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 28 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from five unpiloted aerial vehicle (UAV) flights (spring flights 

scenario) in 2018 at the Argenta site. Classes are reordered to place final classes next to each other; 

the original classification can be found in the upper right-hand corner of each panel. A dashed line 

at 0.2 is provided for reference between panels. S—short duration growing season, and M—

moderate duration growing season. 
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Figure A6. Phenological patterns expressed as mean normalized difference vegetation index (NDVI) 

by day of the year (DOY), for the 30 classes produced from iterative self-organized (ISO) 

unsupervised classification of data from four unpiloted aerial vehicle (UAV) flights (spring flights 

scenario) in 2018 at the Virginia City site. Classes are reordered to place final classes next to each 

other; the original classification can be found in the upper right-hand corner of each panel. A dashed 

line at 0.3 is provided for reference between panels. Herb—herbaceous, E—early green-up, L—later 

green-up, U—short (generally upslope), T—tall, Mix—mixed herbaceous and sagebrush. 
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Table A1. Confusion matrix of vegetation classification accuracy from a single unpiloted aerial 

vehicle (UAV) flight on June 12th, 2018, at the Argenta site. Kappa = 0.50. 

  Reference   
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C
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Bare Ground 105 39 10 5 1 2 162 64.8% 

Litter 3 14 3 0 0 7 27 51.9% 

Sparse Herb 29 51 92 14 4 12 202 45.5% 

Medium Herb 1 2 52 100 20 50 225 44.4% 

Dense Herb 0 2 10 62 18 76 168 10.7% 

Sagebrush 0 1 9 26 3 176 215 81.9% 

 Total 138 109 176 207 46 323 999  

 Producers Accuracy  76.1% 12.8% 52.3% 48.3% 39.1% 54.5%  50.6% 

Table A2. Confusion matrix of vegetation classification accuracy from three unpiloted aerial vehicle 

(UAV) flights (the limited flights scenario) in 2018 at the Argenta site. Kappa = 0.52. 
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Bare Ground 71 21 7 3 0 1 103 68.9% 

Litter 29 37 30 12 2 8 118 31.4% 

Sparse Herb 36 46 97 44 8 45 276 35.1% 

Medium Herb 1 1 32 99 24 43 200 49.5% 

Dense Herb 0 1 1 24 8 19 53 15.1% 

Sagebrush 1 3 9 25 4 207 249 83.3% 

 Total 138 109 176 207 46 323 999  

 Producers Accuracy  51.5% 33.9% 55.1% 47.8% 17.4% 64.1%  51.9% 

Table A3. Confusion matrix of vegetation classification accuracy from 4 unpiloted aerial vehicle 

(UAV) flights (spring flights scenario) in 2018 at the Argenta site. Kappa = 0.52. 
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Bare Ground 106 28 33 6 1 2 176 60.2% 

Litter 19 38 25 13 0 6 101 37.6% 

Sparse Herb 10 33 90 65 2 9 209 43.1% 

Medium Herb 2 8 25 113 27 132 307 36.8% 
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Dense Herb 0 0 0 0 6 6 12 50.0% 

Sagebrush 1 2 3 10 10 168 194 86.6% 

 Total 138 109 176 207 46 323 999  

 Producers Accuracy  76.8% 34.9% 51.1% 54.6% 13.0% 52.0%  52.2% 

Table A4. Confusion matrix of vegetation classification accuracy from 8 unpiloted aerial vehicle 

(UAV) flights in 2018 (all flights scenario) at the Argenta site. Kappa = 0.61. 
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Bare Ground 83 15 8 3 0 2 111 74.8% 

Litter 24 41 21 10 1 14 111 36.9% 

Sparse Herb 29 47 110 28 1 7 222 49.6% 

Medium Herb 0 4 34 135 11 38 222 60.8% 

Dense Herb 1 1 2 29 30 48 111 27.0% 

Sagebrush 1 1 1 2 3 214 222 96.4% 

 Total 138 109 176 207 46 323 999  

 Producers Accuracy  60.1% 37.6% 62.5% 65.2% 65.2% 66.3%  61.4% 

Table A5. Confusion matrix of vegetation classification accuracy from a single unpiloted aerial 

vehicle (UAV) flight on June 27th, 2018, at the Virginia City site. Kappa = 0.59. 
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Bare Ground 66 22 37 2 0 0 127 51.9% 

Litter 21 45 51 25 0 24 166 27.1% 

Sparse Herb 0 2 14 25 5 15 61 22.9% 

Medium Herb 0 0 0 43 36 6 85 50.6% 

Dense Herb 1 0 0 3 141 38 183 77.1% 

Sagebrush 2 16 6 52 21 281 378 74.3% 

 Total 90 85 108 150 203 364 1000  

 Producers Accuracy  73.3% 52.9% 12.9% 28.7% 69.5% 77.2%  59.0% 
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Table A6. Confusion matrix of vegetation classification accuracy from three unpiloted aerial vehicle 

(UAV) flights in 2018 (limited flights scenario) at the Virginia City site. Kappa = 0.60. 

  Reference   
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Bare Ground 78 45 25 2 0 7 157 49.7% 

Litter 4 9 7 11 0 26 57 15.8% 

Sparse Herb 5 19 74 26 0 9 133 55.6% 

Medium Herb 0 3 1 65 58 37 164 39.6% 

Dense Herb 0 0 0 2 104 13 119 87.4% 

Sagebrush 3 9 1 44 41 272 370 73.5% 

 Total 90 85 108 150 203 364 1000  

 Producers Accuracy  86.7% 10.6% 68.5% 43.3% 51.2% 74.7%  60.2% 

Table A7. Confusion matrix of vegetation classification accuracy from five unpiloted aerial vehicle 

(UAV) flights in 2018 (spring flights scenario) at the Virginia City site. Kappa = 0.615. 
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Bare Ground 78 34 33 2 0 2 149 52.4% 

Litter 7 25 23 8 0 19 82 30.5% 

Sparse Herb 1 9 45 21 0 11 87 51.7% 

Medium Herb 0 2 0 54 26 43 125 43.2% 

Dense Herb 0 0 0 7 139 14 160 86.9% 

Sagebrush 4 15 7 58 38 275 397 69.3% 

 Total 90 85 108 150 203 364 1000  

 Producers Accuracy  86.7% 29.4% 41.7% 36.0% 68.5% 75.6%  61.6% 

Table A8. Confusion matrix of vegetation classification accuracy from six unpiloted aerial vehicle 

(UAV) flights in 2018 (all flights scenario) at the Virginia City site. Kappa = 0.64. 
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Bare Ground 73 19 6 1 0 1 100 73.0% 

Litter 7 38 33 6 0 16 100 38.0% 

Sparse Herb 6 16 57 18 0 3 100 57.0% 

Medium Herb 2 5 12 93 17 71 200 46.5% 
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Dense Herb 0 0 0 16 147 37 200 73.5% 

Sagebrush 2 7 0 16 39 236 300 78.7% 

 Total 90 85 108 150 203 364 1000  

 Producers Accuracy  81.1% 44.7% 52.8% 62.0% 72.4% 64.8%  64.40% 

Table A9. Confusion matrix of vegetation classification accuracy from eight unpiloted aerial vehicle 

(UAV) flights (all flights scenario) in 2018 at the Argenta site. Kappa = 0.52. S—short duration 

growing season, and M—moderate duration growing season. 
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Bare Ground 83 15 3 5 0 3 0 2 0 111 74.8% 

Litter 24 41 8 13 2 8 1 7 7 111 36.9% 

Sparse Herb (S) 11 15 50 14 12 6 0 3 0 111 45.0% 

Sparse Herb (M) 18 32 18 28 3 7 1 1 3 111 25.2% 

Medium Herb (S) 0 2 7 3 72 7 4 13 3 111 64.9% 

Medium Herb 

(M) 
0 2 7 17 9 47 7 9 13 111 42.3% 

Dense Herb 1 1 1 1 11 18 30 26 22 111 27.0% 

Sagebrush (S) 0 1 0 0 1 1 2 85 21 111 76.6% 

Sagebrush (M) 1 0 0 1 0 0 1 27 81 111 73.0% 

Total 138 109 94 82 110 97 46 173 150 999  

Producers 

Accuracy  
60.1% 37.6% 53.2% 34.1% 65.5% 48.5% 65.2% 49.1% 54.0%  51.8% 

Table A10. Confusion matrix of vegetation classification accuracy from six unpiloted aerial vehicle 

(UAV) flights (all flights scenario) in 2018 at the Virginia City site. Kappa = 0.53. Herb—herbaceous, 

E—early green-up, L—later green-up, U—short (generally upslope), T—tall, Mix—mixed 

herbaceous and sagebrush. 
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Bare Ground 73 19 6 0 1 0 0 1 0 0 100 73.0 

Litter 7 38 33 4 2 0 0 12 3 1 100 38.0 

Sparse Herb 6 16 57 16 2 0 0 1 2 0 100 57.0 

Medium Herb 

(E) 
1 1 9 43 11 8 1 13 10 3 100 43.0 

Medium Herb 

(L) 
1 4 3 6 33 3 5 34 0 11 100 33.0 

Dense Herb (E) 0 0 0 7 0 75 16 1 0 1 100 75.0 
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Dense Herb (L) 0 0 0 0 9 4 52 9 2 24 100 52.0 

Sagebrush (U) 0 1 0 1 10 4 2 42 4 36 100 42.0 

Sagebrush 

(Mix) 
0 1 0 0 1 11 8 3 57 19 100 57.0 

Sagebrush (T) 2 5 0 0 4 5 9 9 4 62 100 62.0 

 Total 90 85 108 77 73 110 93 125 82 157 1000  

 
Producers 

Accuracy (%) 
81.1 45.7 52.8 55.8 45.2 68.2 55.9 33.6 69.5 39.5  53.2 
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