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Abstract: Two paroxysmal explosions occurred at Stromboli on July 3 and August 28, 2019, the first 
of which caused the death of a young tourist. After the first paroxysm an effusive activity began 
from the summit vents and affected the NW flank of the island for the entire period between the 
two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of 
Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self-
Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli 
that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three 
main clusters that showed different occurrences with time indicating a clear change in Stromboli’s 
eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the 
recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic 
Aperture Radar measurements, and found that the clusters are associated with different types of 
Strombolian explosions and different deformation patterns of the summit area. Our findings 
provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the 
monitoring of Stromboli and other open conduit volcanoes. 

Keywords: eruption precursors; neural networks; self-organizing map; seismo-acoustic signals; 
Stromboli volcano; volcano monitoring; ground-based visible and thermal imagery; ground 
deformation; volcano deformation 
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1. Introduction 
Artificial Neural Networks (ANNs) are applied in a wide range of fields to approach 

classification, pattern recognition, clustering, regression analysis, and time series 
prediction problems. In recent years, ANNs have been successfully applied in the field of 
seismology and volcanology to solve geophysical signal automatic classification and 
clustering problems [1–4] and to perform predictive analyses [5,6]. In the field of 
seismology, many studies demonstrated that ANNs are powerful tools to improve the 
performances and the robustness of the automatic systems for seismological analyses that 
allow gaining critical information for people’s safety in near real time [7–9]. Many 
applications have also been developed to automatically classify the seismicity of 
Stromboli [10–13] and other volcanoes [1,14], obtaining performances up to 100% correct 
classification [7]. Here, we focus on studying the eruptive style of the Stromboli volcano 
(Italy) before and during the 2019 eruptive crisis [4,15–17] through the neural analysis of 
seismic and infrasonic signals produced by the explosive activity. 

Stromboli is a volcanic island in the Mediterranean Sea characterized by a persistent 
explosive activity that produces hundreds of moderate explosions per day. Three main 
vent regions are located in the upper part of the volcano: the North East (NE), the Central 
(C), and the South West (SW) vent regions (Figure 1) [18–22]. 

 
Figure 1. Map of Stromboli Island, including the location of monitoring stations. The black triangles 
indicate the seismic stations and the two black circles indicate strainmeters. The white triangle 
marks the STRA seismic–acoustic station that recorded the data used in this work. The white circles 
show the position of the video cameras, highlighting the SPT (P), SQT, and SQV (Q) cameras. The 
white stars indicate the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) 
devices, and the GBInSAR NE190 is highlighted. The “Sciara del Fuoco” (SdF) depression is shown. 
The white asterisks indicate the main vent regions: North East (NE), Central (C) and South West 
(SW). The location of Stromboli in the Mediterranean Sea is reported in the inset. Maps were 
generated using ESRI ArcGIS CAMPUS (Università degli Studi di Firenze Licence; 
http://www.siaf.unifi.it/vp-1275-arcgis-licenza-campus.html, last accessed 5 March 2022). The 
background image is a PLÉIADES-1 image collected on 8 October 2019 (see Turchi et al. [23] for 
details). 

In recent decades, geophysical and volcanological studies have indicated that the 
ordinary explosive activity of Stromboli shows a variety of eruptive mechanisms and 
products, whose signature is distinguishable in the geophysical signals generated by the 
explosions (e.g., seismic and infrasonic signals). In early studies, an association between 
the eruptive vent (NE or SW) and waveform of the VLP events produced by the explosions 
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was observed [24] and led for the first time to the definition of two categories of 
explosions: Type 1, from the NE vent region, and Type 2, from the SW vent region. 
Subsequently, significant exceptions to the vent–waveform association were highlighted 
through a previous application of an unsupervised neural network clustering, compared 
with thermal camera measurements [11]. Two main types of explosions were also 
recognized in the ordinary activity of Stromboli through thermal camera measurements 
by Patrick et al. [25]: Type 1, dominated by coarse ballistic particles, and Type 2, 
characterized by an ash-rich plume, with (Type 2a) or without (Type 2b) ballistic particles. 
Leduc et al. [26] added a gas-dominated type (Type 0) to those mentioned above. More 
recently, Simons et al. [27], studying the explosions of the Yasur volcano (Vanuatu), 
defined a further type (Type 3) of explosion characterized by tephra jetting through a 
breccia/ash-occluded vent, followed by prolonged ash emission, belonging to the 
spectrum of Strombolian explosions. The rate, size, and relative occurrence of the different 
types of explosions characterize the eruptive style of the ordinary Strombolian activity. 

Changes in the ordinary Strombolian activity are generally associated with imminent 
dangerous phenomena such as lava flows, major explosions, or paroxysms (e.g., [4,28,29]). 
Typically, an increase in Strombolian activity, in terms of the number of explosions per 
hour and amplitude of seismic signals associated with volcanic tremor and explosions, 
preceded the lava flow output [4]. They are generally caused by overflows [30] that 
originate from the eruptive vent regions, or by the opening of new eruptive fissures along 
the Sciara del Fuoco slope [31–33]. Fissure eruptions are also preceded by an 
intensification of landslides [8,34,35]. Major explosions are sporadic explosive events 
traditionally defined as explosions larger than the persistent activity, able to injure people 
visiting the top of the volcano. Recently, Calvari et al. [17] proposed a method based on 
the “VLP size” parameter of the seismic signal [4] and on the muzzle velocity by the 
duration of the explosive event to estimate the variable magnitude and intensity of 
Strombolian explosions and therefore to separate the field of the major explosions from 
those of paroxysms and ordinary explosions. Although to date major explosions are 
unpredictable, these events are most likely to occur when variations of the eruptive style 
happen [15,36,37]. Paroxysms are explosive eruptions that form eruptive columns of some 
kilometers, eject metric-sized ballistic blocks, and can generate modest pyroclastic flows 
[16,32,38–40]. 

The eruptive crisis of 2019 produced two paroxysms that occurred on July 3 and 
August 28, which formed eruptive columns of about 5 km and were accompanied by 
pyroclastic flows that traveled more than one kilometer on the sea surface. The first of 
these two paroxysms caused the death of a young tourist and the injury of some people, 
in addition to triggering extensive fires that have involved the vegetated areas of the 
island [23]. The effusive eruption, which began with the paroxysm on 3 July 2019, and 
lasted about two months, also emplaced a lava flow field on the Sciara del Fuoco slope 
[41,42]. It is worth pointing out that the seismic parameters that were routinely monitored, 
such as the seismic amplitude and the hourly occurrence of VLP events (0.05–0.5 Hz), did 
not show significant changes before the 2019 paroxysms (Figure 2a,b). On the contrary, 
the “VLP size” associated with the explosive activity and other parameters, such as the 
peak-to-peak amplitude of VLP events and polarization of the raw seismic signal, showed 
significant variations about one month before that paroxysm [4]. These medium-term 
seismic precursors of the paroxysmal activity (Figure 2c–e) have been interpreted as 
variations in the eruptive style linked to the magma–conduit interaction and to the 
degassing of the volcanic system, which control the Strombolian explosive mechanism. 
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Figure 2. Monthly histograms from November 2018 to September 2019 of the raw seismic signal 
amplitude recorded by the STRA station (a); hourly occurrence of VLPs (b); polarization azimuth of 
the raw signal of the STRA station (c); peak-to-peak amplitude of VLP events (0.05–0.5 Hz) recorded 
by the STRA station, horizontal component (d); VLP size measured by the STRA station, horizontal 
component (e). The dark gray bars are relevant for the period before the paroxysm of 3 July 2019, 
the light gray bars are relevant for the period following the aforementioned paroxysm. 

In addition to the geophysical studies conducted on volcanoes, analogue experiments 
also provided useful information to discriminate the factors that affect the degassing and 
eruptive style of an open conduit volcano such as Stromboli. Spina et al. [43] investigated 
the role of conduit surface irregularity and physical properties (e.g., viscosity and gas flux) 
of an analogue basaltic magma using an experimental setup [44] and produced seismo-
acoustic measurements. Giudicepietro et al. [45] designed an unsupervised neural 
network based on a Self-Organizing Map (SOM) that was able to consistently group the 
artificial seismo-acoustic events generated in similar experimental conditions (conduit 
roughness, analogue magma viscosity, and gas flux) thanks to an appropriate strategy for 
extracting the seismo-acoustic features. 

The aim of this work is to study the types of explosions recognizable in the persistent 
activity of Stromboli through unsupervised neural networks applied to seismic and 
infrasonic signals, which contain the fingerprints of the explosive mechanism. In 
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particular, our target is the period that preceded and included the paroxysmal phases of 
2019. For this purpose, we applied a SOM clustering of the seismic and infrasonic features 
to group events generated in similar conditions and we compared the result of clustering 
with the images recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) 
thermal and visible cameras and with the ground displacement measurements obtained 
by means of Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) devices, 
in order to gain insights into the explosive mechanisms and the pre-eruptive dynamics of 
the paroxysmal activity. 

2. Data and Methods 
2.1. Seismic and Infrasonic Data 

We used the data of the STRA seismic–acoustic station (Figure 1) belonging to the 
Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring network [46–48]. The 
seismic station is equipped with a CMG40T Guralp broadband sensor. The infrasonic 
sensor is a Chaparral Model 25. The signals of both sensors are acquired by a 24-bit GAIA2 
digital recorder [49], optimized for low power consumption, a critical requirement for 
data acquisition in inaccessible areas. The sampling rate for seismic and infrasonic signals 
is 50 samples per second. The data are continuously transmitted to the Osservatorio 
Vesuviano, Osservatorio Etneo and Osservatorio Nazionale Terremoti of INGV, Italy. 
Figure 3 shows examples of seismic–acoustic recordings of explosive events linked to the 
persistent explosive activity of Stromboli. The filtered signals (red line) in frequency bands 
used in this work for the seismic–acoustic feature extraction are superimposed on the raw 
signals (gray line). 

 
Figure 3. Example of seismic (a) and infrasonic (b) signals of a single explosion that occurred on 17 
February 2019 at 14:05 UTC. The raw signals are shown in gray. In red, the seismic signal filtered in 
the VLP band (0.05–0.5 Hz) in panel (a) and the high-pass filtered infrasonic signal (>0.5 Hz) in panel 
(b). 

Figure 4 shows the frequency content of the seismic and infrasonic signals of the 
explosive event considered in Figure 3. 

To describe the temporal evolution of the eruptive style of Stromboli before and 
during the 3 July–30 August 2019 eruptive crisis, we considered a wider time interval that 
extends from 15 November 2018 to 15 September 2019, and selected 14,289 seismic 
recordings (each 30 s long) and 14,179 infrasonic recordings (each 30 s long), most of which 
are pairs of seismo-acoustic signals linked to the same explosive event. We chose the same 
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events related to the “VLP size” time series of Giudicepietro et al. [4], which refers to the 
VLPs with maximum “size” for each half-hour in the target period. We adopted this 
criterion for the selection of the seismic–acoustic events because the VLP size was already 
recognized as a parameter that effectively highlighted variations in the period preceding 
the eruptive crisis of July August 2019 [4]. We used the seismic data of the east–west 
component of the STRA station, which is the component with the maximum amplitude of 
the signals, with the Stromboli seismic wavefield being mainly horizontally polarized 
(e.g., [4,37]). In addition to the seismic data, we also selected the corresponding infrasonic 
data recorded by a sensor located in the same site as the STRA seismic station. 

 
Figure 4. Example of the seismic (panel a) and infrasonic (panel b) signals of an explosion that 
occurred on 17 February 2019 at 14:05 UTC. The raw signals and the spectrograms for both signals 
are shown. 

To analyze the temporal evolution of the eruptive style of Stromboli, we developed 
a novel preprocessing strategy suitable to extract the seismic–acoustic features 
representative of the fingerprints of the explosive mechanisms and to overcome the 
problem of the data window cutting, which cannot be based on a precise picking of 
seismic phases that are not recognizable in the signals of our interest (VLP events). Then, 
we applied the SOM algorithm to cluster the seismic–acoustic feature datasets. 

2.2. Seismic–Acoustic Feature Extraction Methods 
An efficient feature extraction method for seismic data typically takes into account 

the spectral content and the waveform of the events (e.g., [7,8,45]). Actually, these are the 
characteristics that the analysts visually examine to classify seismograms, for example, to 
distinguish a local earthquake from a regional one or a teleseism. Often, spectrograms 
expressed in compressed form and waveform functions calculated on sliding windows [1] 
are used to analyze events with impulsive onset. However, in this case, the signals of our 
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interest are the VLPs (0.05–0.5 Hz) in which an impulsive onset cannot be recognized. 
Thus, we designed novel methods for seismic and infrasonic feature extraction, that are 
independent of the picking of a transient signal onset. The method for cutting data, which 
allows us to extract event records from the continuous signal, relies on an algorithm 
designed to detect the VLP event with the largest “size” in half-hour windows [4]. This 
algorithm allows cutting a 30 s signal interval from each half-hour window, but it does 
not return signal intervals starting precisely at the picking of a signal onset. For this 
reason, to encode the VLP event waveforms, we sorted the amplitude features in 
ascending order and, to encode the seismic signal frequency content, we used the 
spectrum, and not the spectrogram (Figure 5). In particular, by using the utilities of ObsPy 
Toolbox [50], we calculated the spectrum of every selected 30 s signal, then we applied a 
filter for smoothing the obtained spectrum, using the aforementioned ObsPy Toolbox, 
and, finally, we downsampled the smoothed spectrum by a factor of 1:3 (Figure 5d). 
Moreover, we encoded the VLP event waveforms by filtering the signal in the 0.05–0.5 Hz 
band, resampling it by a factor 1:16, and sorting the values of the filtered and resampled 
seismogram in ascending order (Figure 5c). We added the information of the raw seismic 
signal waveform using an encoding based on the peak-to-peak amplitude of a 25-sample 
(0.5 s) sliding window. This waveform parameterization is performed by applying the 
following equation: 

𝑊𝐹௜ = ቀ൫𝐴௜,ெ൯  − ൫𝐴௜,௠൯ቁ ∗ 𝑁∑ ቀ൫𝐴௞,ெ൯ − ൫𝐴௞,௠൯ቁே௞ୀଵ  (1)

where Ai,M and Ai,m are the maximum and the minimum amplitudes in a 25-sample 
window and N is the total number of windows. Finally, we sorted the values of the raw 
seismic waveform parameterization vector in descending order (Figure 5b). Figure 5 
shows an example of feature extraction for one of the 14,289 seismic events in the dataset. 

 
Figure 5. Feature extraction for seismic data. (a) Raw seismic signal of the event recorded on 27 June 
2019 at 19:13:33 UTC (STRA station, east–west component; see Figure 1), time in seconds on the x 
axis; (b) normalized raw waveform parameterization (WF), time in seconds on the x axis; (c) 
normalized VLP waveform parameterization, time in seconds on the x axis; (d) spectrum 
parameterization, frequency in Hz on the x axis; (e) normalized seismic features (feature numbering 
on the x axis). 
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We also extracted the features of the infrasonic signal. To avoid the high-noise 
component present in the low frequencies of the infrasonic signal (Figure 3b), we high-
pass filtered the data (>0.5 Hz) and applied an encoding procedure similar to that used 
for the raw seismic signal waveform (Equation (1)). Then, we sorted the infrasonic feature 
vector in ascending order to make the encoding independent from the picking of the 
events. 

2.3. SOM Method 
Once the dataset of the extracted seismic–acoustic features was prepared, we 

analyzed it with a SOM-based method to highlight clusters of explosive events with 
common characteristics. 

There are different clustering techniques for the analysis of complex datasets, which 
can be divided mainly into two types: linear ones, such as the Principal Component 
Analysis (PCA) or the Multidimensional Scaling (MDS); and non-linear ones, such as the 
Self-Organizing Map (SOM), the Curvilinear Component Analysis (CCA), or the 
Curvilinear Distance Analysis (CDA). First, it has been proved that the SOM algorithm 
discriminates better than CCA and PCA, providing a simplified two-dimensional 
representation of the data and preserving the distinctive information that allows them to 
be separated [51,52]. Furthermore, we chose to use the SOM algorithm based on the good 
results obtained with SOM to analyze experimental data, proving its ability to group 
experimental seismo-acoustic events [45]. 

The SOM neural networks were designed by Tuevo Kohonen in 1982 [53] and 
inspired by brain cortex topology. In particular, he took into account the connections 
between neurons and how a neuron can affect its neighbors; neurons that are close to the 
active ones strengthen the connections, while those that are further away weaken them. 
The SOM network uses an unsupervised and competitive learning algorithm; this means 
that the process is entirely data-driven and the neurons (or nodes) compete with each 
other to respond to a subset of the input data. Competitive learning increases the 
specialization of each node in the network. The goal is to discover some hidden structures 
of the data so that they can be clustered. 

The SOM method is used in several applications, in particular in data examination 
and visualization. As a clustering method, it allows the reduction of a large amount of 
data by grouping them. However, contrary to the classical clustering methods, being a 
non-parametric technique, it does not require information on the data distribution. As a 
projection method, it can display high-dimensional data onto an easily understandable 
lower-dimensional space (commonly two-dimensional), useful for improving the input 
pattern interpretation and classification and for finding unexpected structures in the data. 
Its effectiveness as a visualization technique is given by the fact that the mapping is non-
linear and the resulting map preserves the topological and metric relationships of the data. 

The SOM unsupervised algorithm works as follows: before the training, the 
prototypes are initialized with small random values to demonstrate the strong self-
organizing capability of the SOM. First, a randomly extracted input vector of the dataset 
is presented to the network; then, the winning node (called the best-matching unit) is 
identified, i.e., the node whose prototype is closest to the input, in terms of Euclidean 
distance. The weights of the winning node and its topological neighbors are then updated 
or moved towards the input vector. The updating rule of the prototype vectors uses a 
decreasing neighborhood function of the distance between two nodes on the map grid. 
The most commonly used is the Gaussian. This function uses two parameters: the learning 
rate, which controls the intensity of the attraction of the input vector, and the 
neighborhood radius, which regulates the number of vectors attracted other than the 
winning node. Both of these parameters are time-decreasing functions and change their 
values during training. Then, they remain constant during the convergence phase. Thus, 
in the beginning, the map provides a first rough representation of the input data 
distribution while at the end the prototypes are settled to their final values and the final 



Remote Sens. 2022, 14, 1287 9 of 27 
 

 

map is shown. A more exhaustive description of the SOM algorithm can be found in [11]. 
At the end of the iterative process, the final map consists of “ordered” prototype vectors 
on the grid so that similar inputs fall into topologically neighboring nodes. In this sense, 
the SOM is a similarity graph. 

The architecture of a SOM network has two levels, one of the input nodes and one of 
the output nodes located on a generally two-dimensional grid. Each input node is 
connected to all the nodes of the grid; each output node has a vector of weights with the 
same dimensions as the input vectors (Figure 6a). Once the feature vectors have been 
processed, the final configuration of the weights will divide the input elements into the 
SOM nodes, which represent their clustering. 

 
Figure 6. (a) Example of a SOM architecture with input layer, weights, and output layer. (b) Example 
of a two-dimensional map with a global toroid shape (visualized as a sheet) and a local hexagonal 
lattice structure. The size of the map is 3 × 4 = 12 (the one we adopted in our experiments) and the 
numbers represent the ID numbers of the nodes. 

In our work, we used a SOM with a 3 × 4 = 12 local hexagonal grid (Figure 6b), and a 
global toroid shape displayed as a sheet to have an immediate visual cluster configuration. 
This means that nodes on top and bottom are neighbors as well, as are the side nodes. 
Figure 6b also shows the numbering of the map nodes which proceeds from top to bottom 
and from left to right. Finally, we fixed the SOM parameters according to Kohonen et al. 
[54] and the SOM toolbox for Matlab (http://www.cis.hut.fi/somtoolbox/, last accessed 4 
March 2022). 

2.4. Thermal and Visible Camera Data 
To visually analyze the explosive activity of Stromboli and compare it with the 

clustering of the seismo-acoustic features, we used the recordings of the INGV monitoring 
fixed camera network. In particular, we used the visual and thermal images recorded by 
the SQV/SQT and SPV/SPT cameras (Q and P in Figure 1). These cameras acquire one 
image every two seconds (SQV and SQT) and two images every second (SPT), both in the 
visible (V) band and in the thermal (T) band. Sensors in the thermal band are particularly 
useful because they are not very sensitive to day/night light variations. The two cameras 
have different distances from the crater area and different viewing angles. This causes a 
different sensitivity to the detection of the explosions that occur in the three vent regions. 
Moreover, particular weather conditions characterized by low-lying clouds can affect the 
visibility of the explosions. Therefore, depending on the case, the analysis was performed 
by using a specific camera allowing the best view.  

Based on the results of the seismo-acoustic data clustering obtained with the SOM 
method, we identified five days that are representative of the five main nodes, which are 
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grouped into three clusters. Each of these days was characterized by a prevalent explosive 
type, according to the neural analysis of the seismo-acoustic features (see Section 3.3). 
Thus, we selected about 180 video recordings of explosions and characterized them on the 
basis of the eruptive vent, the height and shape of the ejection, and the duration of the 
explosive process. 

2.5. GBInSAR Data 
GBInSAR measurements allow retrieving ground deformation by exploiting the 

phase difference between pairs of Synthetic-Aperture Radar (SAR) images acquired by in 
situ instrumentation. They are based on the same principle as satellite-based SAR 
observation, with the advantage that GBInSAR has a higher rate of data acquisition and 
takes images short distances from the target area. At Stromboli, there are two GBInSAR 
devices installed in the stable area north of the Sciara del Fuoco, in order to monitor 
ground displacement of the unstable flank and the top of the volcano. The technical 
characteristics of the instruments, their settings, and the data processing methods have 
made this technique very important for identifying the periods of inflation/deflation of 
the shallow magmatic system in Stromboli (e.g., [17,30,35,41,55–57]), regardless of the 
weather conditions and ash content in the atmosphere. The two instruments, working in 
the Ku-band (17.0–17.1 mm radar), acquire with a revisiting time of 6–7 min, and then the 
images are averaged over 30 min in order to increase the signal-to-noise ratio. A resample 
operation returns images with a pixel size of about 2 m × 2 m along both range and cross-
range [58] and, setting a coherence (>0.7; see Antonello et al. [59]) and a power filter (>55 
dB; [30,57]), the pixel by pixel staking algorithm allows the reconstruction of the 
cumulative displacement maps, allowing for the tracing displacement time series of 
selected points (averaged over 5 × 5 pixels) with a precision in the displacement 
measurement of 0.5 mm [41,56]. We used GBInSAR data recorded from 15 November 2018 
and 15 September 2019. The features of the two GBInSAR devices are reported in Table 1. 

Table 1. Characteristics of the two GBInSAR devices. 

System Model Band 
Revisiting 

Time 
Averaging 

Interval Look Angle 
Heading 

Angle 
GBInSAR 

NE400 
GBInSAR 

LiSAmobile k09 
Ku 6 min 33 min 

from 63.8° 
to 90.0° 

from 143° 
to 217° 

GBInSAR 
NE190 

GBInSAR 
LiSAmobile k09 

Ku 7 min 33 min 
from 65.0° 
to 113.5° 

from 115° 
to 245° 

3. Results 
Our goal is to analyze the temporal evolution of the Strombolian explosive activity 

in order to highlight changes in the eruptive style that preceded the paroxysmal phases 
of 3 July and 28 August 2019. 

3.1. Seismic–Acoustic Features 
We applied the novel procedures for the feature extraction from seismic and 

infrasonic data, which are described in the “Data and Methods” section. Starting from 30 
s seismic signal recordings corresponding to 1500 samples (50 samples per second), we 
obtained 351-dimensional feature vectors. In particular, we encoded the seismic signal 
frequency content by downsampling the smoothed spectrum by a factor of 1:3 and 
considering the spectral features up to 10 Hz. This frequency threshold is suitable to 
adequately represent the signals of interest for our study [24,34,37]. Then, we encoded the 
VLP event waveforms by resampling the filtered signal (0.05–0.5 Hz) by a factor of 1:16 
and, finally, sorting the VLP waveform features in ascending order. Finally, we extracted 
the raw seismic signal waveform features using an encoding based on the peak-to-peak 
amplitude of a 25-sample (0.5 s) sliding window (Equation (1)), sorted in descending 
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order. Therefore, we obtained a vector of the seismic features composed of 200 coefficients 
for the spectral content encoding, 92 coefficients that encode the VLP waveform, and 59 
coefficients for the parameterization of the raw waveform (Figures 5 and 7). 

We also extracted the infrasonic feature vectors by high-pass filtering the signal (>0.5 
Hz) and applying an encoding procedure similar to that for the raw seismic signal 
waveform (Equation (1)). We obtained a 59-dimensional infrasonic feature vector for each 
infrasound record. Additionally, in this case we sorted the vector of the features in 
ascending order to make the encoding independent from the picking of the events (Figure 
7). 

 
Figure 7. Parameterization of seismic and infrasound signals of three explosive events that occurred 
on 1 February 2019 (1), 12 June 2019 (2) and 16 July 2019 (3). In the three panels (1, 2 and 3): (a) The 
raw seismic data. (b) The waveform parameterization of the raw seismic data (blue line) and the 
same curve sorted in descending order (red line). (c) The seismic signal filtered in the VLP frequency 
band (0.05–05 Hz), resampled (blue line) and rearranged in ascending order (red line). (d) The 
spectrum up to the frequency of 10 Hz (blue line) and the smoothed and resampled spectrum (red 
line). (e) The vector of the features that encode the seismic signals given by the union of the red 
vectors of (d,c,b). At the bottom of the figure the signals (f panels) and the waveform 
parameterization (g panels) of the infrasonic data are shown. On the horizontal axes of panels (a,c,f) 
there is the sequential index of the sample; on the horizontal axes of panels (b,g) the sequential index 
of the peak-to-peak amplitude values is reported; on the horizontal axis of the panel (d) the 
frequency in Hz is reported; on the horizontal axis of the panel (e) there is the feature numbering. 

3.2. SOM Analysis 
We carried out three clustering experiments through the SOM analysis: (i) using only 

the seismic features; (ii) using only the infrasonic features; (iii) using both features of 
seismic and infrasonic data. Figure 8 shows the results of the three experiments. In the 
SOM maps, each node is shown as a yellow hexagon, whose size indicates the node 
density, in terms of the number of input samples associated with that node. The Euclidean 
distance between the prototypes of two neighboring nodes is represented according to 
grayscale in the spaces between the nodes. Dark gray hexagons interposed between the 
nodes correspond to a great distance, light gray indicates high similarity between the 
prototypes of neighboring nodes. We indicated the nodes of the SOM map with 
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progressive numbers from 1 to 12 (the dimensions of the map are 3 × 4). The node 
numbering criterion is shown in Figure 6b.  

The results of the experiment that was based only on the seismic features (Figure 8a) 
highlight three main clusters: a red cluster, formed by node 10; a blue cluster, formed by 
nodes 4 and 12, and a green cluster composed of nodes 1, 2, and 5. 

The experiment that was based only on the infrasonic features (Figure 8b) provided 
only two main distinct nodes of the SOM network, in which most of the examples of the 
dataset are grouped. Thus, only two clusters were identified in this experiment: a red 
cluster, coinciding with node 2, and a blue cluster, coinciding with node 12. 

The results of the experiment that was based both on seismic and infrasonic features 
(Figure 8c) highlight three main clusters: a red cluster, composed of nodes 4 and 7; a blue 
cluster, which includes nodes 5, 9, and 10; and a green cluster composed of node 11.  

In all the three experiments that we carried out, the results indicate a variation in the 
relative occurrence of the clusters in the three months preceding the eruptive crisis, which 
began on 3 July 2019 (Figure 8). In particular, the experiment with only infrasonic data 
separates two large families of events: one characterized by large-amplitude impulsive 
infrasonic signals, that is marked as a red cluster in the results of our experiment, and 
another with infrasonic signals almost indistinguishable from background noise, marked 
as a blue cluster in the results of our experiment (Figure 8b). The experiment with only 
the features of the seismic signals identifies a greater variety of types that can be grouped 
into three main clusters. Finally, the experiment with the seismo-acoustic features used 
jointly also identifies three main clusters and more clearly emphasizes the variation in the 
relative occurrence of the clusters before the paroxysm of 3 July 2019 (Figure 8c). 

By associating the seismic features with the infrasonic ones, the event 
parameterization is more complete and the SOM clustering experiment provides more 
significant information on the temporal evolution of the eruptive style of Stromboli in the 
target period. For this reason, in the following, we will focus on the results of this 
experiment by comparing the retrieved clusters with the camera images and GBInSAR 
deformation data. We will call the three clusters obtained in the seismo-acoustic SOM 
experiment cluster Red (in total 4539 explosions: 2950 in node 4 and 1589 in node 7), 
cluster Blue (in total 6332 explosions: 1183 in node 5; 2638 in node 9; and 2511 in node 10) 
and cluster Green (1682 explosions in node 11) (Figure 8c). 
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Figure 8. Summary of the experiment results. (a) Monthly histogram of the three main clusters 
obtained in the experiment based only on the seismic features. The top right inset shows the SOM 
map. Nodes outlined with the same color belong to the same cluster (red, blue, and green). On the 
right are the final prototypes of the nodes, marked with the same colors that identify the three main 
clusters. (b) Monthly histogram of the two main clusters obtained in the experiment based only on 
the infrasonic features. The top right inset shows the SOM map. Nodes outlined with the same color 
belong to the same cluster (red and blue). On the right, the final prototypes of the nodes, marked 
with the same colors that identify the two main clusters. (c) Monthly histogram of the three main 
clusters obtained in the experiment based both on the seismic and infrasonic features. The top right 
inset shows the SOM map. Nodes outlined with the same color belong to the same cluster (red, blue, 
and green). On the right the final prototypes of the nodes are shown, marked with the same colors 
that identify the three main clusters. In November 2018 and September 2019, fewer events are 
reported in the graph because only 15 days are considered. 

3.3. Classification of the Explosions Belonging to Clusters through the Analysis of Camera 
Images 

To link the three seismo-acoustic clusters obtained from the SOM analysis to types of 
explosions, we selected a subset of seismo-acoustic events representative of Blue, Green, 
and Red clusters (Table 2), and compared them with the INGV camera recordings (Figure 
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1). We analyzed the main nodes of cluster Blue, which are 9 and 10, with node 5 being 
very similar to node 9. First, we selected the camera images relevant to the days when 
there was the highest concentration of explosions falling in the main nodes belonging to 
a specific cluster. These days are 17 February, 16 May, 8 June, 9 July, and 6 August 2019. 
Table 2 shows the distribution of the seismo-acoustic clusters on the selected days. 
February 17 was chosen to represent cluster Red, with a prevalence of seismo-acoustic 
events that fall into node 4 (43 out of 47); 16 May and 8 June were selected to represent 
cluster Blue, with a prevalence of seismo-acoustic events belonging to nodes 9 and 10, 
respectively; 9 July was again representative of cluster Red, with a prevalence of events in 
node 7; and August 6 represented the events of cluster Green, all of which fall into node 
11. Thus, there are 182 explosions of interest, equal to the sum of the values in bold 
underlined in Table 2. Unfortunately, some of these explosions were not properly 
recorded by the INGV cameras due to poor weather conditions or technical problems. 
Furthermore, several explosions belonging to cluster Blue are inherently undetectable by 
cameras due to the types of events that this cluster groups together, namely gas 
explosions. In particular, thirty of the forty 16 May explosions, belonging to node 9 in our 
dataset, are not visible in the camera recordings. The same happens for nine of the forty 
explosions relevant to 8 June, belonging to node 10. In summary, the cameras recorded: 
42 explosions falling into node 4 on 17 February; 32 explosions belonging to node 7 on 9 
July; 10 explosions belonging to node 9 on 16 May; 31 explosions belonging to node 10 on 
8 June; and 20 explosions falling into node 11 on 6 August 2019. The analyzed dataset 
allowed us to characterize the types of explosions corresponding to the seismo-acoustic 
clusters. Figure 9 shows some examples of the seismograms associated with the seismo-
acoustic events that characterize the main SOM nodes. 

Table 2. Days representative of the seismo-acoustic events of the three clusters. The values in bold 
and underlined indicate the number of events in our dataset, which, on the day indicated in the first 
column, falls into the prevailing node (reported in the last column). The column “Detected” gives 
the number of explosions that have been identified by the monitoring cameras. 

Date Red 
n.4 

Red 
n.7 

Blue 
n.9 

Blue 
n.10 

Green 
n.11 Tot. Detected Prevailing 

Node 
2019-02-17 43 0 2 2 0 47 42 node 4 
2019-05-16 0 0 40 3 3 46 10 node 9 
2019-06-08 0 0 2 40 1 43 31 node 10 
2019-07-09 8 33 0 0 4 45 32 node 7 
2019-08-06 4 9 0 6 26 45 20 node 11 
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Figure 9. The first 4 h (UTC time) of the seismogram (east–west STRA channel) filtered in the VLP 
frequency band (0.05–0.5 Hz) of four of the five sample days representative of the main SOM nodes. 
(a) 2019-02-17, the red ovals mark the events belonging to node 4 (Red cluster). (b) 2019-05-16, the 
blue ovals mark the events belonging to node 9 (Blue cluster). (c) 2019-06-08, the blue ovals mark 
the events belonging to node 10 (Blue cluster). (d) 2019-08-06, the green ovals mark the events 
belonging to node 11 (Green cluster). 

Table 2 reports in the column “Detected” the number of explosions recorded by the 
seismo-acoustic trace, and falling into the corresponding prevailing node (last column) 
that could be identified by the camera images. Some of them are shown in Figure 10. 
Actually, the observation of the camera images allowed us to recognize the vent (Figure 
10a,f) and the eruptive style of prototypal explosions belonging to the three clusters. In 
particular, on 17 February, the SQV camera (Q in Figure 1) recorded 43 explosions from 
node 4, which belongs to cluster Red (Table 2). All of them were characterized by well-
collimated jets from the N1 vent (Figure 10a), with approximately the same elevation (~200 
m), and lasting on average ~5.6 s (three SQV frames). Only two events out of 43 lasted 
longer (8 s), whereas 12 events lasted less (4 s). These explosions ejected juvenile 
pyroclastic fragments showing ballistic trajectories. 

 
Figure 10. (a) Photo taken from Il Pizzo Sopra la Fossa showing the labels of the active vents within 
the crater terrace of Stromboli. (b) Example of an explosion falling into cluster Blue, node 9. (c) 
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Example of an explosion falling in cluster Blue, node 10. (d) Example of an explosion falling in 
cluster Green, node 11. (e) Example of an explosion falling in cluster Red, node 7. (f) Example of an 
explosion falling in cluster Red, node 4. Panels (b) to (f) show from top to bottom: UTC date and 
time, node to which they belong, camera image, raw seismic signal, VLP seismic signal, the high-
pass filtered infrasonic signal (>0.5 Hz), the zoomed-in view of the infrasonic signal. 

On May 16, the SPT camera (P in Figure 1) recorded 10 of the 40 explosions that fall 
into node 9 (cluster Blue). Most of the SPT videos recorded on 16 May 2019 were damaged 
due to technical problems, probably related to the data transmission system, and could 
not be used, but the few available allowed observations of this activity that cannot be 
detected from other cameras because of too-low intensity and very short gas plume. The 
observed explosions were all from the SW2 vent (Figure 10a). They were mild and mostly 
gas-dominated (Type 0, according to Leduc et al. [26]), displaying slow bowl-shaped gas 
emissions with no visible ash or incandescent lapilli. The max height reached by these 
explosions was around 10–20 m and their duration ranged between 11 and 33 s (average 
18.7 s). 

On June 8, the SPT camera recorded 31 of the 40 explosions that fell into node 10 
(cluster Blue). These explosions were Type 0 events occurring from SW1, SW2 (most 
common), or C1 vents (Figure 10a,c), having a duration between 9 and 72 s (average 22.5 
s). Some of them were not visible on the surface (nine events) probably because they were 
too weak and occurred within the conduit.  

On 9 July, the SQT camera recorded 32 powerful explosions belonging to node 7 
(cluster Red) generally with well-collimated jet and ballistic ejections from the SW vent 
region (Figure 10a,e). We could not exactly distinguish the vent because of the inclined 
view offered by this camera. The duration ranged between 10 s and 28 s (18.6 average).  

On 6 August, 26 explosions belonging to node 11 (cluster Green) were recorded. In 
this period, a lava flow descended along the SW slope of the Sciara del Fuoco (Figure 1). 
Given the almost continuous explosive activity that accompanied this effusive phase, it 
was difficult to identify the explosions associated with the seismo-acoustic signals. 
However, the SQV camera recorded some of these events. They may be related to 
explosions from multiple vents, generally the South West (SW) and Central (C) vent 
regions (Figure 1). These explosions were characterized by the ejection of pyroclastic 
fragments, most of which were incandescent spatter-like, with a wide range of ejection 
angles that gave the explosion an almost hemispherical shape, and the height reached a 
maximum of 80 m. 

Figure 10 shows an example for each of the main nodes belonging to one of the three 
clusters. In particular, panels (b) to (f) show the images and the seismo-acoustic recordings 
of the event types for nodes 9 and 10 (cluster Blue), node 11 (cluster Green), and nodes 4 
and 7 (cluster Red). For each of them, the date, the node they belong to, the image of one 
of the cameras used for the analysis, the raw seismic signal, the seismic signal filtered in 
the VLP band (0.05–0.5 Hz), the high-pass filtered infrasonic signal (>0.5 Hz), and a 
zoomed-in view of the infrasonic signal are shown from top to bottom. The SPV and SPT 
cameras are very close to the vents whereas the SQV and SQT cameras are further away 
from them (Figures 1 and 10a), therefore the explosions that produce a weak signal in the 
camera recordings (e.g., panels b and c) are visible only from the cameras installed at site 
P in Figure 1 (SPV and SPT). Figure 10b,c represents two event types of cluster Blue, which 
is associated with gas explosions, belonging to nodes 9 and 10, respectively. The events of 
this cluster show VLPs (Figure 9b,c) characterized by prolonged oscillation, especially 
evident in the events falling into node 9, and peak-to-peak amplitude generally higher 
than that of the events belonging to the other two clusters (particularly evident in node 
10). The infrasonic signal associated with these events is almost indistinguishable from 
the background noise. Figure 10d shows an example of cluster Green, consisting of only 
node 11, which groups explosions with ballistic spatters and hemispherical shapes. The 
raw seismic signal associated with this explosion is modest in amplitude whereas the 
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sustained VLP signal includes numerous oscillations. The infrasonic signal does not show 
an evident pulse linked to the explosion and is characterized by repeated minor pulses 
linked to spattering activities. Finally, Figure 10e,f represents two event types of cluster 
Red, falling on nodes 4 and 7, respectively. These events are characterized by a VLP signal 
with a distinct amplitude pulse and an infrasonic transient of remarkable amplitude. The 
raw seismic signal shows a greater contribution of the high-frequency components 
compared to the other types of events, in part due to the coupling of the infrasonic signal 
with the ground [60]. These seismo-acoustic events are associated with explosions that 
produce a well-collimated jet, with ejection of ballistic fragments as described above for 
the events of cluster Red. 

3.4. Seismo-Acoustic Clusters and GBInSAR Measurements 
We compared the time evolution of seismo-acoustic clusters with the ground 

deformations (Figure 11a) measured by the GBInSAR device in the summit area of the 
volcano (Figure 1). The investigated period was characterized by an oscillatory trend of 
deformations, with displacements towards the sensor (i.e., inflation), and displacements 
away from it (deflation). We observed an initial period from 15 November 2018 to 5 
February 2019 (1 in Figure 11), characterized by high displacements (on average 1.8 
mm/day) towards the sensor (inflation), a period of low to null displacement until March 
3 (2 in Figure 11), and new inflation of about 5 mm/day toward the sensor, which lasted 
until March 15, 2019 (3 in Figure 11). After this inflation, there was a period characterized 
by small fluctuations in displacements, which in any case remained low or null until 19 
July 2019 (4 in Figure 11). The following period was characterized by displacement 
towards the sensor (inflation), with an average rate of 2.8 mm/day and peaks that reached 
even more than 30 mm/day (9 August 2019 and 10 September 2019). 
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Figure 11. Comparison between the cumulative LOS displacement measured by the GBInSAR 
device (a) and the temporal evolution of the three main clusters, Red (b), Blue (c), and Green (d), 
obtained from the SOM analysis. Numbers 1 to 5 indicate the dates when the displacement rate 
changes. (1) 5 February 2019; (2) 3 March 2019; (3) 15 March 2019; (4) 19 July 2019; (5) 28 August 
2019, when the second paroxysm occurred. The black rectangle indicates the interval between 1 June 
2019 and 3 July 2019 when the first paroxysm occurred. 

A very striking feature, currently never observed in the GBInSAR data from 
Stromboli (e.g., [56]), was the increase in the oscillations of the crater terrace, which can 
be deduced here from the increase in the standard deviation of the daily displacement 
rate. In particular, the period considered can be divided into three subperiods: (i) from 15 
November 2018 to 5 April 2019, with a low standard deviation (on average 24 mm/day); 
(ii) from 8 May 2019 to 8 July 2019 (period preceded by the absence of data due to technical 
problems of the instrument), with an increase in the standard deviation (on average 45 
mm/day); (iii) from 9 July 2019 to 15 September 2019, which was characterized by high 
standard deviation values (on average 105 mm/day), testifying the strong oscillations of 
the crater terrace in the time of acquisition of the GBInSAR data. 

By comparing this displacement data with SOM clusters and then with the camera 
images, we found that the period dominated by the gas explosions of cluster Blue (Figure 
11c), which begins in early April (the predominance of cluster Blue is highest in June 2019, 
as shown by the black rectangle in Figure 11), occurs during a stasis of ground 
deformation interposed between two phases of inflation of the upper part of the volcanic 
edifice (Figure 11a). On the contrary, the explosions of clusters Red and Green (Figure 
11b,d), that are dominated by the ejection of coarse juvenile ballistic particles, occur in 
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periods characterized by inflation of the crater area. In particular, cluster Green, erupting 
large spatter, seems temporally correlated with the phases of more intense inflation of the 
top of the volcano. 

4. Discussion 
In a previous study, Giudicepietro et al. [4] highlighted the precursors of the 2019 

paroxysmal phase through the calculation of seismic parameters such as the polarization 
of the seismic signal, the peak-to-peak amplitude of VLP events, and the VLP size. The 
comparison of these parameters with the temporal evolution of the seismo-acoustic 
clusters retrieved with the SOM analysis clearly shows that the anomalies of the seismic 
parameters are linked to a significant change in the types of explosions before the 2019 
paroxysmal phase (Figure 12). 

In particular, significant variations have been recognized thanks to the definition of 
the VLP size parameter, which provides a value representative of the magnitude of the 
main VLP event for each half an hour. When the continuity of the seismic signal is 
satisfactory, 48 values per day relating to 48 VLP events are retrieved. The events 
identified by the VLP size calculation carried out in Giudicepietro et al. [4] have been 
selected to constitute the dataset analyzed in this work. 

The time series of the VLP size in the period 15 November 2018–15 September 2019 
shows a remarkable increase before the 3 July 2019 paroxysm. This increase is reflected in 
the time evolution of the seismo-acoustic clusters (Figure 13). Actually, about three 
months before the first paroxysm (3 July 2019), the occurrence of seismo-acoustic events 
belonging to cluster Blue (gas explosions or Type 0) increased with respect to the 
occurrence of seismo-acoustic events belonging to clusters Red and Green. This indicates 
that the gas explosions were predominant in the persistent Stromboli activity for about 
three months before the 3 July 2019 paroxysm. Furthermore, our findings indicate that 
Type 0 explosions produce large VLP events whereas they do not generate evident signals 
in the camera recordings, which in some cases do not record the event at all. We interpret 
this as the effect of large gas slugs that cause a volumetric variation in the source area of 
the VLP seismic signals when they rise along the conduit [24]. However, they do not 
generate ejection of pyroclastic fragments, or hot material, which should be detected by 
visible and thermal cameras, nor do they generate remarkable infrasonic signals, in 
frequencies greater than 0.5 Hz (Figure 10). Therefore, Type 0 explosions may not be 
detected at all by monitoring cameras and infrasonic networks whereas they are always 
clearly evident in broadband seismic signals. A low-frequency infrasonic signal, e.g., 
within the frequency range of the band of VLP seismic events (0.05–0.5 Hz), has been 
observed in some cases, but this component of the infrasonic spectrum has not been 
considered for the parameterization of the signals because it is generally affected by strong 
noise due to atmospheric weather conditions. 
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Figure 12. Comparison between: (a) seismo-acoustic clusters obtained with SOM analysis, (b) 
polarization of the seismic signal, (c) peak-to-peak amplitude of VLP events, (d) VLP size. The 
parameters shown in panels (b–d) were calculated in Giudicepietro et al. [4]. The dark gray bars are 
relevant for the period before the paroxysm of 3 July 2019 whereas the light gray bars are relevant 
for the period following that paroxysm. 

The comparison between the GBInSAR measures and the SOM clustering of the 
seismo-acoustic features highlights that, counterintuitively, the geodetic precursor of the 
paroxysm of 3 July 2019 was not a phase of inflation but rather an interruption of the 
inflation and a trend towards deflation in the last month before the paroxysm (Figure 11). 
The relationship between the prevailing type of explosions and the ground deformations 
in the crater area (Figure 11) indicates the consistency of the clustering obtained with the 
SOM with physical variations of the state of the volcano. In particular, the prevalence of 
gas explosions (cluster Blue) during a period of little or no inflation of the crater area is 
consistent with the fact that the gas is compressible and therefore when it passes through 
the final part of the conduit it produces less deformation than magma. On the other hand, 
the temporal correlation between the inflation phases in the crater area with the 
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prevalence of explosions belonging to cluster Red (well-collimated jets of ballistics), and 
especially to cluster Green (erupting large spatter), is consistent with a condition in which 
the final part of a shallow conduit is filled with magma. This condition is typical of the 
effusive phase (3 July–30 August 2019) fed by the SW vent region, during which the 
occurrence of the Green cluster explosions increased.  

 
Figure 13. The time evolution of the VLP size parameter (a) and seismo-acoustic clusters (b). 
Relative daily occurrence of the three seismo-acoustic clusters (Red, Blue, and Green) contains one 
event per half hour of signal, so the maximum number of events in a day is 48. The black rectangle 
indicates the interval between 1 June 2019 and 3 July 2019 when the paroxysm occurred. The vertical 
black line indicates the 28 August 2019 paroxysm. 

The abrupt change in the eruptive style that arose when the paroxysm of 3 July 2019 
occurred is noteworthy, suddenly determining the transition between an activity 
characterized by a prevalence of gas explosions with little or no emission of pyroclastic 
material (explosions of the Blue cluster) to an activity characterized by explosions that 
eject incandescent ballistic pyroclasts in conjunction with effusive activity (Figures 11 and 
13). The explosions that emit incandescent ballistic fragments, which appeared 
immediately after the paroxysm of 3 July 2019, are distributed in two different clusters 
that correspond to different characteristics of the explosive mechanism whose fingerprints 
are recognizable in the seismo-acoustic features. In particular, the explosions of cluster 
Red are characterized by a well-collimated jet, which reaches a height of more than 200 m 
above the vent, and by a remarkable infrasonic transient. Those of cluster Green are 
characterized by the emission of incandescent ballistic spatter with a wide range of 
ejection angles and do not show an easily recognizable infrasonic transient associated with 
them. The latter show a hemispherical shape and reach a lower height (around 80 m). 
Compared to the explosions of cluster Red, this second type of explosion is linked to a 
greater height of the magma column in the conduit, which is completely filled with 
magma, as also observed in other volcanoes, for example, Etna [61]. After the paroxysm 
of 3 July 2019, the Green cluster explosions became frequent and probably occurred at the 
same SW vents that fed the lava flow. A small but significant variation in the locations of 



Remote Sens. 2022, 14, 1287 22 of 27 
 

 

the VLP events reported in Giudicepietro et al. [4] corresponded to the sudden change in 
the eruptive style (3 July 2019, in Figures 11 and 13). These locations were concentrated in 
the SW sector of the VLP source volume before the paroxysm of 3 July 2019, and migrated 
slightly NE after this paroxysm, indicating a resumption of the activity in the NE vent 
region (see Figure 7 in Giudicepietro et al. [4]). 

Information on the final part of the conduits linked to the eruptive vents is contained 
in the seismo-acoustic features as also highlighted in the analysis of experimental seismo-
acoustic events in Giudicepietro et al. [45]. Actually, clusters Blue and Red are composed 
of more than one node, and the subdivision of the seismo-acoustic events into the different 
nodes typically corresponds to explosions with a similar mechanism emitted from 
different vent regions, as in the case of nodes 4 (N1 vent) and 7 (SW vents) that form 
cluster Red (Figure 10a,e,f). 

All the three main types of explosions recognized by the SOM analysis generally 
manifest themselves in the persistent activity of Stromboli, each of which can occur in 
different vent regions (Figure 1). Therefore, the anomaly that preceded the first paroxysm 
of 2019 was the clear predominance, within our dataset, of gas explosions (cluster Blue), 
which reached 96.12% of the total in the last month before the 3 July 2019 paroxysm 
(Figure 13). As already specified in the Data and Methods section, our dataset does not 
include all explosions, which can exceed 400 per day, but only those associated with the 
largest VLP size of every half-hour, for a maximum of 48 events per day. This selection 
allowed us to extract the 14,289 and 14,179 most significant seismic and infrasonic 
recordings, respectively, and to prevent the dataset from reaching dimensions that are not 
easy to handle for analysis. In the period preceding the paroxysm of 3 July 2019, the 
predominance of cluster Blue in this dataset indicates a degassing activity that is not 
accompanied by an effective emission of juvenile material, consistently with the deflation 
or the absence of inflation in the crater area, therefore indicating a remarkable anomaly in 
the pattern of the persistent activity of Stromboli. The eruptive style change before the 
paroxysmal phase, which is clearly recognizable in the temporal evolution of the seismo-
acoustic clusters found with the SOM analysis (Figure 11 and 13), is an important finding 
because it highlights hidden variations in the state of the volcano that may reveal 
undetected escalation of volcanic plume degassing and/or precursory leakage from 
deeply stored gas-rich magma (e.g., [62]). Actually, despite Stromboli being a well-
monitored volcano, when the first paroxysm of the 2019 eruptive crisis occurred, it was 
considered to be in a state of normal activity. 

The second paroxysm, which occurred on 28 August 2019, happened 56 days after 
the start of the effusive activity, which began immediately after the first paroxysm on 3 
July 2019. Therefore, this event occurred in a different condition compared with the first 
one, as also indicated by the temporal evolution of the seismo-acoustic clusters (Figures 
11–13). Considering the models of Stromboli paroxysm triggering proposed in the 
literature, the first paroxysm (3 July 2019) could be explained by an increased supply of 
gas and magma from the depths (e.g., [39,62,63]). However, the neural analysis of the 
eruptive style and its comparison with the deformation of the summit area allowed us to 
discover that this paroxysm was preceded by a phase of decrease in the feeding of the 
persistent activity, which is highlighted by the decreased emission of pyroclastic material 
and by the deflation of the summit area accompanied by a greater release of degassing 
(Type 0 explosions of the Blue cluster). For this reason, the input of gas and magma from 
the depths that caused the paroxysm does not seem linked only to increased activity of 
the deep magma system but also to a deceleration, in the period preceding the paroxysm, 
of persistent activity, which is partly controlled by the shallow volcanic system. On the 
contrary, the paroxysm of 28 August 2019 is consistent with a trigger due to the drainage 
of the highly porphyritic magma which is typically found in the upper part of the conduit, 
due to the effusive activity that began about two months earlier, which determined the 
rise of low-porphyritic magma capable of producing paroxysmal eruptions (e.g., [64]). In 
any case, the GBInSAR measurements indicate that in the medium term a deflation shortly 
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before the event occurred for both paroxysms. Furthermore, in the short term, the 
strainmeter data show that similar dynamics occurred in both paroxysms, as reported in 
Giudicepietro et al. [4] and Di Lieto et al. [65]. 

5. Conclusions 
The SOM analysis of the seismo-acoustic features associated with a set of about 14,200 

explosions selected based on the VLP size parameter allowed us to identify three main 
clusters in the period 15 November 2018–15 September 2019, which contains the 
paroxysmal phase of July–August 2019. 

The comparison of a subset of events with the visible and thermal camera images 
allowed us to associate distinct explosive types to the three main seismo-acoustic clusters. 
In particular, the cluster called Red is associated with explosions characterized by well-
collimated vertical jets of ~200 m in height, which eject incandescent ballistic pyroclastic 
fragments and produce a remarkable infrasonic signal. Cluster Blue is associated with gas 
explosions with height in the range 10–20 m and with little or no ash and ballistic emission. 
These bursts may not be detected by the camera recordings and infrasonic signals whereas 
they are evident in the VLP seismic signals (filtered in the 0.05–0.5 Hz frequency band). 
Cluster Green groups explosions characterized by the ejection of incandescent spatter-like 
pyroclastic fragments, with a wide range of ejection angles and hemispherical shape. The 
explosions of cluster Red are mainly generated in the NE vent region whereas the 
explosions of clusters Blue and Green are mainly emitted from the central and SW vent 
regions. 

Looking at the time evolution of the three main clusters, we discovered that the 
eruptive style of Stromboli was affected by significant changes in the three months 
preceding the 3 July 2019 paroxysm and that the gas explosions (Type 0; Leduc et al. [26]) 
falling into cluster Blue dominated the persistent Strombolian activity, especially in the 
last month before this paroxysm, forecasting the ascent of gas-rich magma from a depth 
[62]. 

Finally, by comparing the temporal evolution of the clusters with the deformations 
of the top of the volcano retrieved through GBInSAR measurements, we were able to 
recognize a relationship between the eruptive style and the inflation/deflation phases of 
the crater area. Actually, the period dominated by the gas explosions of cluster Blue (early 
April–late June 2019) was characterized by the absence of significant deformations 
whereas the effusive phase between the two paroxysms (early July–mid September 2019), 
dominated by explosions falling into clusters Red and Green, was characterized by 
inflation of the crater area, especially from July 19 until the end of our target period (15 
September 2019). The explosions of clusters Red and Green are both characterized by the 
emission of incandescent ballistic pyroclasts but with different mechanisms: the 
explosions of cluster Red produce vertical jets, with a narrow ejection cone, and generate 
a distinct infrasonic transient associated with them; the explosions of cluster Green eject 
the ballistic pyroclasts according to a wide range of ejection angles assuming a 
hemispherical shape. The latter are linked to a high level of magma in the conduit and are 
often associated with spattering. Among the three main clusters, only the explosions 
falling in the Red cluster generate clearly recognizable infrasonic transients in the 
frequency band >0.5 Hz. 

This study allowed us to discover variations in the pattern of the persistent activity 
of Stromboli that preceded the 2019 eruptive crisis and to interpret the geophysical data 
in terms of variations in the eruptive style and the state of activity of the volcano. The 
results obtained increase our ability to distinguish the different Strombolian mechanisms 
and suggest new opportunities for an advancement in the monitoring of Stromboli 
focused on the forecasting of potentially dangerous eruptive activity variations and early 
warning for paroxysms. 
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