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Abstract: Missing data and low data quality are common issues in field observations of actual
evapotranspiration (ETa) from eddy-covariance systems, which necessitates the need for gap-filling
techniques to improve data quality and utility for further analyses. A number of models have
been proposed to fill temporal gaps in ETa or latent heat flux observations. However, existing gap-
filling approaches often use multi-variate models that rely on relationships between ETa and other
meteorological and flux variables, highlighting a critical lack of parsimonious gap-filling models. This
study aims to develop and evaluate parsimonious approaches to fill gaps in ETa observations. We
adapted three gap-filling models previously used for other meteorological variables but never applied
to infill sub-daily ETa or flux observations from eddy-covariance systems before. All three models are
solely based on the observed diurnal patterns in the ETa data, which infill gaps in sub-daily data with
sinusoidal functions (Sinusoidal), smoothing functions (Smoothing) and pattern matching (MaxCor)
approaches, respectively. We presented a systematic approach for model evaluation, considering
multiple patterns of data gaps during different times of the day. The three gap-filling models were
evaluated together with another benchmarking gap-filling model, mean diurnal variation (MDV)
that has been commonly used and has similar data requirement. We used a case study with field
measurements from an EC system over summer 2020–2021, at a maize field in southeastern Australia.
We identified the MaxCor model as the best gap-filling model, which informs the diurnal pattern of
the day to infill by using another day with similar temporal patterns and complete data. Following
the MaxCor model, the MDV and the Sinusoidal models show comparable performances. We further
discussed the infilling models in terms of their dependence on data availability and their suitability
for different practical situations. The MaxCor model relies on high data availability for both days
with complete data and the available records within each day to infill. The Sinusoidal model does not
rely on any day with complete data, which makes it the ideal choice in situations where days with
complete records are limited.

Keywords: actual evapotranspiration; latent heat; infill; data-driven; missing data; flux tower; data
quality; maize field

1. Introduction

Actual evapotranspiration (ETa) is an important component of the global water bal-
ance, accounting for about 62% of global precipitation over land [1]. Understanding and
measuring ETa can provide useful information for various water resources management
applications, such as for catchment water yield, urban water supply and irrigation manage-
ment [2]. In the context of irrigated fields, ETa consists of both the evapotranspiration from
crop surface and soil evaporation, which can take a total of 50–95% of surface irrigation
water [3].

The eddy-covariance (EC) technique is considered to be one of the best techniques to
obtain continuous, high-frequency field measurements of ETa [4]. The technique measures
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sensible heat and latent heat fluxes, H and λE, where the latter corresponds to ETa. However,
missing and low-quality data are commonly seen in EC-based measurements due to
instrument malfunctions, power failures and unfavorable weather conditions [4–7]. These
data gaps limit the utility of these datasets when complete ETa records are necessary, such
as for water balance calculations. Therefore, effective gap-filling techniques are important
to improve the completeness of ETa data obtained from EC systems.

Several approaches have been developed to infill gaps in the λE flux observations or the
ETa observations directly, which have also been tested over a large range of field conditions
including various climates zones and land cover types. Table S1.1 in the Supplementary
provides a detailed summary of existing literature in these infilling approaches. These
approaches largely rely on meteorological and/or other flux variables measured at the
same location and over the same period as the variable to infill [7]. These gap-filling
methods can be categorized into: (1) infilling λE (or ETa) gaps with available records from
neighboring time steps or with similar meteorological conditions [4,8–10], (2) building
regression models between λE (or ETa) and meteorological data, which sometimes also
require further monitoring data for soil moisture and vegetation conditions such as leaf area
index (LAI) [4,11–14]; and (3) predicting λE (or ETa) with complex statistical models such
as Kalman filter, multiple imputation or machine-learning algorithms developed based on
meteorological conditions [11,12,14,15].

Although numerous gap-filling models were developed for λE flux and ETa, they share
a common limitation in the high model complexity and data requirement, highlighting
a critical lack of parsimonious gap-filling models that operate only with the variable to
infill itself. With the exception of two models, all other existing gap-filling approaches are
dependent on relationships between λE flux or ETa and other driving variables, such as
additional flux and meteorological variables. The two exceptions are the mean diurnal
variation (MDV) [10] and the analogue period (AP) [16] methods in which gap-filling
relies solely on the variable to infill itself. Thus, the applicability and performances of
most of these gap-filling methods are highly dependent on the quality and availability of
those additional variables. For example, the feasibility of such methods is limited when
the required meteorological/flux data are also missing [7,16]. Further, the infilling may
be affected by spurious relationships produced from changing meteorological conditions
and/or outliers and low-quality records within the meteorological observations [4].

This study therefore aims to develop and evaluate parsimonious models to infill gaps
in ETa observations derived from EC systems; we focus on parsimonious models that
require only ETa itself, and thus having no reliance on data for other variables. Compared
to the wide range of existing methods to fill data gaps in ETa and λE flux, the models
presented here are easier to implement and are more applicable in data-limited situations.
The simpler model structures also remove the dependence on the quality of measurements
other than ETa (e.g., flux variables and meteorological data), which are often used as model
predictors in existing infilling models. We adapt three parsimonious models that have
never been used to infill sub-daily ETa data before. Two models are fitted to the observed
diurnal patterns of ETa data in days with gaps, and one model utilizes days with complete
ETa records to identify a matching temporal pattern to infill each day with gaps. These
new models were compared with the mean diurnal variation (MDV) model, which is an
existing parsimonious model that fills gaps in sub-daily data by averaging values recorded
at the same time step within a short time window around the gap [10]. The MDV model
has been widely used to infill gaps in flux variables [4,8,14,17].

We present a systematic approach to evaluate different infilling models considering
multiple patterns of data gaps during different times of the day. We used a case study
using field measurements from an EC system over summer 2020–2021 at a maize field in
southeastern Australia. We discuss the relative performances of the four models along with
their dependence on data availability, from which recommendations are made for different
practical conditions. These gap-filling models and model recommendations presented will
be highly valuable for improving the completeness and utility of ETa measurements from
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EC systems in future studies. We made the R codes of all models evaluated in this study
publicly available on GitHub https://github.com/DanluGuo/ETinfilling/blob/main/4_
ETinfilling_Models_V2.R (accessed on 1 February 2022) along with example data.

2. Materials and Methods

The three new parsimonious gap-filling models, along with the existing model, MDV,
were evaluated with field monitoring data from an EC system. The monitoring site and
instrumentation is introduced in Section 2.1. The gap-filling models are introduced in
Section 2.2. Section 2.3 describes the evaluation process, including (1) data resampling to
represent typical missing/erroneous data at different times in a day; and (2) performance
assessment and comparison for the four infilling models.

2.1. Monitoring Site for the Eddy-Covariance System and Data

To evaluate different ETa gap-filling models, we used monitoring data from an eddy-
covariance system installed at a maize field over the 2020–2021 summer cropping season.
The study field was within the Goulburn-Murray Irrigation District in southeast Australia
(field centered at −36.18S, 145.04E). The typical cropping season for summer maize in this
region spans from November to May, while the study field was sown on 11 December
2020 and harvested on 23 April 2021. The field is located between temperate and arid
steppe climate regions [18], with an annual mean rainfall of 447 mm, based on records at
the closest public weather station (Kyabram, Australian Bureau of Meteorology #80091,
19 km away), from 1964 to 2021.

We continuously monitor the in-field weather condition alongside CO2, H2O and
sensible heat fluxes using an eddy-covariance system, between 19 December 2020 and 12
April 2021. We monitored the air temperature, solar radiation, relative humidity and wind
speed at 2 meters’ height from a standing weather station. The CO2 and H2O fluxes were
measured using an open path infrared gas analyser (LI-7500, Lincoln, NE. LI-COR, Inc.)
and a three-dimensional (3D) sonic anemometer (CSATS3, Campbell Scientific Australia)
as the core of the eddy-covariance system. All flux variables were monitored and recorded
at 20 Hz frequency and subsequently processed and aggregated to 30-min interval with
EddyPro® Software (Version 7.0) [19].

Figure 1 shows a photograph of the set of full monitoring equipment in field. The
EddyPro® Software processes raw eddy covariance data to compute biospheric/atmosphereic
fluxes of CO2, H2O and sensible heat including applying raw data filtering, calibration, and
other algorithms for calculating and correcting fluxes [20]. The remaining energy balance
components were monitored with Kipp and Zonen CNR-1 radiometer, HFT3-L REBS soil
heat flux plates and TCAV soil temperature thermocouples. The solar radiation was moni-
tored at a 30-min interval, while air temperature, wind speed and relative humidity were
monitored every 5-min; therefore, the ETa observations processed by EddyPro® was in a
30-min time step. The maize field is rectangular with cropping rows along the east–west
gradient. Within the field, the weather station and the flux tower were placed next to each
other at 10 m away from the northern field boundary and over 100 m away from the other
three boundaries. Therefore, the vast majority of the target footprint was located at the
southern side of the monitoring stations.

https://github.com/DanluGuo/ETinfilling/blob/main/4_ETinfilling_Models_V2.R
https://github.com/DanluGuo/ETinfilling/blob/main/4_ETinfilling_Models_V2.R


Remote Sens. 2022, 14, 1286 4 of 15Remote Sens. 2022, 14, 1286  4  of  15 
 

 

 

Figure 1. The eddy‐covariance system and the weather station for monitoring fluxes and weather 

conditions at the study field. The purposes for different parts of the monitoring stations are labelled. 

Note that the CSAT 3D anemometer was measuring the 3D wind speed and direction, while the 

wind speed sensor on  the  top provided a second set of wind speed measures and  the dominant 

direction within the horizontal plane for validation. The soil moisture down to 90 cm and the canopy 

temperature and NDVI were also monitored but observations were not used in this study. 

Thirty‐minute ETa data were estimated with EddyPro using the observations from 

the EC systems. The reference evapotranspiration (ET0) data at corresponding time steps 

was estimated using the weather observations and the FAO‐56 Penman–Monteith model 

[21]. The key quality issue for the ETa data occurred during periods when the wind was 

blowing from the north due to the limited fetch across the crop and a flux source footprint 

unrepresentative of the crop; therefore, the corresponding flux measurements may not be 

representative of the field, leading to inaccurate ETa estimates and poor energy balance 

closures. When wind was from southerly directions between 112.5 and 247.5 degrees (i.e., 

ESE to WSW), the sum of sensible and latent heat fluxes accounted for a median of 90% of 

available energy, suggesting a good energy closure (Figure 2). The gaps and potential er‐

rors  in  the ETa measurements prompted  the  need  to develop  effective  gap‐filling  ap‐

proaches. 

Figure 1. The eddy-covariance system and the weather station for monitoring fluxes and weather
conditions at the study field. The purposes for different parts of the monitoring stations are labelled.
Note that the CSAT 3D anemometer was measuring the 3D wind speed and direction, while the
wind speed sensor on the top provided a second set of wind speed measures and the dominant
direction within the horizontal plane for validation. The soil moisture down to 90 cm and the canopy
temperature and NDVI were also monitored but observations were not used in this study.

Thirty-minute ETa data were estimated with EddyPro using the observations from the
EC systems. The reference evapotranspiration (ET0) data at corresponding time steps was
estimated using the weather observations and the FAO-56 Penman–Monteith model [21].
The key quality issue for the ETa data occurred during periods when the wind was blow-
ing from the north due to the limited fetch across the crop and a flux source footprint
unrepresentative of the crop; therefore, the corresponding flux measurements may not be
representative of the field, leading to inaccurate ETa estimates and poor energy balance
closures. When wind was from southerly directions between 112.5 and 247.5 degrees (i.e.,
ESE to WSW), the sum of sensible and latent heat fluxes accounted for a median of 90% of
available energy, suggesting a good energy closure (Figure 2). The gaps and potential errors
in the ETa measurements prompted the need to develop effective gap-filling approaches.
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Figure 2. When wind directions are between 112.5 and 247.5 degrees (i.e., ESE to WSW), the heat
fluxes (the sum of sensible and latent heat fluxes) accounted for a median of 90% of available energy,
suggesting a good energy closure.

2.2. Three Gap-Filling Models for Sub-Daily ETa

We adapted three models to infill gaps in sub-daily ETa and evaluated their perfor-
mance along with a benchmarking model using our field observations. Suppose that each
day within the observation period can be categorized by data availability as either a full
day (FUL), a partial day (PAR), or a sparse day (SPA) as follows:

• Full day (FUL)—where data within the day is complete or mostly (≥80%) complete;
• Partial day (PAR)—where part of the data within the day is missing but a substantial

portion (30–80%) is still available;
• Sparse day (SPA)—where data within the day is mostly (>70%) missing/erroneous.

None of the three gap-filling models that we adapted and evaluated require data
other than ETa records themselves. The models use the available records differently
to fill gaps in the daytime 30-min ETa records within each PAR day (i.e., day to infill).
The Sinusoidal model (Daily sinusoidal functions of ETa) describes the diurnal patterns of
ETa with a sinusoidal function of the time in a day, which have been widely applied
to fill gaps in time-series of meteorological data, soil heat flux data, and even gaps in
daily evapotranspiration [22–24]. The Smoothing model (Daily smoothing functions of ETa)
describes the diurnal patterns of ETa with polynomial functions of the time in a day, which
is adapted from a common gap-filling approach for meteorological time-series [25]. The
MaxCor model (Daily temporal pattern matching for ETa) fills gaps in a day based on another
day with complete records that is selected as having the most similar diurnal pattern with
the day to infill. This model is conceptually similar to the analogue period (AP) model
which fills a gap by searching the full dataset for an ‘analogue period’ that that has similar
temporal patterns with the data surrounding the gap [16]. However, the implementation
of MaxCor is much simplified as the search is based on a daily time-step, rather than the
more flexible, user-defined time step as implemented in AP; specifically, MaxCor searches
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for an ‘analogue day’, while AP allows any length of analogue period and recommends
case-specific investigation to determine the optimal length. None of the three models have
been used to infill sub-daily ETa data to our knowledge.

As a benchmark to the three abovementioned new models, we also included the
mean diurnal variation (MDV) model in our evaluation, as this has been a widely used
parsimonious gap-filling model for λE and carbon fluxes [4,8,14,17]. Similar to the three
models introduced in this study, MDV requires the variable to infill as the only input. The
MDV model was originally developed to fill gaps in laten heat flux observations [10]. The
model fills any gap in sub-daily records by averaging values measured at the same time
step on days adjacent to (both before and after) the gap, within a time window usually
between 4 and 15 days. A shorter averaging period is considered insufficient to determine
a reasonable mean value, while a longer average period might introduce errors due to
potential non-linear impacts from other environmental variables. More details on the MDV
model are included in its original paper [10]. For the model evaluation in this study, we
implement MDV to infill any missing 30-min ETa records by the average of all values
recorded at the identical 30-min time slot, within the adjacent 14 days (i.e., 7 days before
and 7 days after the day where gap presents).

Common to all infilling models, a specific daytime period is defined for each day to
infill, based on solar time angles estimated with the latitude and longitude of the study
site and the ordinal dates within the record period, following Chapter 3 of the FAO-56
guidelines [21]. Across the season, the ranges of sunrise and sunset times are between
5:30 a.m. and 6:30 a.m. and 5:30 p.m. and 7 p.m., respectively; solar noon is between 12 p.m.
and 12:15 p.m. Any ETa for times outside of daytime is treated as night-time ETa and
assumed negligible. Any day that belongs to the SPA set is not filled because the available
data is considered insufficient to be filled reliably. The threshold chosen to define the SPA
set (having >70% of the 30-min ETa data missing) implies that a day can be infilled with
a minimum of 15 out of 48 records available. This is a relatively low data requirement
which could lead to unreliable gap filling. However, since our primary aim is to present
and evaluate gap-filling models, a more important consideration in choosing the threshold
was to enable a reasonable number of days remaining to be used for model evaluation (see
Figure S1.1 in the Supplementary Materials for an assessment of data availability across
the season). Details on how the FUL and PAR datasets were used for model evaluation is
included in Section 2.3.

The three infilling models are detailed subsequently:

• Sinusoidal—Daily sinusoidal functions of ETa: This model uses all available daytime
30-min ETa records on the day to be infilled (each day in the PAR set) to fit a sinusoidal
function between ETa and time of the day, which has a period specific to that day. The
fitted sinusoidal curve is then used to estimate all 30-min daytime ETa while infilling
the missing time steps. We chose the sinusoidal function because of its simplicity
and ability to represent the overall diurnal patterns of ETa, which we concluded from
a visual assessment of ETa for the FUL days within our records (days with >80%
complete data, see details in Section 2.3.1). The sinusoidal function used takes the
form of:

ETa,H = Amp× sin
(

2πH
P

)
(1)

Equation (1) describes the diurnal pattern of daytime 30-min ETa with the positive
half of a sine curve. H is the time since sunrise in decimal hours at the start of each 30-min
slot (e.g., 1, 1.5, 2 h, and H = 0 at sunrise). Ideally, the full period of the sinusoidal curve, P,
should be equal to twice of the daytime length (time between sunrise and sunset) of each
day, which enables the representation of all daytime 30-min ETa with half of the sine curve
where the daily peak occurs halfway between the sunrise and sunset. However, we found
via a preliminary analysis on all FUL days that the daytime ETa peaks around 1:30 p.m.,
and the ETa diurnal patterns seem to follow only part of the half-sine curve (Figure 3). To
represent these diurnal patterns in daytime ETa more accurately, the period P in Equation
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(1) is defined for each day as four times the hour difference between the sunrise and the
hour of peak daytime ETa (1:30 p.m.), and the modelled ETa from Equation (1) after sunset
of each day is zeroed; this adjustment of the sinusoidal function ensures that the model
best resembles the observed asymmetrical diurnal patterns in ETa. Amp is the only model
parameter to be calibrated, which represents the amplitude of the sine curve; it is fitted by
minimizing the sum of squared residuals from the available data on the day to be infilled.
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• Smoothing—Daily smoothing functions of ETa: This model uses all available daytime ETa
data on the day to be infilled to fit a second-order polynomial smoothing function
between ETa and time of the day. The fitted smoothing function is then used to infill
ETa for the missing time steps. The second-order polynomial smoothing function
takes the form of:

ETa,H = AH2 + BH + C (2)

In Equation (2), H is the time since sunrise in decimal hours at the start of each 30-min
slot; A, B and C are the model parameters to be calibrated.

• MaxCor—Daily temporal pattern matching for ETa: For each day in the PAR set, this model
first calculates the linear correlation (i.e., Pearson correlation coefficient) between the
daytime ETa records in the current day and each day in the FUL set. The correlation
calculation only considers the common timeslots where data are available in both the
current day and each FUL day. Based on these correlations, the FUL day that has the
maximum correlation with the day to infill is selected. Within this ‘matching FUL
day’, all individual 30-min daytime ETa values (ETa_FUL) are divided by their sum
(ETa_tot_FUL) to calculate the proportions of 30-min ETa to the daily total, ETa_prop.
This is described in Equation (3), where H = 0, 0.5, 1, . . . ,24, denoting the time since
sunrise in decimal hours:

ETa_prop,H =
ETa_FULH

ETa_tot_FUL
=

ETa_FULH

∑24
H=0 ETa_FULH

(3)

To infill the data gaps in the PAR day, we first estimate the daily total ETa of this day
(ETa_tot_complete_PAR) by dividing the sum of all available ETa records (ETa_tot_avail_PAR)
by the sum of ETa_prop values corresponding to these timeslots with available data. This
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is described in Equation (4), where Hpar are the time since sunrise (decimal hours) for all
timeslots with available records in the PAR day:

ETa_tot_complete_PAR =
ETa_tot_avail_PAR
∑i∈Hpar ETa _prop,i

=
∑i∈Hpar ETa_PARi

∑i∈Hpar ETa _prop,i
(4)

We can then estimate each 30-min ETa value for the PAR day (ETa_PAR) with the
estimated total ETa for the day (ETa_tot_complete_PAR) and all proportions of 30-min ETa,
ETa_prop, which enables us to fill the ETa gaps (Equation (5)).

ETa_PARH = ETa_tot_complete_PAR× ETa _prop,H (5)

We made the R codes which implement all four abovementioned models available on
GitHub https://github.com/DanluGuo/ETinfilling/blob/main/4_ETinfilling_Models_
V2.R (accessed on 1 February 2022) along with the data used in this study.

2.3. Model Evaluation Process

Although the ultimate goal of the above-mentioned gap-filling models is to infill sub-
daily data for days with partially missing data (i.e., the PAR set, as detailed in Section 2.2),
our model evaluation was based on days within the FUL set only to understand the
performance of individual infilling models. Specifically, we divided days within the FUL
set into training and evaluation sets. We added artificial gaps to data (i.e., assign an NA
value to some of the data) in the evaluation set to represent typical types of missing data
from the field observations.

2.3.1. Classifying Daily Data Completeness

We first classified all days in our monitoring period into the FUL, PAR, or SPA sets by
the completeness of data in each day, as highlighted by different colors in Figure 4.
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The data were then used as follows.

1. The FUL set (green in Figure 4) contains days with complete/near complete (≥80%)
records. These data will be further divided for training and evaluation of the four
infilling models (Section 2.3.2).

2. The PAR set (orange in Figure 4) contains days with partially complete (30–80%)
records. These data were then used to summarize the typical patterns of missing data.
We identified three typical patterns of missing data as:

• A: with most missing data in the morning (sunrise to 10 a.m.);
• B: with most missing during mid-day (10 a.m. to 3 p.m.);
• C: with most missing during afternoon (3 p.m. to sunset).

The days highlighted in red in Figure 4 are classified into the SPA set, where data
for most (>70%) of the day were missing. As discussed in Section 2.2, these days are not
recommended to be infilled because of significant lack of ‘ground truth’.

2.3.2. Building the Training and Evaluation Datasets

Figure 4 identified 32 days within the FUL set, which were then randomly divided into:

1. A training set (60%, 19 days); and
2. An evaluation set (40%, 13 days).

The training dataset was used to represent days with complete data (the FUL set).
Within the evaluation set, we added artificial gaps to each day to mimic each of the three
typical patterns of missing data (A, B and C, Section 2.3.1). This led to three separate
evaluation sets representing each type of missing data to be infilled with the four models.
For each day in each evaluation set, data points corresponding to the gaps were held off
(assigned as NA) and used for evaluating the performance of infilling models. For example,
Figure 5 shows the training and evaluation sets that represent missing data Type A (missing
morning, where red points are artificial gaps), in which all data between sunrise and 10 a.m.
in the evaluation set were held off. Data splits for the other two types of missing data (B
and C) are shown in Figures S1.2 and S1.3 in the Supplementary Materials.
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2.3.3. Comparing the Model Infilling Performances

With the training and evaluation datasets created following Section 2.3.2, the four
gap-filling models (three proposed models and MDV, see Section 2.2) were compared by
their evaluation performance on infilling the missing 30-min ETa data. The root-mean-
squared-error (RMSE) and the r-sqaured (R2) were used to assess the model performance
against the evaluation data; the former represents the average error in infilling the 30-min
ETa relative to true observations and the latter represents the proportion of variance in
infilling the 30-min ETa observations that can be explained by the model. As a further
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reference to infilling performances, the RMSE values for the daily total ETa were also
calculated for days that contain missing data.

3. Results

Figure 6 summarizes the RMSE of 30-min ETa for the four infilling models for the three
types of missing data (A: missing morning; B: missing mid-day; C: missing afternoon),
respectively. The MaxCor model consistently has the lowest model errors across all three
situations, with RMSE values between 0.03 and 0.07. Following MaxCor, the next best
models are the MDV (with RMSE ranging from 0.04 to 0.1) and the Sinusoidal (with RMSE
ranging from 0.05 to 0.1) models, which have comparable magnitudes of errors. The
Smoothing model has the worst performance with the highest errors for both Type A
(missing morning, RMSE = 0.18) and Type C (missing afternoon, RMSE = 0.2). Considering
the variance explained, the Sinusoidal and the MaxCor have higher ability to explain the
observed variance, with R2 values ranging from 0.7 to 0.87 and 0.68 to 0.82, respectively.
The MDV model struggles to explain variance for Type B (missing mid-day, R2 = 0.25)
while the Smoothing model again shows limited performance for Types A and C (missing
morning and afternoon, R2 = 0.45 and 0.37, respectively).
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With the above summary of performance of the four infilling models for the 30-min ETa
data, we further aggregate infilling performance for days with missing data to understand
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the expected accuracy at the scale of daily ETa. Figure 7 summarizes the daily RMSE of four
infilling models for the three types of missing data. The best-performing model, MaxCor,
has mean errors of 0.26–0.62 mm in daily total ETa.
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4. Discussion
4.1. Performances of Gap-Filling Models

Within the four infilling models that we evaluated, we see better performance for two
models, which both perform gap filling for a day based on other ‘similar’ days and another
model based on fitting functions to diurnal pattern of each day with gaps. Specifically,
the MaxCor model identifies another day that has a complete record, while also having a
similar diurnal pattern in the 30-min ETa to the existing records of the day to infill. The
MDV model estimates missing records using the mean value of the specific time step in a
day from neighboring days. The Sinusoidal model fits a sinusoidal function to the existing
records within each day to infill and then uses the sinusoidal function for gap filling. The
performances of all these three models are relatively stable across different missing data
types, with less than 0.06 difference in the RMSE of 30-min ETa across different types of
missing data.

In contrast, we see lower and more variable performances for the infilling model that
uses smoothing functions to fill each day with gaps (Smoothing), where the maximum
difference of RMSE of 30-min ETa across different missing data types is 0.11. This suggests
a potential limitation of infilling performance due to the model structure. Specifically,
the second-degree polynomial which is used as the smoothing function introduces more
flexibility in the diurnal patterns of the 30-min ETa compared to either the MaxCor or the
Sinusoidal models in which the diurnal pattern for the day to infill is bounded by either a
similar temporal pattern in the actual records of the other day or by a sinusoidal function.
Consequently, the fitted smoothing functions can be highly sensitive to fluctuations and
outliers in the existing data, which can lead to spurious diurnal patterns and thus large
errors in the infilled records.

There is no systematic pattern of how model performance varies across different
types of missing data, suggesting that these variations are likely a result of individual
model structures. For examples, the Sinusoidal and the MaxCor models show the worst
performances for missing data Type B (missing mid-day), which may indicate the critical
role of mid-day records. For the Sinusoidal model, these mid-day records generally consist
of higher absolute values of ETa and thus have large impact on the calibration of the
sinusoidal infilling function. For the MaxCor model, this low performance for missing
mid-day records could be a result of the relatively high day-to-day variation of the temporal
patterns in mid-day ETa (Figures 2 and 3), which leads to difficulties to infill missing records
reliably using the temporal pattern within another day.
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This study focuses on parsimonious gap-filling models for ETa, which do not rely on
any input variables other than ETa itself. Thus, they do not explicitly take into account any
impact of weather conditions (e.g., solar radiation, cloudiness, rainfall, temperature), which
are often considered important driving variables for ET. As such, all these parsimonious
models share a common and natural caveat in maintaining robust performance on days
when the influence of weather conditions on ETa is strong, and when weather conditions
change abruptly. The infilling errors would be greatest when the data gap falls across a
period of abrupt change in weather conditions. This is a fundamental limitation of all
parsimonious gap-filling models that solely rely on ETa data.

To further understand the impact of this general limitation of parsimonious infilling
models, we performed an additional analysis on the performance of the four gap-filling
models under various cloud cover and solar conditions. Specifically, we plot the daily RMSE
of each gap-filling model under the three types of data gaps against the daily ratio of actual
solar radiation to clear-sky solar radiation (Figure S1.4 in the Supplementary Materials).
We found that none of the four models are systematically influenced in performance by
various cloud cover conditions within our dataset. This is likely due to the relatively limited
variation in cloud cover conditions within our dataset to comprehensively characterize
the effects of clouds on the accuracy of these gap filling approaches. Another plausible
hypothesis is that these parsimonious gap-filling models, by considering the temporal
patterns of sub-daily ETa, have already effectively represented variation due to changes
in cloud cover conditions (since solar radiation is an input when estimating ETa from
EC-systems). However, this could only be the case if the cloud cover is relatively stable
throughout the day; under situations where the amount of cloud cover is highly variable
within a day, the diurnal variations of ETa would be much more difficult to be predicted
from a simple smooth curve and/or averaging values from another day(s). This analysis
illustrates the potential limitation of the infilling approaches under highly variable weather
conditions, which is a general limitation to all parsimonious infilling models as discussed
above. Similarly, we can expect much higher influence of the weather conditions on model
performance when the weather is more highly variable throughout a day. Therefore, we
strongly recommend individual investigation of this limitation when testing these (and
potential other) parsimonious models to new datasets.

4.2. Recommendations for Practical Situations with Different Data Availability

In addition to the above comparison of model performances, we discuss the data
requirement of individual infilling models to provide recommendations for different practi-
cal situations.

While the MaxCor and the MDV models are the best-performing models, both models
also have higher data requirements for both days with complete data and the available
data within each day to infill. Higher data availability on each day to infill enables a better
understanding and thus a more reliable match of that day to the appropriate day with
complete records. Large numbers of days with complete records are also critical for both
the MaxCor and the MDV models: for the former, these provide a diverse set of diurnal
patterns to match with the data in the day to infill; for the latter, more days with complete
records can provide reliable mean estimates for each time step to infill.

Both the Sinusoidal and the Smoothing models use infilling functions that are fitted to
the existing 30-min ETa records within the day with missing data. Therefore, neither require
any day with complete data. Considering this together with the model performances in
Section 3, the Sinusoidal model becomes the best choice to infill a dataset with limited
complete days of record. An example for this situation is where the monitoring location
experiences regular unfavorable wind direction that occurs for part of most days, leading
to low-quality data (i.e., effective gaps) on most days of the eddy-covariance observations.
Such a data quality issue is likely a result of inappropriate selection for the location of the
eddy-covariance system, which may be due to practical constraints in many cases (e.g., to
avoid conflict with machinery access to cropping fields, sites with naturally unfavorable
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conditions in certain upwind directions). It is also worth noting that both the Sinusoidal
and the Smoothing models do require a reasonable amount of data available in each day to
infill, to enable a reliable infilling function to be developed. This data requirement is less
strict for the Sinusoidal model, as the sinusoidal functions pose greater constraint on the
diurnal patterns of 30-min ETa. We encourage individual model evaluation in further case
studies to obtain a specific and precise understanding of the impacts of data availability on
model performance.

5. Conclusions

We adapted three parsimonious data-driven models to infill gaps in sub-daily ETa
observations from eddy-covariance systems and evaluated these models together with
another commonly used benchmarking model of similar data requirement. We applied
these models to infill gaps in the 30-min ETa data collected from an eddy-covariance
monitoring station installed in a maize field in southeastern Australia, over the 2020–21
summer season. We identified the best gap-filling model as a pattern-matching model to
inform the diurnal pattern of the day to infill by another day with complete data (MaxCor).
The second-best model is the benchmarking model, mean diurnal variation (MDV), closely
followed by another proposed model which performs gap filling with sinusoidal functions
fitted to the diurnal pattern of each day with gaps (Sinusoidal).

Further recommendations on model choice were made considering practical data
availability. The best-performing MaxCor model relies on high data availability for both
days with complete data and the available records within each day to infill. The Sinusoidal
model does not rely on days with complete data while also offering reasonable performance,
which makes it the best choice in situations where complete days of records are limited.
We acknowledge that the performance of individual infilling models assessed may be
specific to our study site and monitoring period, and results may differ across different
climatic conditions, evaporative surfaces (i.e., crop type) and data availability. Therefore,
local evaluation is highly recommended for future studies aiming to apply these infilling
techniques. The strategies to allocate available records—to be used for calibration and
evaluation of the infilling models and to be excluded from infilling due to data scarcity—
should also be tailored for individual case studies, based on specific assessments of data
availability (e.g., Figure S1.1). To facilitate further applications, we made the R codes of
all four models evaluated in this study publicly available on GitHub https://github.com/
DanluGuo/ETinfilling/blob/main/4_ETinfilling_Models_V2.R (accessed on 1 February
2022) along with the data we used to facilitate further applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14051286/s1, Figure S1.1: Percentage 30-min ETa data availability within each day, sorted
from the lowest to highest across the full monitoring dataset. Figure S1.2: Split of the training and
evaluation subsets to represent missing data Types B i.e., missing mid-day.. Figure S1.3: Split of the
training and evaluation subsets to represent missing data Types C i.e., missing afternoon. Figure S1.4:
Daily RMSE of the four gap-filling models under the three typical patterns of missing data (A—
missing morning; B—missing mid-day; and C—missing afternoon), plotted against the daily ratio
of actual solar radiation to clear-sky solar radiation. Each panel shows one gap-filling model where
the three missing data types are differentiated by colours. Table S1.1: Existing approaches to infill
gaps in latent heat flux, carbon flux or directly for ETa. Orange cells highlight models that rely on
additional input variable other than the variable to infill. Green cells highlight the only two existing
parsimonious gap-filling models, the mean diurnal variation (MDV) and the analogue period (AP).
Reference [26] is cited in the Supplementary Materials.
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