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Abstract: Natural vegetation provides various benefits to human society, but also acts as fuel for
wildfires. Therefore, mapping fuel types is necessary to prevent wildfires, and hyperspectral imagery
has applications in multiple fields, including the mapping of wildfire fuel types. This paper presents
an automatic semisupervised machine learning approach for discriminating between wildfire fuel
types and a procedure for fuel mapping using hyperspectral imagery (HSI) from PRISMA, a recently
launched satellite of the Italian Space Agency. The approach includes sample generation and pseu-
dolabelling using a single spectral signature as input data for each class, unmixing mixed pixels
by a fully constrained linear mixing model, and differentiating sparse and mountainous vegeta-
tion from typical vegetation using biomass and DEM maps, respectively. Then the procedure of
conversion from a classified map to a fuel map according to the JRC Anderson Codes is presented.
PRISMA images of the southern part of Sardinia, an island off Italy, were considered to implement
this procedure. As a result, the classified map obtained an overall accuracy of 87% upon validation.
Furthermore, the stability of the proposed approach was tested by repeating the procedure on another
HSI acquired for part of Bulgaria and we obtained an overall stability of around 84%. In terms of
repeatability and reproducibility analysis, a degree of confidence greater than 95% was obtained.
This study suggests that PRISMA imagery has good potential for wildfire fuel mapping, and the
proposed semisupervised learning approach can generate samples for training the machine learning
model when there is no single go-to dataset available, whereas this procedure can be implemented to
develop a wildfire fuel map for any part of Europe using LUCAS land cover points as input.

Keywords: forests; fires; fuel map; hyperspectral; LUCAS; machine learning; PRISMA; pseudolabels;
SVM classifier; sample generation

1. Introduction

Fire is a significant ecological disturbance that threatens ecosystem sustainability
worldwide, specifically in Mediterranean regions. Bond et al. [1] consider fire to be like the
biggest “herbivore” on Earth [1]. Over the last five decades, researchers have paid much
attention to the ecological impacts of fire. Fire behaviour helps determine the impact of fire
to a considerable extent. Fire behaviour has different ecological impacts, and also helps us
to determine the optimal suppression strategy for any given fire [2–5]. Fire intensity and
rate of spread are two important aspects of fire behaviour that are affected, among other
factors, by the load, type, and continuity of fuel [6]. Fuel types vary; for instance, Pinus
halepensis is more flammable [3] due to the highly flammable resins and oils, producing
high-intensity fires. At the same time, fuel continuity and fuel load relate to the percentage
of the surface covered by vegetation—in other words, by potential fuels [6]. The accuracy
and effectiveness of any tool for the simulation of fire behaviour or fire risk assessment
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depend on the accuracy and availability of data related to the vegetation ecosystem [3,4].
Spatially and thematically accurate vegetation cover is critical for the suppression and
prevention of fire in fire-prone areas and ecosystems [7]. Goodenough et al. [8] have
compared forest classification accuracies between EO-1’s Hyperion and ALI sensors and
Landsat 7 ETM+ and concluded that hyperspectral sensors provide better discrimination
with greater accuracy in comparison with multispectral sensors in several forest types. The
potential of wildfire fuel mapping using hyperspectral data of Hyperion was evaluated
by Yoon et al. [9] almost a decade ago and they concluded that Hyperion imagery has
good potential for wildfire fuel mapping. Mapping boreal forest fuel types for interior
Alaska, Smith et al. [10] used AVIRIS-NG hyperspectral data with 80% accuracy, while
LANDFIRE’s Existing Vegetation Type product derived from Landsat-8 had 33% accuracy.
For the same region of interest, hyperspectral data simulated using Sentinel-2 was used
to map boreal forest fuel type with 89% accuracy, which was better than the accuracy
obtained using multispectral Sentinel-2 [11]. A review was conducted by Sander et al. [12]
on hyperspectral remote sensing of fire. The authors commented that hyperspectral data
had proven utility in the temporal stage of the fire disturbance continuum, including prefire
applications, i.e., in exact fuel type and condition assessment. Also, they added that, until
2018, there were only airborne hyperspectral data, and upcoming spaceborne missions like
PRISMA, EnMAP, and HyspIRI will provide opportunities to explore further the linkages
between ecosystem properties and fires at a regional to global scale. In this work, the
feasibility and maturity of hyperspectral imagery from PRISMA (PRecursore IperSpettrale
della Missione Applicativa), launched by the Italian Space Agency (ASI) in 2019, have been
evaluated for mapping wildfire fuel types. After the commissioning phase, access to the
data was granted to users in early June 2020. PRISMA is an on-demand mission, and the
available data in the archive are limited [13].

Machine learning algorithms have become a vital tool in modern hyperspectral image
analysis, especially in land cover classification, because of their unprecedented predictive
power [14,15]. However, the accuracy of the machine learning-based classification depends
entirely on the dataset. Therefore, annotated datasets have become a crucial pre-condition
for developing and evaluating machine learning-based classifications. However, due to the
heterogeneity of remote sensing measurements and tasks, there is no single go-to dataset
that could serve the purpose of standardized pretraining and benchmarking [16,17]. Thus,
a dataset was prepared by pseudolabelling the pixels or spectral signatures collected from
the PRISMA image for mapping wildfire fuel types.

Another challenge in machine learning is the selection of a suitable machine learning
classifier for a particular task among the various machine learning methods. Selecting based
on accuracy is also tricky since the accuracy of ML algorithms depends upon various factors
such as dataset pattern, size of training data, training parameters, etc. In such cases, an
optimal algorithm can be selected considering the specific case, classes to be mapped, nature
and size of training data, and predictor variables. The classification accuracy of supervised
machine learning classifiers varies with the size of the training samples [18]. One study
concluded that SVM accuracy decreased by 6.25% when using just 15 training samples
instead of 100 for each class, and SVMs were less sensitive to training data size than other
machine learning models. Thus, a support vector machine (SVM) classifier was chosen
to perform the classification of vegetation types considering all the factors mentioned
above, specifically the size of training data [19,20]. Classification of the mixed pixels in
hyperspectral data is another vital process to be considered. In our case, a fully constrained
linear mixing model was used to assign mixed pixels to their appropriate category. In the
framework of EFFIS (European Forest Fire Information System) and FUELMAP projects
under the Joint Research Centre (JRC), a categorization of the fuel types available in Europe
was carried out and correlated with Anderson fuel models (1982) [21,22].

Therefore, this paper presents an automatic procedure for mapping wildfire fuel types
using PRISMA hyperspectral imagery in a semisupervised machine learning approach. This
work was started under the project S2IGI (an integrated system for forest fire management)
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funded by the Regional Administration of Sardinia under the POR (Programma Operativo
Regionale) FESR (Fondo Europeo di Sviluppo Regionale) Sardinia and improved under
the project ASI-HYP, funded by the Italian Space Agency. The main objectives of this
work are (1) to develop an automatic procedure for wildfire fuel mapping, using PRISMA
hyperspectral imagery and the land cover data from regional/national portals as input and
(2) to correlate the fuel types to Anderson fuel models, more appropriately incorporating
secondary classifications (sparse/dense, plains/mountains, etc.), if necessary, to extract the
attributes of fuel models such as the fuel load (t/ha) for the living and dead components of
the vegetation, the height of the fuel (litter) to the ground, extinction humidity (%), flame
height (m), and propagation rate (m/s). In this paper, initially, the procedure developed to
map fuel types using the vegetation map from the regional portal of Sardinia is presented,
and the possibility of this procedure being extended to any part of Europe by using the
LUCAS database as input is also explained. Section 2 describes the PRISMA data and
methods used, and Section 3 describes the stepwise procedure of dataset preparation and
fuel mapping. Section 4 represents and discusses the results obtained. Finally, Section 5
summarizes the conclusions of this work.

2. Data and Methods

This section explains the PRISMA hyperspectral data, the region of interest, and
the methods implemented in this work. Collecting in situ data for the whole island is
impossible, so a procedure is proposed to prepare a dataset given one known pixel as
input, referring to the maps available from regional/national portals. Samples for the
dataset were generated by pseudolabelling the unlabelled pixels available in the image
using the methods described in this section. This process involves guided image filtering,
Jeffries–Matusita spectral angle mapper, and k-means clustering methodology. Finally, the
samples generated were implemented to train the support vector machine classifier.

2.1. Study Area

This work is part of the project funded for Sardinia. Sardinia, an island in the south
of Italy and the second-largest island in the Mediterranean Sea, as shown in Figure 1, has
frequent fires. In the last decade, 1008 fires per year ere recorded in Sardinia alone, which
is 20% of the total fires at the national level [23]. This is a windy island with somewhat
rainy winters, hot sunny summers, and an average temperature range of 10 ◦C in winter
(January/February) to 24–25 ◦C in summer (July/August).

As an example, an image of 10 October 2021 on the southern part of this Mediterranean
island was selected from the archived data shown in Figure 1. This image comprises Monte
Arcosu Forest, one of the immense holm oak forests of the Mediterranean region, which
is east of Cagliari. The region of interest is hilly with an altitude of around 800 m and a
total area of 32 km2. The primary vegetation in this forest is holm oak (Quercion ilicis) and
mastic shrubs of two different families (Ericion arboreae and Oleo ceratonian). The highest
areas have low vegetation, specifically meadows of two different families (Teucrion mari
and Periballio-Trifolion subterranei), whereas the lowest areas (around 200–300 m altitude)
have evergreen broadleaved trees (Quercetalia ilicis) [24,25].

2.2. PRISMA Data

In this work, hyperspectral imagery from the PRISMA satellite as used to map vegeta-
tion fuel types. PRISMA has launched a new era of hyperspectral imaging spectroscopy.
This imaging spectrometer can capture a continuum of spectral bands with 400 to 2500 nm
at a spatial resolution of 30 m. The sensor counts 173 bands in the shortwave infrared
(SWIR) within 920–2500 nm, and 66 bands are in the visible near-infrared (VNIR) portion
of the spectrum (400–1010 nm). The widths and spectral sampling intervals are ≤12 nm. A
panchromatic camera providing a single-band (400–700 nm) image at 5 m spatial resolution
is also onboard the ASI’s satellite. PRISMA is an on-demand mission; the data in the
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archive (https://prisma.asi.it, accessed on 15 January 2022) are limited but imagery for the
required location can be acquired upon request [13].

Figure 1. (a) Geographic location of Italy for reference and (b) the geographic location of the PRISMA
image and the 18 input pixels for model training.

ASI delivers PRISMA products in four levels: L1, L2B, L2C, and L2D. L1 data contain
top of atmosphere (TOA) radiometrically and geometrically calibrated hypercube and
panchromatic radiance images. L2B contains geolocated and atmospherically corrected
hypercube and panchromatic radiance images. L2C contains geolocated and atmospheri-
cally corrected hypercube and panchromatic reflectance images, whereas L2D also contains
similar images but they are geolocated and geocoded. In addition, the L1 product comprises
cloud and land cover maps, whereas L2C and L2D products have atmospheric constituent
maps such as water vapour, aerosols, and thin cloud optical thickness. For detailed informa-
tion on PRISMA product specifications, please refer to the PRISMA product specifications
document on https://prisma.asi.it (accessed on 15 January 2022).

2.3. Reference Data

Reference data are necessary to train the machine learning model and validate the
predicted output. Usually, remote sensing specialists conduct field campaigns to collect
ground truth data as reference data for validation, but field campaigns were not performed
due to COVID-19. During the pandemic, researchers around the world have tried other
alternatives, such as using readily available maps/ground truth data collected by volunteers
or airborne data as a reference [26–28]. This work used the Nature system map (Sardinia)
accessed through the Sardinia geoportal and CORINE land cover (CLC) of 2018 and
Grassland maps accessed from Copernicus Land Monitoring Service as reference data.
The Nature System map (Carta della natura) prepared by Italian National Institute for
Environmental Protection and Research (ISPRA) is more detailed and accurate [29,30] than
the CLC, having an accuracy of around 85% [31]. Among these three, CLC has a total
area coverage of 5.8 Mkm2 and 32 European Environmental Agency countries and seven
cooperating countries are under coverage [32]. Two validation studies show that it has
achieved an accuracy of 85% [32], which encouraged us to use CLC for reference data.

The Nature System map has 93 classes for Sardinia; CLC has 44 land cover types [31,32]
at the third level for Europe, whereas the grasslands map shows the presence/absence
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of grasslands. For the region of interest, the nature system map had 43 classes, among
which 18 fuel types were selected, as shown in Figure 2a, depending upon the area covered
by each class. These three maps were used to differentiate and cross-check the pixels
corresponding to trees, shrubs, and grasslands. Three classes, namely coniferous vegetation,
holm oak trees, and grasslands near the Mediterranean coast, were verified using CLC and
grassland maps.

Figure 2 shows the Nature System, CLC, and grassland maps that were referred to
for input and later for validation of output. Classes were mainly chosen from Nature
System, and grassland maps and CLC were used to cross-check in case of any confusion in
selecting the appropriate pixels. Classes are shown in Figure 2a: 1—Halophyte vegetation
with the dominance of annual succulent Chenopodiaceae, 2—Matorral of evergreen oaks,
3—Matorral with olive and mastic, 4—Matorral of junipers, 5—Low olive and mastic
shrubs, 6—Low shrubs (from Calicotome family), 7—Formations of Euphorbia dendroides,
8—Garrigues and meso-Mediterranean silicicole spots, 9—Garrigues and calciculous me-
somediterraneal spots, 10—Arid Mediterranean meadows, 11—Mediterranean grassland
(including Mediterranean and postcultural sub-Mediterranean vegetation), 12—Riparian
Mediterranean ash forests, 13—Tamarisk and oleander, 14—Tyrrhenian Cork, 15—Sardinian
Leccete (Holm Oak), 16—Vegetation of reeds and similar species, 17—Coniferous vegeta-
tion, and 18—Eucalyptus plantations. Figure 2b shows the CLC map with five selected
classes: 311—Broadleaved forest, 312—Coniferous forest, 313—Mixed forest, 321—Natural
grasslands, and 323—Sclerophyllous vegetation. Figure 2c shows the pixels covered by
grasslands, especially in urban areas.

2.4. Methods Implemented

This work implemented a sequence of methods to pseudolabel the pixels available in
the image using a single spectral signature as input. This section explains the need for a
particular method in this proposed procedure.

2.4.1. Guided Image Filtering

The guided filter is an edge-preserving smoothing algorithm that could smooth out
the fine details of the input image while retaining the sharp edges. Fine details could be
noise (for example, a random pattern with a zero mean) or texture, such as a repeated
pattern with a regular structure. Applications of guided filtering include denoising, image
mapping, dehazing and compression, and tone mapping of high-dynamic-range (HDR)
images [33–36]. Guidance images can be obtained by performing a principal component
analysis (PCA). The first three principal components were considered a colour guidance
image for the guided filtering process.

2.4.2. Jeffries–Matusita Spectral Angle Mapper

Spectral angle mapper (SAM) is one of the most popular techniques in hyperspectral
data analysis as it measures the spectral angle between the reference spectra and the target
spectrum. SAM can detect the intrinsic properties of materials in terms of spectral angle, but
is insensitive to shade and illumination effects. Thus, different materials/vegetation types
with similar spectral shapes and offsets are classified only with difficulty [37]. SAM was
used in combination with the stochastic divergence measures to overcome the insensitivity
limitations mentioned above [38]. Thus, the Jeffries–Matusita (JM) distance measure was
combined with SAM to identify similar spectra. The JM distance between two spectra
measures the average distance between the spectra. The exponential factor involved in
this method gives an exponentially decreasing weight to increasing separation between the
spectra, and this approach overcomes the limitation of transformed divergence [39].

Furthermore, JM distance measures bandwise information between spectral vec-
tors [40,41]. To identify similar spectra, JM-SAM (TAN) was used in which the deterministic
SAM was combined with the stochastic JM distance using the tangent function as it projects
the target spectrum and reference spectrum perpendicularly. This method considers the
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geometrical aspects (angle, distance) and band information between the spectral vectors.
As a result, the least separable distance between the spectral vectors at each band and the
minor spectral angle between the vectors is considered the best match [40,42].

Figure 2. (a) Nature System map; (b) Corine land cover map; and (c) grasslands map.

2.4.3. K-Means Clustering

A proper unsupervised clustering technique can cluster data where the number of
clusters (K) is either known, presumed, or indicated beforehand. The members of each
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group have similar characteristics and properties. This study used this technique in
the dataset preparation process to collect true and false data for binary classification
problems. As per the suggestion of Nguyen et al. [43,44], it would be better if the number
of clusters K is greater than the number of expected or actual classes, so three clusters were
formed since it is a binary classification. The k-means algorithm was carried out using
the Machine Learning Toolbox of MATLAB. As a result, three groups were formed with
similar spectral signatures, different spectral signatures, and very noisy spectral signatures,
respectively [3,43,44].

2.4.4. Support Vector Machine for HSI Classification

There are numerous supervised learning-based algorithms in the artificial intelligence
field that can be applied for classification [45,46]. In the current framework, SVM (with
radial basis function, RBF) was applied because of its reputation in training datasets to
achieve high accuracy irrespective of the size of the dataset and outstanding generalization
capability. This method works on statistical learning theory and the structural risk min-
imization principle [47]. The optimal separating hyperplane with the maximum margin
between the classes will be found using the strategy of this classifier using the training
samples located at the edge of the class distribution [46]. Initially, the optimal values were
found by hyperparameter optimization in the classification learner app of MATLAB but
observed that it is slowly leading to overfitting. So, the Bayesian optimization technique
was applied to optimize a few parameters such as sigma, box constraint, etc. Then, the
SVM model developed was allowed to find posterior probabilities by training parameters
of an additional sigmoid function to map the outputs into probabilities. Constructing a
classifier to produce a posterior probability is helpful in practical recognition situations. For
example, a posterior probability allows for making decisions using the utility model. Poste-
rior probabilities play an essential role in making an overall decision when the classifier is
limited to making a small part of an overall decision [47–49].

2.4.5. Linear Mixing Model

A linear mixing model is necessary when the pixel comprises materials with different
reflectance properties and the spectral variability within the scene results from varying
proportions of the endmembers [50,51]. The spectrum of the mixed pixel can be represented
as a linear combination of component spectra (endmembers) in LMM. The weight of each
endmember (abundance) is proportional to the fraction of the pixel area covered by the
endmember [14,52]. If there are L spectral bands, the spectra of the endmembers and the
pixel spectrum can be represented by L-dimensional vectors.

2.4.6. JRC—Anderson Fuel Models Correlation

In the EFFIS and FUELMAP projects under JRC [22,53,54], the correlation of vegetation
types in Europe to Anderson fuel models was obtained. Under these projects, fuel of
42 types (as shown in Table 1) available in Europe were categorized into nine groups: Peat
bogs (FT_1 and FT_2), Grasslands (FT_3 to FT_6), Shrublands (FT_7 to FT_12), Transitional
Shrubland/Forest (FT_13 to FT_19), Coniferous Forest (FT_20 to FT_28), Broadleaved Forest
(FT_29 to FT_34), Mixed Forest (FT_35 to FT_38), Aquatic Vegetation (FT_39 to FT_41),
and Agroforestry areas (FT_42). Then, the correlation of fuel types to the fuel models of
Anderson (1982) [54] was made, as shown in Table 1. This work generated a fuel map by
referring to these JRC Anderson Codes. This correlation was used in this work to correlate
the classified fuel types to Anderson codes [22,53–55].
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Table 1. Anderson fuel models (with correspondence to JRC).

FT Code FT Description Anderson Code

FT_1 Peat bogs 5
FT_2 Wooded peatbogs 6
FT_3 Pastures 1
FT_4 Sparse grasslands 1
FT_5 Mediterranean grasslands and steppes 2
FT_6 Temperate, Alpine and Northern grasslands 1
FT_7 Mediterranean moors and heathlands 5
FT_8 Temperate, Alpine and Northern moors and heathlands 5
FT_9 Mediterranean open shrublands (sclerophyllous) 2

FT_10 Mediterranean shrublands (sclerophyllous) 4
FT_11 Deciduous broadleaved shrublands (thermophilus) 5
FT_12 Alpine open shrublands (conifers) 6
FT_13 Shrublands in Mediterranean conifer forest 7
FT_14 Shrublands in Mediterranean sclerophyllous forest 4
FT_15 Shrublands in Mediterranean mountain conifers forest 7
FT_16 Shrublands in thermophilus broadleaved forest 5
FT_17 Shrublands in beach and mesophytic broadleaved forest 5
FT_18 Northern open shrublands in broadleaved forest 5
FT_19 Shrublands in Alpine and Northern conifers forest 7
FT_20 Mediterranean long-needled conifer forest (Mediterranean pines) 10
FT_21 Mediterranean scale-needled open woodlands (Juniperus, Cupressus) 8
FT_22 Mediterranean mountain long-needled conifer forest (black and Scots pines) 10
FT_23 Mediterranean mountain short-needled conifer forest (firs, cedar) 8
FT_24 Temperate conifer plantation 8
FT_25 Alpine long-needled conifer forest (pines) 10
FT_26 Alpine short-needled conifer forest (fir, alp, spruce) 8
FT_27 Northern long-needled conifer forest (Scots pines) 10
FT_28 Northern short-needled conifer forest (spruce) 8
FT_29 Mediterranean evergreen broadleaved forest 4
FT_30 Thermophilus broadleaved forest 9
FT_31 Mesophytic broadleaved forest 9
FT_32 Beach forest 9
FT_33 Mountain beach forest 10
FT_34 White birch boreal forest 10
FT_35 Mixed Mediterranean evergreen broadleaved with conifer forest 4
FT_36 Mixed mesophytic broadleaved with conifer forest 9
FT_37 Mixed mesophytic broadleaved with conifer forest 10
FT_38 Mixed beach with conifer forest 9
FT_39 Riparian vegetation 5
FT_40 Coastal inland and halophytic vegetation and dunes 1
FT_41 Aquatic marshes 3
FT_42 Agroforestry areas 2

3. Proposed Framework

The steps followed to develop a wildfire fuel map that involves various steps, viz.,
preprocessing, pixels extraction, dataset preparation by pseudolabelling, machine learning
algorithm details, unmixing, further classification of fuel types, and fuel map, are illustrated
in the flowchart in Figure 3. Details of the process are described in the following subsections.

3.1. Preprocessing

Level 2C and Level 1 products from the PRISMA archive with minimal cloud cover
were considered. The atmospheric correction of the level 2C products is based upon
inverting the radiative transfer model, i.e., minimizing a cost function representing the
difference between the simulated spectrum and the measured one. The MODTRAN
model performed the simulations, and they are stored as a lookup table (LUT) to speed
up the inversion. Georeferencing of the image was carried out using the PRISMAread
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tool [56] developed by the National Research Council of Italy on R software. This tool
imports the original data provided in he5 format and converts them to ENVI or GTiff
format as per the requirements. The latitude and longitude files containing geographic
latitude/longitude values (WGS-84 datum) are provided in the he5 file. Further details
on the PRISMAread tool can be accessed from https://irea-cnr-mi.github.io/prismaread/
(accessed on 15 January 2022).

Figure 3. Process flowchart for wildfire fuel mapping using PRISMA hyperspectral data.

Further details about the mission and products are available in the PRISMA products
specification document. Level 2C was considered for the fuel mapping, whereas the level 1
product provides a basic land cover map with classes, viz., water pixel, snow pixel, bare
soil, cropland, forest, wetland, and urban component used to classify vegetation pixels

https://irea-cnr-mi.github.io/prismaread/
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from nonvegetated pixels, as shown in Figure 4a. Thus, the processing time was reduced
by applying the proposed procedure only to vegetation areas.

Figure 4. (a) Classification map (green and yellow represent vegetation and nonvegetation, respec-
tively) and (b) PRISMA image with noisy lines (white lines represent noisy data).

Removing noisy bands is a required preprocessing step for most hyperspectral remote
sensing applications. In this work, noisy bands were removed by giving a threshold in
the algorithm, i.e., bands with more than 20% noisy pixels (omitting the bands with noisy
lines, as shown in Figure 4b) were removed from the hypercube. In this image, 197 spectral
bands in the range of 400 to 2500 nm, with a spectral bandwidth within ~9–12 nm, were
extracted from Level 2C data to perform the classification, removing 36 noisy and water
absorption bands.

Few bands of the PRISMA image contain noisy lines, as shown in Figure 4b; filling
those lines was one of the essential preprocessing steps. Neglecting this step will cause
these lines to show up in the final classification map. In this work, those lines were filled
by interpolating the nearest neighbour pixels in a linear way.

3.2. Pixel Extraction

Pixel’s extraction of the HSI (Hyperspectral Image) is one of the imperative prepro-
cessing mechanisms. It assists in handling the data and implementing the machine learning
algorithms giving it as input data, as shown in the flowchart (Figure 4). The individual
elements in the HSI are pixels of which the spectra are formed as vectors. Nature system
map, CLC, and grassland maps obtained from sources such as Sardinia Geoportal and
Copernicus Land Monitoring Service as described in Section 2.3 were considered reference
maps for input data. Pixels that correspond to fuel types were selected and inputted
for dataset preparation. Figure 1 shows the points selected for each vegetation type to
be classified.

Points marked in Figure 1 represents 1—Halophyte vegetation with the dominance
of annual succulent Chenopodiaceae, 2—Matorral of evergreen oaks, 3—Matorral with
olive and mastic, 4—Matorral of junipers, 5—Low olive and mastic shrubs, 6—Low shrubs
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(from Calicotome family), 7—Formations of Euphorbia dendroides, 8—Garrigues and meso-
mediterranean silicicole spots, 9—Garrigues and calciculous mesomediterraneal spots,
10—Arid Mediterranean meadows, 11—Mediterranean grassland (including Mediter-
ranean and postcultural sub-Mediterranean vegetation), 12—Riparian Mediterranean ash
forests, 13—Tamarisk and oleander, 14—Tyrrhenian Cork, 15—Sardinian Leccete (Holm
Oak), 16—Vegetation of reeds and similar species, 17—Coniferous vegetation, and 18—
Eucalyptus plantations.

3.3. Dataset Preparation

The flowchart shown in Figure 5 illustrates the procedure followed to generate and
pseudolabel the samples for the dataset preparation and is as follows:

Figure 5. Process flowchart of dataset preparation and classification.

Step 1: Preprocessing of PRISMA data was carried out as explained in Section 3.1.
Step 2: HSI was denoised using the guided image filtering technique explained in

Section 2.4. It was performed in MATLAB software, giving the degree of smoothness
parameter as 0.01.

Step 3: Spectral signatures corresponding to the pixels extracted following the pro-
cedure explained in Section 3.2. were collected for all 18 classes. Since one of the main
objectives of this work is to create a dataset using a single spectral signature as input, only
one pixel per class was extracted, and one spectral signature per class was considered.

Step 4: JM-SAM (TAN) was applied to collect similar and dissimilar spectral signatures
from the image. This technique has provided us with a score map, with values ranging
from lower to higher according to the similarity of the given spectral profile. The score
map was used to extract similar profiles by visually inspecting them and giving a thresh-
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old, but an unsupervised clustering technique (K-means) was preferred to remove the
threshold system.

Step 5: The K-means clustering technique was applied to JM-SAM (TAN) scores to
cluster the obtained values into three groups. Though we need only two groups (similar
and dissimilar), three groups were formed referring to the literature, as explained in
Section 2.4.3.

Step 6: A dataset of 500 samples was planned for each class/fuel type by pseudola-
belling, as shown in Figure 5. Spectral signatures corresponding to the pixels having up
to 300 scores in group 1 (similar profiles) were collected and labelled as ‘1’, which refers
to pure samples. Then, 200 spectral profiles were randomly collected using the scores of
group 2 (dissimilar) and group 3 (noisy) and labelled as ‘0’, which refers to impure samples.
This process of dataset preparation was repeated for each fuel type.

Step 7: This pseudolabelled dataset was used for training and testing the SVM model
(one vs. all) for binary classification, so it was named a semisupervised learning approach.

3.4. Classification Algorithm Details

Support vector machine classifier was considered for training using the generated
dataset on MATLAB R2021b with Machine Learning Toolbox. In addition, the accuracy
implemented to assess the trained model performance is the ratio of correctly classified
testing samples to the total number of testing samples. The procedure followed for training,
testing, and predicting is as follows:

Step 1: The dataset was divided into two: 70% as a training dataset and 30% as a
testing dataset.

Step 2: K-fold cross-validation was performed with k = 10 to fit the model with a
minor error.

Step 3: Hyperparameters given for tuning are as follows: radial basis function as
kernel, sigma of range [1e-5 1e+5], and box constraint of range [1e-5 1e+5].

Step 4: Defined hyperparameters were optimized with Bayesian optimization in
MATLAB Statistical Tool Box.

Step 5: The SVM classifier model was trained using the optimal hyperparameters and
RBF as the kernel.

Step 6: The SVM posterior probability model was trained using the trained SVM
classifier model as input. This step created the score-to-posterior transformation function
(sigmoid function) and computed posterior probabilities for the samples classified as the
positive class.

Step 7: The cross-validation classification model was trained to perform 10-fold
cross-validation and find the classification (kfoldLoss). For every class, less than 5% of
classification loss was obtained.

Step 8: The trained SVM posterior probability model was validated using the testing
dataset for accuracy. If the accuracy was greater than 0.95, the model was considered
for prediction.

The same steps were repeated for every class, and the classes obtained as output from
the SVM classifier are shown in Figure 6.

3.5. Further Classification

Concerning the JRC–Anderson correlation [Table 1], Anderson codes differ between
sparse grassland and typical grassland. According to the EFFIS project, sparse grasslands
will have 1.83 tons/hectare of biomass [54]. So, a biomass map was obtained from EU
Copernicus and differentiated spare grasslands from grasslands. Figure 7 shows the
classification of sparse grasslands (class 2) from grasslands (class 1).

3.6. Linear Unmixing

Fully constrained LMM was applied to unmix the unclassified pixels as per the method
described in Section 2. Before unmixing, classes 1 to 18 were categorized into three groups,
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with forests containing classes 12, 14, 15, and 17, shrubs containing classes 1, 2, 3, 4, 5, 6, 7,
8, 9, 13, and 18, and grasslands containing classes 10, 11, and 16.

Figure 6. SVM-based classification map.

Figure 7. Classification of sparse grasslands (1—sparse and 2—dense vegetation).
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Then, unmixing was carried out to identify the percentage of forests, shrubs, and
grasslands in each pixel. The value for each pixel was assigned by knowing the percentage
of each group in a pixel. Accordingly, mixed pixels were classified into six classes: 111—
pixel with 50% forests and 50% unvegetated area, 112—pixel with 50% shrubs and 50%
unvegetated area, 113—pixel with 50% of grasslands and 50% unvegetated area, 123—
pixel with 50% forests, 20% shrubs and 30% grasslands, 231—pixel with 50% shrubs, 20%
grasslands and 30% forests, and 312—pixel with 50% grasslands, 20% forests and 30%
shrubs. Figure 8 shows the classification map obtained from fully constrained LMM.

Figure 8. Classification map of mixed pixels.

3.7. Fuel Mapping

By referring to the correlation of JRC and Anderson codes shown in Table 1, Anderson
codes were assigned to the pixels of the classified map with respect to the fuel types
tabulated in Table 2. For mixed pixels, whichever fuel type had a higher percentage of
occupancy was given the Anderson code corresponding to that fuel type.

Table 2. Fuel types with correspondence to Anderson codes.

Class JRC Fuel Type Anderson Code

1 FT_40 1
2 FT_29 4
3 FT_10 4
4 FT_14 4
5 FT_14 4
6 FT_9 2
7 FT_9 2
8 FT_10 4
9 FT_10 4
10 FT_4 1
11 FT_4 1
12 FT_32 9
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Table 2. Cont.

Class JRC Fuel Type Anderson Code

13 FT_42 2
14 FT_29 4
15 FT_29 4
16 FT_4 1
17 FT_20 10
18 FT_15 7

4. Results and Discussion

This section shows the final classification and fuel maps obtained from the proposed
method and the validation details.

4.1. Classification and Fuel Map

As per the methodology in the previous section, the hyperspectral imagery of PRISMA
in Monte Arcosu Forest was classified into 18 classes and six mixed-pixel classes, as shown
in Figure 9. Details of classes are given in Section 3.2. It can be observed from the obtained
maps that the significant fuel types available in this region of interest are fuel type 2
(evergreen oak), fuel type 15 (holm oak), and fuel type 5 (mastic scrubs/bushes), which is
in alignment with the literature stating that this forest has these three vegetation types at
different altitudes [24,25]. This region also contains Eucalyptus plantations (fuel type 18),
which are highly flammable compared to the major cover of broadleaved forest. Eucalyptus
plants contain a high concentration of volatile compounds and accumulate a larger amount
of flammable litter from leaves and bark [57].

One of the main factors affecting fire behaviour is fuel distribution, but our under-
standing of the fuel density’s heterogeneity effect on fire behaviour is limited. A study
conducted by Adam et al. [58] concluded that increased fuel density had decreased forward
fire spread due to a combination of fuel discontinuities and increased fine-scale turbulent
wind structures. In contrast, a decrease in local fuel continuity and wind entrainment into
the forest canopy maintained near-surface wind speeds had driven fire spread. Considering
this point, mixed pixels with partial vegetation must also be considered as fuel-containing
pixels. In this work, mixed pixels were classified into six types, as explained in Section 3.6,
among which class 111 (50% forests and 50% unvegetated area) showed a higher amount.

Figure 10 shows the wildfire fuel map obtained by following the procedure described
in Section 3.7. The fuel map has values ranging from 1 to 10, representing the fuel models
of Anderson’s classification. By associating the classified fuel types with standard fuel
models, each fuel type in this map is correlated to the attributes of fuel models such as fuel
load (t/ha) for the living and dead components of the vegetation, the height of the fuel
(litter) from the ground, extinction humidity (%), flame height (m), and propagation rate
(m/s) [54].

4.2. Validation

The classified map was validated using different sources, i.e., the Nature System
map of Sardinia, CLC, and grasslands maps, accessed from regional/or EU Copernicus
geoportals, as described in Section 2.2. Each class was validated by randomly taking
30 points to measure the classification accuracy, which is the ratio of correctly classified
points to the total number of points.

Table 3 shows each class’s precision, recall, and F1 score. This image’s major fuel
types (class 2, 5, and 15) obtained 86%, 86%, and 90% accuracy. Almost every class has an
accuracy of above 80%, except class 1. It was observed that halophyte vegetation (class
1) is spread over the forest in small areas, but the reference map shows only near the
Mediterranean coast, leading to less accuracy.
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Table 3. Performance metrics of classes.

Class Precision Recall F1 Score Classification Accuracy (%)

1 0.95 0.70 0.80 70
2 0.83 0.86 0.85 86
3 0.85 0.72 0.78 80
4 0.86 0.86 0.86 86
5 0.89 0.86 0.88 86
6 0.83 0.83 0.83 83
7 0.80 0.93 0.86 93
8 0.86 0.90 0.94 90
9 1 0.86 0.77 86
10 0.70 0.86 0.89 86
11 0.92 0.90 0.87 90
12 0.84 0.93 0.94 93
13 0.96 0.86 0.91 86
14 0.96 0.93 0.96 93
15 1 0.90 0.85 90
16 0.81 0.90 0.87 90
17 0.84 0.96 0.92 96
18 0.87 0.86 0.83 86

Figure 9. Final classification map (pure and mixed pixels).
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Figure 10. Wildfire fuel map.

Performance metrics for each class were identified to check the accuracy of the machine
learning model. Performance metrics include precision, recall, and F1 score. Therefore,
these scores take false positives and false negatives into account together. Understanding
the F1 score is intuitively not easy, but F1 is usually more beneficial than accuracy, especially
if there is uneven class distribution. Accuracy works best if false positives and false
negatives have similar costs. In the case of different false positives and false negatives, it is
better to look at precision and Recall.

The validation details showed an overall accuracy of 87.10%, which is the ratio of
correctly classified points for all classes to the total number of points. Due to the lack of
recent reference/ground truth data to validate, the uncertainty of ±5% inaccuracy can be
expected. An EFFIS pan-European fuel map was prepared using CLC with eight vegetation
classes/fuel types with 250 m of spatial resolution and at an accuracy of around 85% [54]. A
fuel map under the framework of the ArcFuel project was prepared using CLC and Landsat
7 data with eight fuel types at a resolution of 50 m; it obtained an accuracy of 76% at Italian
pilot sites [59,60]. Comparison with other fuel products is problematic since regional fuel
maps use many different classification systems [57].

4.3. Stability Analysis

In order to evaluate the robustness of the machine learning classifier algorithm,
PRISMA hyperspectral imagery from another region of interest for different dates, i.e.,
27 June 2021 and 31 July 2021, was selected from the archive for fuel mapping.

According to the Anderson fuel models, the fuel maps were developed for two dates.
Figure 11a shows the fuel map developed for 27 June 2021 on the imagery acquired on
Lazio (Rome) comprising Castel Porziano. Figure 11b shows the fuel map developed for
31 July 2021 and is slightly rotated from Figure 11a. Fuel values were assigned in the range
of (1–10) for both the maps; the similarity between the maps can be observed.
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Since Figure 11b is slightly rotated, a common region from both the images was
selected for the stability analysis. Images covering Castel Porziano were clipped from both
these images as shown in Figure 12a,b. The similarity between these two images can be
observed from Figure 12 and the numerical values in Table 4.

Figure 11. Fuel maps: (a) 27 June 2021 and (b) 31 July 2021.

Figure 12. Castel Porziano: (a) 27 June 2021 and (b) 31 July 2021.

Table 4. Cross-validation of images.

Fuel Types Value Number of Pixels on
27 June 2021 Image

Number of Pixels on
31 July 2021 Image Difference (in %)

2 33,255 33,465 ~1
4 57,339 44,804 ~20
5 8259 10,647 ~20
10 7472 5473 ~26
0 1,419,353 1,382,612 ~3
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The stability of a learning algorithm refers to the changes in the output of the system
when we change the training dataset. Therefore, a learning algorithm is stable if the learned
model does not change much when the training dataset is modified. For example, when
selecting a training dataset from the same image in the PRISMA hyperspectral imagery
classification problem, using cross-validation, a loss of less than 5% was obtained, which
means it was 95% stable. However, this cannot be considered alone when the algorithm is
developed for different images.

Mathematically, there are many types of stability analysis, such as hypothesis stabil-
ity, cross-validation, etc. Here, cross-validation was performed between two fuel maps
developed using images on the same region of interest but acquired on different dates.

Table 4 shows the number of pixels and the difference between two images for each
fuel. The difference in the number of pixels ranged from <1% to 26% for specific classes.
The significant difference between these two images is the number of bands. For example,
the image taken on 31 July 2021 has a higher number of noisy bands (22) than the previous
image (four), which was one of the reasons for the variation in stability. Also, the images
were considered during the summer season of Italy, which explains the difference in
vegetation. Considering these differences and the obtained percentages, it can be observed
that the overall stability is around 80%.

4.4. Repeatability and Reproducibility Analysis

To evaluate the repeatability and reproducibility of the algorithm, an image (of
19 January 2022) from Bulgaria was selected since a fuel map acquired from the local
authorities is available as a reference. The classification and fuel map were generated for
this image with six classes, as shown in Table 5. The input for this image was taken from
the specified reference map, as shown in Figure 13a.

Table 5. Fuel types and corresponding Anderson fuel models.

Sample No. Fuel Types Anderson Fuel Models

1 Winter Oak Mesophytic Broadleaved Forest (9)
2 White Pine Broadleaved with Coniferous Forest (9)
3 Black Pine Broadleaved with Coniferous Forest (6)
4 Hairy Oak Agroforestry (2)
5 Pasture and Meadows Pasture/Sparse grassland (1)
6 Mixed Land Use Pasture/Grassland (1)

Figure 13b shows the classification map with six classes and its corresponding fuel
map in Figure 13c. Again, the fuel map based on PRISMA is clipped for the region of
interest. Details of classes and the Anderson codes are given in Table 1.

The reference fuel map has fuel types assigned to only four fuel models (1, 2, 6, and
9). The majority of vegetation in this area is Black Pine (coniferous forest), followed by
other fuel types, as shown in Table 1. This scenario is also similar to the PRISMA-based
fuel map except that the fuel types assigned to fuel model 9 have sparse vegetation, which
is inadequately classified due to the dark pixels in the hyperspectral data (as shown in RGB
of the PRISMA image).

A detailed evaluation, including misclassifications, can be shown only by the confusion
matrix in Table 6. A confusion matrix, created by considering 30 points for each category in
the fuel map, obtained an overall accuracy of ∼=~84%. It can be observed from the overall
accuracies that the degree of confidence obtained was greater than 95%.

4.5. Extension of Procedure for Europe-Wide Fuel Mapping with LUCAS Database

Since this procedure considers one spectral signature as input, it can be implemented
to map wildfire fuel types in any part of Europe. For demonstration purposes, an image cov-
ering the city of Calabria in the south of Italy was considered. The LUCAS (land use/cover
area survey) points map was accessed from Copernicus Land Monitoring Services, which
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provides information about the land use and land cover of Europe. Forest/vegetation
information is provided under the land cover classification systems, which is categorised
into eight different types: A—Artificial Land, B—Cropland, C—Woodland, D—Shrubland,
E—Grassland, F—Bare land, G—Water and H—Wetland. Each of these categories is further
categorised into various types. Among them, the image considered for the fuel mapping
contained six vegetation types: (1) C10 (Broadleaved Trees), (2) D10 (Shrubland with
sparse tree cover), (3) C32 (Pine-dominated mixed vegetation), (4) E20 (Grass without
tree/shrub cover), (5) C22 (Pine-dominated coniferous vegetation), and (6) C33 (Other
mixed vegetation).

Figure 13. (a) Reference fuel map (courtesy of FirEUrisk project); (b) classification map (from
PRISMA); (c) fuel map (from PRISMA); and (d) RGB (from PRISMA).
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Considering the points from LUCAS as input and by overlapping, spectral signatures
corresponding to those pixels were extracted. Then, the procedure described in this paper
was followed to develop classification and fuel map as shown in Figure 14a,b, respectively.
Thus, this automatic procedure can develop a wildfire fuel map on any part of Europe
using LUCAS points as input.

Table 6. Confusion matrix for fuel types.

S.No. 1 2 6 9 User Accuracy Commission Error (%)

1 27 2 1 0 0.90 10
2 2 24 4 0 0.80 20
6 0 1 26 3 0.86 13.33
9 0 1 3 25 0.86 13.33

Producer Accuracy 93.10 85.17 76.47 89.65
Omission Error (%) 6.89 14.28 23.52 10.34 OA ∼= 84%

Figure 14. (a) Classification map and (b) wildfire fuel map.

4.6. Possible Applications of the Fuel Map

The procedure proposed in this work can be applied to any local region (such as a
country or province) to create a custom fuel map using the local vegetation information.
The dataset can be prepared following this proposed procedure if no local vegetation
information/ground truth data are available. Researchers/policymakers/fire managers
use fuel maps to study fire potential, fire behaviour, fire emissions, fire management, fire
effects, land surface temperature [61], and ecosystem modelling [54]. In our ongoing project
(S2IGI), the fuel map of the EFFIS project was used to calculate the fire danger hazard
index [62] and to develop a wildfire vulnerability map [63]. These maps will be updated
using the developed fuel map.

Due to the limited number of studies on wildfire fuel mapping using spaceborne
hyperspectral data, this work could become an example demonstrating the feasibility and
maturity of spaceborne hyperspectral data in the prevention and management of wildfires.
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Future developments of this work would be (1) to verify the procedure by associating fuel
types to Scott–Burgan fuel models, including isobioclimatic conditions and (2) to apply a
quantum support vector machine classifier as it can learn with fewer data [64].

5. Conclusions

In this article, an automatic wildfire fuel mapping procedure using machine learning
on hyperspectral imagery from the PRISMA satellite has been put forward. All the necessary
fuel types in the image covering the southern part of Sardinian Island were detected.
However, there was no suitable dataset or literature available, so a semisupervised learning
approach was proposed for fuel mapping. The support vector machine classifier was
implemented to identify the fuel types using the posterior probabilities and obtained an
overall accuracy of 87% by validation. The stability of the procedure and the machine
learning model was checked by repeating the same procedure on HSI of PRISMA covering
the west of Latium, Italy, and an overall stability of around 80% (considering the difference
in images) was obtained. In a repeatability and reproducibility analysis using an image for
Bulgaria, an overall accuracy of 84% was obtained. This procedure obtained a degree of
confidence greater than 95% concerning repeatability and reproducibility analysis. Finally,
the proposed procedure was applied to the image covering the city of Calabria in the south
of Italy using LUCAS points map as input, which demonstrated that this procedure could
be applied to any part of Europe for wildfire fuel mapping.

Author Contributions: Conceptualization, G.L. and R.U.S.; methodology, R.U.S. and G.L.; software,
R.U.S.; validation, R.U.S., L.F. and G.L.; formal analysis, R.U.S. and G.L.; investigation, R.U.S.;
resources, G.L. and L.F.; data curation, R.U.S., L.F., and G.L.; writing—original draft preparation,
R.U.S.; writing—review and editing, R.U.S. and G.L.; visualization, R.U.S. and G.L.; supervision,
G.L.; project administration, G.L.; funding acquisition, G.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was started under the project “S2IGI: An Integrated System for Prevention
and Management of Wildfires,” funded by Regional Administration of Sardinia under the POR
(Programma Operativo Regionale) FESR (Fondo Europeo di Sviluppo Regionale) Sardinia and
improved under the project “ASI-HYP,” funded by the Italian Space Agency.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Regional Administration of Sardinia and
Italian Space Agency for the funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005,

20, 387–394. [CrossRef] [PubMed]
2. Informazioni su Questo Libro. Available online: http://books.google.com (accessed on 15 September 2021).
3. Vakalis, D.; Sarimveis, H.; Kiranoudis, C.; Alexandridis, A.; Bafas, G. A GIS based operational system for wildland fire crisis

management I. Mathematical modelling and simulation. Appl. Math. Model. 2004, 28, 389–410. [CrossRef]
4. Vakalis, D.; Sarimveis, H.; Kiranoudis, C.; Alexandridis, A.; Bafas, G. A GIS based operational system for wildland fire crisis

management II. System architecture and case studies. Appl. Math. Model. 2004, 28, 411–425. [CrossRef]
5. Keramitsoglou, I.; Kiranoudis, C.T.; Sarimvels, H.; Sifakis, N. A Multidisciplinary Decision Support System for Forest Fire Crisis

Management. Environ. Manag. 2004, 33, 212–225. [CrossRef] [PubMed]
6. Whelan, R.J. The Ecology of Fire-Developments since 1995 and Outstanding Questions Long-Term Trends in Flowering and Fruit

Set in Banksia View Project Pollination of Diuris (Orchidaceae) View Project. 2009. Available online: https://www.researchgate.
net/publication/30387859 (accessed on 15 September 2021).

http://doi.org/10.1016/j.tree.2005.04.025
http://www.ncbi.nlm.nih.gov/pubmed/16701401
http://books.google.com
http://doi.org/10.1016/j.apm.2003.10.005
http://doi.org/10.1016/j.apm.2003.10.006
http://doi.org/10.1007/s00267-003-0092-4
http://www.ncbi.nlm.nih.gov/pubmed/15285399
https://www.researchgate.net/publication/30387859
https://www.researchgate.net/publication/30387859


Remote Sens. 2022, 14, 1264 23 of 25

7. Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using
Optical Remote Sensing. Sensors 2020, 20, 6442. [CrossRef] [PubMed]

8. Goodenough, D.; Dyk, A.; Niemann, K.; Pearlman, J.; Chen, H.; Han, T.; Murdoch, M.; West, C. Processing hyperion and ali for
forest classification. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1321–1331. [CrossRef]

9. Yeosang, Y.; Yongseung, K. Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Map-ping. Korean J.
Remote Sens. 2007, 23, 21–32. Available online: https://www.koreascience.or.kr/article/JAKO200712242534560.pdf (accessed on
28 November 2021).

10. Smith, C.; Panda, S.; Bhatt, U.; Meyer, F. Improved Boreal Forest Wildfire Fuel Type Mapping in Interior Alaska Using AVIRIS-NG
Hyperspectral Data. Remote Sens. 2021, 13, 897. [CrossRef]

11. Badola, A.; Panda, S.; Roberts, D.; Waigl, C.; Bhatt, U.; Smith, C.; Jandt, R. Hyperspectral Data Simulation (Sentinel-2 to
AVIRIS-NG) for Improved Wildfire Fuel Mapping, Boreal Alaska. Remote Sens. 2021, 13, 1693. [CrossRef]

12. Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Kuai, L.; Meng, R.; Roberts, D.; Stavros, N.
Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sens. Environ. 2018, 216, 105–121. [CrossRef]

13. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in
a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [CrossRef]

14. Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine Learning Based Hyperspectral Image Analysis: A Survey. February 2018. Available
online: http://arxiv.org/abs/1802.08701 (accessed on 15 September 2021).

15. Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine
Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [CrossRef]

16. Schmitt, M.; Ahmadi, S.A.; Hansch, R. There is No Data Like More Data–Current Status of Machine Learning Datasets in Remote
Sensing. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium,
11–16 July 2021; pp. 1206–1209.

17. Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Mapping Ecological Focus Areas within the EU CAP Controls Framework by
Copernicus Sentinel-2 Data. Agronomy 2022, 12, 406. [CrossRef]

18. Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality:
Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geo-Inf. 2016, 5, 199. [CrossRef]

19. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine
classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

20. Archibald, R.; Fann, G. Feature Selection and Classification of Hyperspectral Images with Support Vector Machines. IEEE Geosci.
Remote Sens. Lett. 2007, 4, 674–677. [CrossRef]

21. Advance EFFIS Report on Forest Fires in Europe, Middle East and North Africa 2018; Publications Office of the European Union:
Luxembourg, 2019. [CrossRef]

22. Toukiloglou, P.; Eftychidis, G.; Gitas, I.; Tompoulidou, M. ArcFuel methodology for mapping forest fuels in Europe. In Proceedings
of the First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8–10 April 2013;
Volume 8795. [CrossRef]

23. European Commission, Joint Research Centre; San-Miguel-Ayanz, J.; Durrant, T.; Boca, R. Forest Fires in Europe, Middle East and
North Africa 2020. 2021. Available online: https://data.europa.eu/doi/10.2760/059331 (accessed on 15 September 2021).

24. Mossa, L.; Bacchetta, G.; Angiolino, C.; Ballero, M. A contribution to the floristic knowledge of the Monti del Sulcis: Monte
Arcosu (S.W. Sardinia). Flora Mediterr. 2016, 6, 157–190.

25. European Commission, Joint Research Centre. European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., Caudullo, G., De Rigo,
D., Mauri, A., Houston Durrant, T., Eds.; European Comission: Brussels, Belgium, 2022. Available online: https://data.europa.
eu/doi/10.2760/233115 (accessed on 15 September 2021).

26. Duveau, S. Frozen data? Polar research and fieldwork in a pandemic era. Polar Record 2021, 57, E34. [CrossRef]
27. Jawak, S.D.; Andersen, B.N.; Pohjola, V.A.; Godøy; Hübner, C.; Jennings, I.; Ignatiuk, D.; Holmén, K.; Sivertsen, A.; Hann, R.; et al.

SIOS’s Earth Observation (EO), Remote Sensing (RS), and Operational Activities in Response to COVID-19. Remote. Sens. 2021,
13, 712. [CrossRef]

28. U.S. Global Development Lab. Guide for Adopting Remote Monitoring Approaches during COVID-19. Available online:
https://www.usaid.gov/digital-development/covid19-remote-monitoring-guide (accessed on 15 September 2021).

29. Santarsiero, V. A Remote Sensing Methodology to Assess the Abandoned Arable Land Using NDVI Index in Basili-cata Region. In
Proceedings of the Computational Science and Its Applications–ICCSA 2021, Cagliari, Italy, 13–16 September 2021; pp. 695–703.

30. Tucci, B.; Nolè, G.; Lanorte, A.; Santarsiero, V.; Cillis, G.; Scorza, F.; Murgante, B. Assessment and Monitoring of Soil Erosion Risk
and Land Degradation in Arable Land Combining Remote Sensing Methodologies and RUSLE Factors. In Information for a Better
World: Shaping the Global Future; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; pp. 704–716.

31. EEA. Copernicus Land Monitoring Service 2020. Available online: https://land.copernicus.eu/ (accessed on 15 May 2020).
32. Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe; Manakos, I.,

Braun, M., Eds.; Springer Science and Business Media LLC: Dordrecht, Switzerland, 2014; Volume 18, pp. 55–74.
33. He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [CrossRef]
34. He, K.; Sun, J.; Tang, X. Guided Image Filtering (Presentation). In Proceedings of the 2012 European Conference on Computer

Vision, Florence, Italy, 7–13 October 2021; pp. 1–14.

http://doi.org/10.3390/s20226442
http://www.ncbi.nlm.nih.gov/pubmed/33187292
http://doi.org/10.1109/TGRS.2003.813214
https://www.koreascience.or.kr/article/JAKO200712242534560.pdf
http://doi.org/10.3390/rs13050897
http://doi.org/10.3390/rs13091693
http://doi.org/10.1016/j.rse.2018.06.020
http://doi.org/10.3390/rs12233984
http://arxiv.org/abs/1802.08701
http://doi.org/10.3390/rs12071135
http://doi.org/10.3390/agronomy12020406
http://doi.org/10.3390/ijgi5110199
http://doi.org/10.1016/j.neucom.2019.10.118
http://doi.org/10.1109/LGRS.2007.905116
http://doi.org/10.2760/262459
http://doi.org/10.1117/12.2028213
https://data.europa.eu/doi/10.2760/059331
https://data.europa.eu/doi/10.2760/233115
https://data.europa.eu/doi/10.2760/233115
http://doi.org/10.1017/S0032247421000541
http://doi.org/10.3390/rs13040712
https://www.usaid.gov/digital-development/covid19-remote-monitoring-guide
https://land.copernicus.eu/
http://doi.org/10.1109/TPAMI.2012.213


Remote Sens. 2022, 14, 1264 24 of 25

35. Huang, S.; Lu, Y.; Wang, W.; Sun, K. Multi-scale guided feature extraction and classification algorithm for hyperspectral images.
Sci. Rep. 2021, 11, 18396. [CrossRef]

36. He, K.; Sun, J.; Tang, X. Guided Image Filtering. In Proceedings of the 11th European Conference on Computer Vision, Crete,
Greece, 5–11 September 2010.

37. Vishnu, S.; Nidamanuri, R.R.; Bremananth, R. Spectral material mapping using hyperspectral imagery: A review of spectral
matching and library search methods. Geocarto Int. 2013, 28, 171–190. [CrossRef]

38. Chang, C.-C.; Du, Y.; Ren, H.; Jensen, J.O.; D’Amico, F.M. New hyperspectral discrimination measure for spectral characterization.
Opt. Eng. 2004, 43, 1777–1786. [CrossRef]

39. Laliberte, A.; Browning, D.; Rango, A. A comparison of three feature selection methods for object-based classification of
sub-decimeter resolution UltraCam-L imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 70–78. [CrossRef]

40. Padma, S.; Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis.
Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 138–151. [CrossRef]

41. Oppenheimer, C. Richards, J.A. & Jia Xiuping. 1999. Remote Sensing Digital Image Analysis. An Introduction, 3rd revised and
enlarged edition. xxi + 363 pp. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. Price DM
139.00, Ös 1015.00, SFr 126.50, £53.30, US $89.95 (hard covers). ISBN 3 540 64860 7. Geol. Mag. 2000, 137, 335–342. [CrossRef]

42. Du, Y.; Chang, C.-I.; Ren, H.; D’Amico, F.M.; Jensen, J.O. New hyperspectral discrimination measure for spectral similarity. In Proc.
SPIE 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Proceedings of the AEROSENSE
2003, Orlando, FL, USA, 21–25 April 2003; SPIE: Bellingham, WA, USA, 2003. [CrossRef]

43. Jones, P.J.; James, M.K.; Davies, M.J.; Khunti, K.; Catt, M.; Yates, T.; Rowlands, A.V.; Mirkes, E.M. FilterK: A new outlier detection
method for k-means clustering of physical activity. J. Biomed. Inform. 2020, 104, 103397. [CrossRef]

44. Nguyen, T.-H.T.; Dinh, T.; Sriboonchitta, S.; Huynh, V.-N. A method for k-means-like clustering of categorical data. J. Ambient
Intell. Humaniz. Comput. 2019, 10, 1–11. [CrossRef]

45. Kang, X.; Li, S.; Benediktsson, J.A. Spectral–Spatial Hyperspectral Image Classification with Edge-Preserving Filtering. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [CrossRef]

46. Thai, L.H.; Hai, T.S.; Thuy, N.T. Image Classification using Support Vector Machine and Artificial Neural Network. Int. J. Inf.
Technol. Comput. Sci. 2012, 4, 32–38. [CrossRef]

47. Guo, Y.; Yin, X.; Zhao, X.; Yang, D.; Bai, Y. Hyperspectral image classification with SVM and guided filter. EURASIP J. Wirel.
Commun. Netw. 2019, 2019, 56. [CrossRef]

48. Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive
and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [CrossRef]

49. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.
Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]

50. Manolakis, D.; Siracusa, C.; Shaw, G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci.
Remote Sens. 2001, 39, 1392–1409. [CrossRef]

51. Heinz, D.; Chang, C.I.; Althouse, M.L.G. Fully constrained least-squares based linear unmixing [hyperspectral image classification.
In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293),
Hamburg, Germany, 28 June–2 July 1999; pp. 1401–1403.

52. Wei, J.; Wang, X. An Overview on Linear Unmixing of Hyperspectral Data. Math. Probl. Eng. 2020, 2020, 1–12. [CrossRef]
53. Scott, J.H.; Burgan, R.E. Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread

model. Stand. Fire Behav. Fuel Models: Compr. Set Use Rothermel’s Surf. Fire Spread Model 2005, 153, 1–80. [CrossRef]
54. San-Miguel-Ayanz, J. Advance EFFIS Report on Forest Fires in Europe. In Middle East and North Africa; Publications Office of the

European Union: Luxembourg, 2017.
55. Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; General Technical Report INT-122, April; USDA Forest

Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982; 28p.
56. Busetto, L.; Ranghetti, L. Prismaread: A tool for facilitating access and analysis of PRISMA L1/L2 hyperspectral imagery v1.0.0.

2020. Available online: https://irea-cnr-mi.github.io/prismaread/ (accessed on 15 September 2021).
57. Pettinari, M.L.; Chuvieco, E. Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences

2016, 13, 2061–2076. [CrossRef]
58. Atchley, A.L.; Linn, R.; Jonko, A.; Hoffman, C.; Hyman, J.D.; Pimont, F.; Sieg, C.; Middleton, R.S. Effects of fuel spatial distribution

on wildland fire behaviour. Int. J. Wildland Fire 2021, 30, 179. [CrossRef]
59. Bonazountas, M.; Astyakopoulos, A.; Martirano, G.; Sebastian, A.; De la Fuente, D.; Ribeiro, L.; Viegas, D.; Eftychidis, G.; Gitas, I.;

Toukiloglou, P. LIFE ArcFUEL: Mediterranean fuel-type maps geodatabase for wildland & forest fire safety. In Advances in Forest
Fire Research; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 1723–1735.

60. Martirano, G. INSPIRE Land Cover Data Specifications to Model Fuel Maps in Europe: The Experience of the ArcFUEL LIFE+
project (Presentation). In Proceedings of the INSPIRE Conference, Florence, Italy, 23–27 June 2013.

61. Jallu, S.B.; Shaik, R.U.; Srivastav, R.; Pignatta, G. Assessing the Effect of COVID-19 Lockdown on Surface Urban Heat Island for
Different Land Use/Cover Types Using Remote Sensing. Energy Nexus 2022, 5, 100056. [CrossRef]

62. Laneve, G.; Pampanoni, V.; Shaik, R. The Daily Fire Hazard Index: A Fire Danger Rating Method for Mediterranean Areas. Remote
Sens. 2020, 12, 2356. [CrossRef]

http://doi.org/10.1038/s41598-021-97636-2
http://doi.org/10.1080/10106049.2012.665498
http://doi.org/10.1117/1.1766301
http://doi.org/10.1016/j.jag.2011.05.011
http://doi.org/10.1016/j.jag.2014.04.001
http://doi.org/10.1017/s0016756800294132
http://doi.org/10.1117/12.487044
http://doi.org/10.1016/j.jbi.2020.103397
http://doi.org/10.1007/s12652-019-01445-5
http://doi.org/10.1109/TGRS.2013.2264508
http://doi.org/10.5815/ijitcs.2012.05.05
http://doi.org/10.1186/s13638-019-1346-z
http://doi.org/10.3390/rs12030516
http://doi.org/10.1080/01431161.2018.1433343
http://doi.org/10.1109/36.934072
http://doi.org/10.1155/2020/3735403
http://doi.org/10.2737/rmrs-gtr-153
https://irea-cnr-mi.github.io/prismaread/
http://doi.org/10.5194/bg-13-2061-2016
http://doi.org/10.1071/WF20096
http://doi.org/10.1016/j.nexus.2022.100056
http://doi.org/10.3390/rs12152356


Remote Sens. 2022, 14, 1264 25 of 25

63. Uddien, R.S.; Pampanoni, V.; Laneve, G. Support Wildfire Management in Mediterranean Territories Using Multi-Source Satellite
Data S2IGI: An Integrated System for Wildfire Management View project Maestria en Aplicaciones Espa-ciales de Alerta y
Respuesta Temprana a Emergencias View project. 2019. Available online: https://www.researchgate.net/publication/336312431
(accessed on 15 September 2021).

64. Huang, H.-Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine
learning. Nat. Commun. 2021, 12, 1–9. [CrossRef]

https://www.researchgate.net/publication/336312431
http://doi.org/10.1038/s41467-021-22539-9

	Introduction 
	Data and Methods 
	Study Area 
	PRISMA Data 
	Reference Data 
	Methods Implemented 
	Guided Image Filtering 
	Jeffries–Matusita Spectral Angle Mapper 
	K-Means Clustering 
	Support Vector Machine for HSI Classification 
	Linear Mixing Model 
	JRC—Anderson Fuel Models Correlation 


	Proposed Framework 
	Preprocessing 
	Pixel Extraction 
	Dataset Preparation 
	Classification Algorithm Details 
	Further Classification 
	Linear Unmixing 
	Fuel Mapping 

	Results and Discussion 
	Classification and Fuel Map 
	Validation 
	Stability Analysis 
	Repeatability and Reproducibility Analysis 
	Extension of Procedure for Europe-Wide Fuel Mapping with LUCAS Database 
	Possible Applications of the Fuel Map 

	Conclusions 
	References

