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Abstract: Designing synthetic-aperture radar image formation systems can be challenging due
to the numerous options of algorithms and devices that can be used. There are many SAR image
formation algorithms, such as backprojection, matched-filter, polar format, Range–Doppler and chirp
scaling algorithms. Each algorithm presents its own advantages and disadvantages considering
efficiency and image quality; thus, we aim to introduce some of the most common SAR image
formation algorithms and compare them based on these two aspects. Depending on the requisites
of each individual system and implementation, there are many device options to choose from, for in-
stance, FPGAs, GPUs, CPUs, many-core CPUs, and microcontrollers. We present a review of the state
of the art of SAR imaging systems implementations. We also compare such implementations in terms
of power consumption, execution time, and image quality for the different algorithms used.

Keywords: synthetic-aperture radar; SAR algorithms; SAR systems; FPGA implementations; GPU
implementations; many-core implementations

1. Introduction

Synthetic-aperture radar (SAR) is a radar-based technology that is capable of generat-
ing images of regions or objects, regardless of time of day or weather conditions. SAR has
a larger number of applications than other observation technologies, and is used to mon-
itor all sorts of phenomena on the planet’s surface, from crop growth to mine detection,
natural disasters, such as volcanoes or hurricanes, to climate change effects, such as the
deforestation or melting of glaciers [1].

The most common deployment of SAR is usually in satellites and available through
public agencies such as ESA with Copernicus, and NASA with RADARSAT. Recently, tstar-
tups such as Iceye and Capella Space have provided services for high-resolution SAR
images on-demand. Unlike optical observation methods, SAR pulses require intensive
signal processing before rendering a visible image.

Because of the very computing-intensive SAR signal processing involved, tradition-
ally, SAR signals are collected during a flight and processed offline. Furthermore, with
the evolution of silicon and unmanned aerial vehicle (UAV) technologies, it is feasible
to equip small aircrafts and drones with SAR sensors and processors, and broadcast the
compressed images in real-time. In the selection of the computing platform, it is necessary
to account for a tradeoff between three constraints: the algorithm execution time, image
quality, and consumed power. Moreover, highly customized hardware accelerators based
on field-programmable gate array (FPGA) technology have proposed implementations
of systems that achieve better power efficiency than general purpose central processing
units (CPUs) [2]. This is of most relevance when considering that these systems are powered
by batteries and that the total payload weight is very limited.
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This review introduces SAR, different modes of operating, namely stripmap, spot-
light and circular, and some of the most common SAR image formation algorithms. A
comparison between SAR image formation algorithms is performed, based on execution
time and image quality. A state of the art overview and a comparison regarding SAR imag-
ing systems are carried out and compared considering device choices, FPGAs, graphical
processing units (GPUs) or CPUs, execution time, image quality and power consumption.

2. Synthetic-Aperture Radar

SAR follows the working principles of radar, emitting electromagnetic waves towards
the surface of the Earth, or of objects, and recording the echoes received by the antenna.
These echoes are then processed by image generation algorithms, resulting in a synthetic
image of a landscape or object. SAR systems use a small antenna which moves along
the aircraft or satellite flight path. This creates a larger synthetic aperture when compared
to the aperture generated by the same but motionless antenna. Figure 1 illustrates an on-
board SAR system in operation. The flight direction is also known as the azimuth direction,
and corresponds to the aircraft path. The antenna illuminates a ground region named
swath, which is as large as the squint angle. The direction perpendicular to the direction
of the flight is named “range direction”.

Figure 1. Schematics of an airborne SAR system. The airplane with the SAR system moves along
the azimuth direction, illuminating a region called swath. The direction of the antenna is the
range direction.

SAR systems operate at different wavelengths, depending on their intended use.
The most common frequency bands and corresponding wavelength are shown in Table 1, [3].
X-band is mostly used for urban, ice, and snow monitoring, due to its weak vegetation
penetration. C-band is used for monitoring areas with low-to-moderate vegetation, oceans,
and ice. S-band is mostly used for agriculture, ice, and snow monitoring. P- and L-bands
are used for vegetation monitoring, subsurface imaging, and biomass estimation [3,4].

Table 1. Most used frequency bands in SAR and respective wavelengths [3].

Frequency Band Ka Ku X C S L P

Frequency [GHz] 40–25 17.6–12 12–7.5 7.5–3.75 3.75–2 2–1 0.5–0.25
Wavelength [cm] 0.75–1.2 1.7–2.5 2.5–4 4–8 8–15 15–30 60–120
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Figure 2 illustrates the types of possible reflections due to the elements present
in the various scenarios, and the roughness of the materials. A flat surface reflects the signal
in a single direction like a mirror, but a rough surface reflects the signal scattered in many
directions. Vegetation produces many reflections but is highly attenuated by the multiple
reflections between leaves. In the urban landscape, the tops of the buildings produce
reflections with the highest intensities, whereas the streets will have the lowest intensities,
since most reflections are blocked by the tall buildings.

Figure 2. Types of reflections generated by different surfaces. From left to right, (a) a flat surface,
such as water, makes the wave reflect forward without any reflection back; (b) forest and vegetation
generates multiple signal reflections but highly attenuated due to penetration in the trees; (c) cul-
tivation fields are similar to the forest, but have less attenuation; (d) the inclination of mountains
generates direct reflections to the sensor on the illuminated side, but no reflection at all on the other;
(e) irregular terrain produces scattered reflections; (f) urban buildings tend to create reflections with
high intensity, but small streets represent a complete absense of reflections.

There are four operating modes for SAR: Stripmap SAR, Spotlight SAR, Circular SAR,
and ScanSAR. This review is focused on Stripmap, Spotlight, and Circular SAR [1,5], which
are the most used operating modes. These operating modes are illustrated in Figure 3.

Stripmap SAR is a mode of operation where a fixed antenna on a platform, moving in a
straight line, continuously emits pulses, illuminating a strip of terrain parallel to the flight
path. The main advantage of stripmap SAR is the ability to cover a large area. However,
the image quality is inferior when compared to spotlight SAR, described below. A schematic
of this operating mode is presented in Figure 3.

(a) (b) (c)

Figure 3. Illustration of the different operating SAR modes: Stripmap, Spotlight, and Circular SAR.
(a) Stripmap SAR, where the platform movement allows for a larger ground cover, as the swath
moves along with it. The resolution is lower than other SAR modes, however, the covered area is
larger. (b) Spotlight SAR, where the antenna moves along with the platform, illuminating the same
region at every instance of time, allowing for higher resolution images. (c) Circular SAR, where
the platform moves in a circular motion, illuminating the same region at every instance of time,
allowing for higher resolution of images due to the multiangular data collection.



Remote Sens. 2022, 14, 1258 4 of 31

Spotlight SAR consists of a platform moving along the straight flight path with a mov-
ing antenna. The antenna is constantly moving in order to illuminate the same area
continuously. The main advantage of this operating mode is the ability to generate high-
resolution images, however, the area that it is able to cover is significantly smaller when
compared to Stripmap [5]. Spotlight mode allows the collection of data from different
angles, which increases the quality of the image when compared to Stripmap SAR. Spotlight
SAR is illustrated in Figure 3b.

Circular SAR consists of a platform performing a circular trajectory, while illuminating
the same area at every instance of time. It is similar to Spotlight, however, it follows
a circular motion, obtaining data for all 360°, while Spotlight covers 180° in a straight line.
The antenna does not move; only the platform it is mounted on. The advantage of this SAR
mode is the ability to cover the same region from 360 angles, gathering more information [5].
On the other hand, the resolution of Circular SAR assumes 360° isotropic scattering, and
therefore, it is a theoretical resolution. This mode is illustrated in Figure 3c.

ScanSAR consists of an antenna capable of moving in different directions, illuminating
different sub-swaths. This mode of operation covers a larger area while sacrificing azimuth
resolution [6].

The range (∆r) and azimuth resolution (∆a) of Stripmap, Spotlight, and Circular
SAR are displayed in Table 2, where c is the velocity of light, ω0 is the radar signal
half-bandwidth in radians, Dy is the diameter of the radar in the azimuth domain, rn
is the target radial distance from the center of aperture, λc is the wavelength at carrier
fast-time frequency, λc =

2cπ
ωc

, ωc is the central frequency, L is half-size of the aperture, θn(0)
is the aspect angle of the nth target when radar is at (0, 0), ρmax and ρmin are the maximum
and minimum polar radius in spatial frequency domain for the support of a target at the
center of the spotlighted area, kc is the wavenumber at carrier frequency, θz is the average
depression angle of the target area, and φ0 is the polar angle in spatial frequency domain [1].
Table A1 in Appendix A contains the symbols used in this review, their meaning, and units.

Table 2. Range and azimuth resolution of Stripmap, Spotlight, and Circular SAR [1].

Range Resolution Azimuth Resolution

Stripmap SAR ∆r =
cπ

2ω0
∆a =

Dy
2

Spotlight SAR ∆r =
cπ

2ω0
∆a = rnλc

4L cos θn(0)
Circular SAR ∆r =

π
ρmax−ρmin

∆a = π
2kc cos θz sin φ0

A SAR radar emits pulses using a linear FM chirp signal. This signal is defined by
Equation (1) [7].

st(τ) = rect
(

τ

Tr

)
× cos

(
2π f0τ + πKrτ2

)
(1)

where Kr is the chirp rate, f0 is the carrier frequency, and τ is the range time. The pulse
envelope can be approximated using a rectangular function, rect

(
τ
Tr

)
, where Tr is the pulse

duration. The received signal, or echo, is given by the convolution of the pulse and
the ground reflectivity, gr, in the illuminated section,

sr(τ) = gr(τ)⊗ st(τ) (2)

Considering the time delay between the emission and reception of the pulse, given
by 2Rt/c, where Rt is the distance from the antenna to the target and A

′
0 is the magnitude,

the received signal is given by

sr(τ) = A
′
0rect(τ − 2Rt/c)× cos

[
2π f0(τ − 2Rt/c) + πKr(τ − 2Rt/c)2 + φ

]
(3)
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where φ represents the phase change that may result from the scattering due to the rough-
ness of the reflecting surface.

Since Rt changes with azimuth time, it is referred to now as Rt(η). Before sampling
the signal, it is necessary to remove the radar carrier, cos(2π f0τ). This is done with
a demodulation process, resulting in the following demodulated signal from a single point,

sr(τ, η) = A0rect(τ − 2Rt(η)/c)wa(η − ηc)

× exp[−j4π f0Rt(η)/c]

× exp
[

jπKr(τ − 2Rt(η)/c)2
] (4)

where wa is the antenna pattern in the azimuth direction, η is the azimuth time and A0 is
a complex constant, A0 = A

′
0 exp(iφ).

3. Synthetic-Aperture Radar Image Formation Algorithms

There is a wide range of synthetic-aperture radar image formation algorithms. Some re-
cent advances in improving SAR imaging algorithms can be found in [8–10]. The following
sections describe some of the most used SAR image formation algorithms, such as: Range–
Doppler, chirp scaling, omega-K, polar format, matched filter, and backprojection.

3.1. Range–Doppler Algorithm

The Range–Doppler algorithm was developed in the 1970s, and was used to generate
the first SAR digitally processed image. The Range–Doppler algorithm takes advan-
tage of block processing, using frequency domain operations in range and azimuth [7].
The Range–Doppler algorithm is used to generate images with stripmap SAR. A block
diagram of the Range–Doppler algorithm is presented in Figure 4. The algorithm consists
of the following steps [7]:

Raw SAR data

Range
compression

Azimuth
FFT

RCMC

Azimuth
Compression

Azimuth
IFFT

Compressed image

Figure 4. Block diagram of the Range–Doppler Algorithm, from [7].

1. A range compression is performed along the range direction, with a fast convolution.
This means that a range FFT is performed, a matched filter multiplication and, lastly,
a range inverse fast Fourier transform. Using the received demodulation signal given
by Equation (4), assuming S0( fτ , η) is the range FFT of sr and G( fτ) is the frequency
domain matched filter, the output of this step of the Range–Doppler algorithm is
given by
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src(τ, η) = IFFTτ [S0( fτ , η)G( fτ)]

= A0 pr

[
τ − 2Rt(η)

c

]
wa(η − ηc)× exp

[
−j

4π f0Rt(η)

c

] (5)

where the compressed pulse envelope, pr(τ), is the IFFT of the rectangular function.
2. The data are transformed into the Range–Doppler domain with an azimuth FFT.

Since the first exponential in Equation (5) is constant for each target and with
fη = −Kaη, where Ka is the azimuth FM rate of point target signal, the output
after the azimuth FFT is given by

s1(τ, fη) = FFTη [Src( fτ , η)]

= A0 pr

[
τ −

2Rrd( fη)

c

]
Wa( fη − fηc)

× exp
[
−j

4π f0Rt(η)

c

]
exp

[
jπ

f 2
η

Ka

] (6)

where Wa is the envelope of the Doppler spectrum of the antenna beam pattern.
3. The platform movement causes range variations in the data, a phenomenon called

range migration, and hence, a correction is performed to rearrange the data in memory,
and straighten the trajectory. This way, it is possible to perform azimuth compression
along each parallel azimuth line. This step is called range cell migration correction,
and is given by

∆R( fη) =
λ2Rt f 2

η

8V2
r

(7)

where λ is the wavelength of carrier frequency f0, resulting in the following signal

s2(τ, fη) = A0 pr

[
τ − 2Rt

c

]
Wa( fη − fηc)× exp

[
−j

4π f0Rt(η)

c

]
exp

[
jπ

f 2
η

Ka

]
(8)

4. Azimuth compression is performed to compress the energy in the trajectory to a single
cell in the azimuth direction. A matched filter is applied to the data after RCMC and,
lastly, an IFFT is performed.
The frequency domain matched filter is given by

Haz( fη) = exp

[
−jπ

f 2
η

Ka

]
(9)

After azimuth compression, the resulting signal is given by

s3(τ, fη) = S2(τ, η)Haz fη

= A0 pr(τ − 2Rt/c)Wa( fη − fηc)× exp
[
−j

4π f0Rt

c

] (10)

5. Lastly, an azimuth IFFT transforms the data into the time domain, resulting in a com-
pressed complex image. After this step, the compressed image is given by

sac(τ, fη) = IFFTη

[
S3(τ, fη)

]
= A0 pr(τ − 2Rt/c)pa(η)× exp

[
−j

4π f0Rt

c

]
exp[j2π fηc η]

(11)

where pa is the amplitude of the azimuth impulse response.
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The Range–Doppler algorithm has two main disadvantages. First, there is a need
for interpolation during the RCMC step. If high accuracy is needed, the interpolation
increases the computational burden. Second, the energy is not entirely concentrated
on the range migration curve, as seen above in step 1 of the Range–Doppler algorithm.
The spreading of energy introduces degradation into the range focus [11].

3.2. Chirp Scaling Algorithm

The chirp scaling algorithm was developed to remove the interpolator from RCMC
in the Range–Doppler algorithm [7,12,13]. The chirp scaling mechanism allows for the im-
plementation of RCMC shift using phase multiplies instead of an interpolator.
Initially, the chirp scaling algorithm was developed for Stripmap SAR, however, it has
since been adapted to the spotlight mode as well [14]. The following description refers
to the stripmap mode only. A block diagram of the chirp scaling algorithm is presented
in Figure 5. The chirp scaling algorithm consists of the following steps [7].

Raw SAR data

Azimuth FFT

Chirp scaling for RCMC

Range FFT

Reference funcion multiply
for bulk RCMC, RC and SRC

Range IFFT

Azimuth Compression
and phase correction

Azimuth IFFT

compressed image

SAR signal domain

Range–Doppler domain

2D frequency domain

Range–Doppler domain

SAR image domain

Figure 5. Block diagram of the chirp scaling algorithm, from [7].

1. The data are transformed into the complex Doppler domain using an azimuth FFT.
2. Chip scaling is applied, employing a phase multiply, in order to adjust the range

migration of the trajectories. Assuming a linear frequency-modulated (FM) pulse,
a range invariant radar velocity and a range invariant modified pulse FM rate, Km
in the Range–Doppler domain, the scaling function [7] is given by

ssc(τ
′, fη) = exp

[
jπKm

(
D( fηre f , Vrre f )

D( fη , Vrre f )

)
(τ′)2

]
(12)

where Km is the range FM of the point target signal in Range–Doppler domain, fηre f

is the reference azimuth frequency, fη is the azimuth frequency, Vrre f is the effective
radar velocity at reference range and D() is the migration factor in the Range–Doppler
domain, resulting in the scaled signal in the Range–Doppler domain given by

s1(τ, fη) = ssc(τ
′, fη)Srd(τ, fη) (13)
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where Srd is given by

srd(τ, fη) = Awr

[
τ − 2R0

cD( fη , Vr)

]
Wa( fη − fηc)

× exp
[
−j

4π f0R0D( fη , Vr)

c

]
× exp

[
jπKm

(
τ − 2R0

cD( fη , Vr)

)2
] (14)

where A is a complex constant.
3. The data are transformed into the two-dimensional frequency domain with a range

FFT, resulting in the signal given by

s2( fτ , fη) = A1Wr( fr)Wa( fη − fηc)

× exp
[
−j

4π f0R0D( fη , Vr)

c

]
× exp

[
−j

πD( fη , Vr)

KmD( fηre f ,Vr )
f 2
τ

]

× exp

[
−j

4πR0

cD( fηre f , Vrre f )
fτ

]

× exp

[
−j

4π

c

(
1

D( fη , Vrre f )

− 1
D( fηre f , Vrre f )

)
Rre f fτ

]

× exp

[
j
4πKm

c2

(
D( fη , Vrre f )

D( fηre f , Vrre f )

)

×
(

R0

D( fη , Vr)
−

Rre f

D( fη , Vr)

)2
]

(15)

4. Range compression, secondary range compression (SRC), and bulk RCMC are applied
using a phase multiply with a reference function. This step compensates the second
and fourth exponentials from Equation (15), resulting in

s3( fτ , fη) = A1Wr( fr)Wa( fη − fηc)

× exp
[
−j

4π f0R0D( fη , Vr)

c

]
× exp

[
−j

4πR0

cD( fηre f , Vrre f )
fτ

]

× exp

[
−j

4π

c

(
1

D( fη , Vrre f )

− 1
D( fηre f , Vrre f )

)
Rre f fτ

]

× exp

[
j
4πKm

c2

(
D( fη , Vrre f )

D( fηre f , Vrre f )

)
×

(
R0

D( fη , Vr)
−

Rre f

D( fη , Vr)

)2
]

(16)
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5. Data are converted to the Range–Doppler domain using an IFFT, resulting in a signal
in the Range–Doppler domain given by

s4(τ, fη) = A2 pr

(
τ − 2R0

cD( fηre f , Vrre f )

)
Wa( fη , fηc)

× exp
[
−j

4πR0 f0D( fη , Vr)

c

]
× exp

[
j
4πKm

c2

(
1−

D( fη , Vrre f )

D( fηre f , Vrre f )

)

×
(

R0

D( fη , Vr)
−

Rre f

D( fη , Vr)

)2
]

(17)

6. This step consists of an azimuth compression with a range-varying matched filter,
followed by a phase correction and an azimuth IFFT. The matched filter is the complex
conjugate of the first exponential of Equation (17). The phase correction is given by
the complex conjugate of the second exponential of Equation (17) for linear FM signals.
After this step, including azimuth-matched filtering, phase correction and azimuth,
the compressed signal at point target is given by

s5(τ, η) = A4 pr

[
τ − 2R0

cD( fηre f , Vrre f )

]
Pa(η − ηc)× exp[jθ(τ, η)] (18)

where Pa(η) is the IFFT of the window Wa( f η) and θ(τ, η) is the target phase.

3.3. Omega-K Algorithm

The omega-K algorithm was developed to avoid the range time and azimuth frequency
dependency, in the Range–Doppler algorithm, which is not compensated when the azimuth
beamwidth is wide, and a range frequency dependency in the chirp scaling algorithm,
which is not ideal for high squint angles or wide apertures [7,15,16]. The omega-K algorithm
solves these issues with a Stolt operation [17], allowing it to operate over wide azimuth
apertures or high squint angles. However, since the omega-K algorithm assumes that
the velocity is range invariant, it is not adequate for large-range swaths. Even though
the original omega-K algorithm was developed for Stripmap SAR, spotlight alternatives
have been implemented [18]. A block diagram of the omega-K algorithm is presented
in Figure 6. The main steps of the omega-K algorithm are as follows [7].

Raw SAR data

Two-Dimensional FFT

Reference function
multiply

(bulk compression)

Stolt mapping along
the range frequency

(differential compression)

Two-dimensional IFFT

compressed image

SAR signal domain

2D frequency domain

SAR image domain

Figure 6. Block diagram of the omega-K algorithm, from [7].
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1. Transforming the data into the two-dimensional frequency domain using a 2D FFT,
resulted in the baseband uncompressed signal given by

S2d f ( fτ , fη) = AWr( fτ)Wa( fη − fηc)× exp
[

jθ2d f ( fτ , fη)
]

(19)

2. Computing the reference function multiply, which is usually computed
for the midswath range. Assuming the range pulse is an up chirp with an hyperbolic
equation, the phase is given by

θ2d f ( fτ , fη) = −
4πR0

c

√
( f0 + fτ)2 − c2 f 2

τ

4V2
r
− π f 2

τ

Kr
(20)

By setting the range and effective radar velocity to their midrange or reference values,
the phase of the reference function multiplier (RFM) filter is

θre f =
4πRre f

c

√√√√( f0 + fτ)2 −
c2 f 2

η

4V2
rre f

+
π f 2

τ

Kr
(21)

After applying the filter, the phase remaining is given by

θRFM ≈
4π(R0 − Rre f

c

√
( f0 + fτ)2 −

c2 f 2
η

4V2
r

(22)

The approximation comes from the assumption that Vr is range-invariant. This step is
called bulk compression.

3. After the previous step, the data are focused at reference range, and are thus necessary
to focus the objects at other ranges. This can be done using the Stolt interpolation,
which consists of the mapping of the range frequency axis. This interpolation per-
forms the steps seen in the algorithms presented above, RCMC, SRC, and azimuth
compression. The idea of this interpolation is to modify the range frequency axis,
replacing the square root in Equation (22) with the shifted and scaled variable, f0 + f ′τ ,
so that √

( f0 p fτ)2 −
c2 f 2

η

4V2
r

= f0 + f ′τ (23)

This results map the original variable, fτ , into a new one, f ′τ . After the Stolt interpola-
tion, the phase function is given by

θstolt( f ′τ , fη) = −
4π(R0 − Rre f )

c
( f0 + f ′τ) (24)

4. The last step of this algorithm is a two-dimensional IFFT, transforming the data back
into the time domain, and resulting in a compressed complex image.

3.4. Polar Format Algorithm

The polar format algorithm is a widely used algorithm for spotlight SAR. Its popularity
comes mainly from its computational efficiency, O(n2 log2 n). The polar format algorithm
is seen as a good alternative if compared to other spotlight formation algorithms [19],
such as the backprojection algorithm and matched filter algorithm, described below, with
computational complexities of O(n3) and O(n4), respectively. The main difference between
the algorithms is the two-dimensional FFT applied in the polar format algorithm, while
the backprojection algorithm only applies a FFT in the range domain. The two-dimensional
FFT of the polar format algorithm is responsible for the introduction of geometrical warping
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and the loss of focus in the final image, which increases with distance from the scene
center [19–21], which can be corrected using several mechanisms [22–24].

The key idea of the polar format algorithm is the two-dimensional scattering model
which assumes a flat scene, even for three-dimensional SAR systems. The phase history re-
ceived when using spotlight-operated SAR is a slice of the Fourier transform of the terrain
reflectivity, and hence, an inverse FFT can be performed to form an image [22]. This method,
however, generates low-resolution images, since the collected data are on a polar grid and
the FFT assumes a rectangular one, making it necessary to interpolate the data from the po-
lar to a rectangular grid.

Ideally, a two-dimensional interpolation would be performed, however, it is commonly
replaced by an interpolation in the range domain, followed by another in the azimuth
domain, for each range line, avoiding the costly two-dimensional interpolation [25].

The steps of the polar format algorithm, illustrated in Figure 7, are as follows.

Raw SAR data

Mapping data
to Fourier-Space

Data
interpolation

Two-dimensional
IFFT

Compressed image

Figure 7. Block diagram of the polar format algorithm.

1. Map the phase history, or received data, to the correct coordinate of the spatial
Fourier transform.

2. Perform the two-stage interpolation on the K-space data, as described above. This step
is going to interpolate the data in a keystone shape to a rectangular grid.

3. A two-dimensional inverse FFT is performed in the interpolated data, converting
the data from the K-space to the Euclidean space, resulting in the final image.

3.5. Matched Filter Algorithm

The matched filter algorithm consists of the application of a matched filter to the re-
ceived SAR signal, which can be applied to any kind of scatterer. This review consid-
ers the implementation described in [23], hence an isotropic point scatterer is assumed.
The matched filter of the received signal, at location η in the azimuth, is given by

MF(η) =
1

NpK

Np

∑
n=1

K

∑
k=1

sr(τ, η) exp
[

j4π
τ∆R(η)

c

]
(25)

where Np is the number of pulses and K is the number of frequency samples per pulse.
To form an image, Equation (25) is applied for each pixel of the image, resulting in a com-
putational order of O(N4).

3.6. Backprojection Algorithm

The backprojection algorithm is based on the projection of the echoes received by
the radar, which is performed for each of the image pixels [26]. A block diagram of the back-
projection algorithm is given in Figure 8, [27].
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Raw SAR data

Range IFFT

FFT Shift

Differential Range

Phase Calculation

Linear Interpolation

Radar positions Pixel positions

Final image

Figure 8. Block diagram of the backprojection algorithm, from [27].

The projection of the pulses, or contribution, for every pulse [28], is given by

s(m, τn) = N f f t · FFTshi f t{IFFT(S( fk, τn))} × exp

(
j2π f1(m− 1)

N f f t∆ f

)
(26)

where N f f t is the FFT length, S( fk, τn) is the phase history, fk is the frequency sample per
pulse, τn is the transmission time of each pulse, f1 is the minimum frequency for every
pulse, m is the range bin and ∆ f is the frequency step size. The calculation of each pulse
contribution, for every pixel, is calculated from the differential range, that is, the difference
between the distance between the radar and the pixel and the range to the scene center,
which is used to find the interpolated value of s(r, τn), sint(r, τn). The differential range is
given by

∆R(η) = da0(τη)− da(τη)

=
√
(xa(η)− x)2 + (ya(η)− y)2 + (za(η)− z)2 − r0

(27)

where da0(τη) is the distance between the radar and the pixel, da(τη) is the range to the scene
center, also refered to as r0, (xa(η), ya(η), za(η)) is the position of the radar, or antenna, and
(x, y, z) is the location of each pixel.

The final value of each pixel at location r is given by the sum of each contribution [28],
given by

I(r) =
Np

∑
n=1

sint(r, τn) (28)

From Equation (28), the calculation of each pixel is independent, meaning that this
algorithm is easily parallelizable. The first two blocks correspond to the IFFT and FFT shift
operations present in Equation (26). The differential range block corresponds to the calcula-
tion of the distance between the platform and the pixel location.

3.7. Comparison Between Algorithms

Most of the algorithms presented here are frequency-domain algorithms, which also
means that they usually have higher computing efficiency. However, the main drawback
of such a method is the introduction of side lobes and unfocused regions as the distance
to the scene center increases. The backprojection algorithm only performs a range FFT,
while the polar format algorithm performs a range and an azimuth FFT, which introduces
the side lobes. Of the algorithms presented here, Range–Doppler algorithm, chirp scal-
ing algorithm, omega-K algorithm, and polar format algorithm are frequency-domain
algorithms. The matched filter and the backprojection algorithms are both time-domain
algorithms and their computational complexity is superior, however, the images do not
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suffer from the same warping as the previously mentioned algorithms. Table 3 summarizes
the main advantages and disadvantages of these algorithms in regard to Level 0 products.
For higher-level products, digital elevation models are required when processing SAR data,
such as the radiometric terrain correction (RTC) and interferometric SAR (InSAR) products.

Table 3. Comparison between the Range–Doppler, chirp scaling, omega-K, polar format, and
backprojection algorithms.

Algorithm Main Features

Range–Doppler
Frequency domain for range and azimuth; uses block processing; range cell
migration correction between range and azimuth; simple one-dimensional
operations; not good for high-squint angles.

Chirp Scaling Offers a good trade-off in terms of simplicity, efficiency, and accuracy; high
computing load; limited accuracy for high squint, and wide-aperture uses.

Omega-K Commonly used for processing raw stripmap SAR in frequency domain; good
results for high-squint angles.

Polar Format good for cases where resolution is close to the nominal wavelength of the radar.
Backprojection Time-domain processing; most complex; better image.

The computational load of the Range–Doppler, chirp scaling, and omega-K algorithms
evaluated in terms of floating-point operations (FLOPs) published by Cumming et al. [7]
identifies the number of necessary operations according to the algorithm section, and then
calculates the total number of FLOP for an input with the number of input range samples
equal to 4096, number of input range samples per line equal to 4096, interpolation kernel
length assumed to be 8, and number of output range samples per line equal to 3072. The
results of their analysis are presented in Table 4, where the final number of giga-floating-
point operations (GFLOPs) is presented. If desired, the full calculations of these values are
detailed in the book [7]. From the table, it is possible to observe that the Range–Doppler
algorithm is the one that requires the most GFLOP, while the chirp scaling algorithm
requires the smallest number of GFLOP.

Table 4. Computational load of the Range–Doppler, chirp scaling and omega-K algorithms in GFLOP.
These values were calculated and published in [7].

Algorithm GFLOPs

Range–Doppler 5.61
Chirp scaling 4.05

Omega-K 4.38

Regarding the remaining algorithms, the implementations in which this review was
based did not report FLOP, but O-notation. The polar format algorithm is the one with
lower computational complexity of O(n2 log2 n). As for the time-domain backprojection
and matched filter algorithms, the complexity raises to O(n3) and O(n4), respectively.

When it comes down to the algorithm choice, it depends on the system in which
the algorithms are going to be executed and, ultimately, the tradeoff between perfor-
mance, power consumption, and image quality. Computing an image with high resolu-
tion will increase the power consumption and computing time, whereas a fast execution
with low-power requirements will result in the formation of an image with poor resolu-
tion. Image quality is evaluated using the structural similarity (SSIM) metric, described
in the next section.

4. Synthetic-Aperture Radar Imaging Implementations

This section describes the state of the art of SAR image formation algorithm implemen-
tations, beginning with software implementations, then hardware implementations and
GPU/many-core implementations. Following the state of the art, a comparison between
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several publicly available software implementations is presented, including generated
images and execution times. Lastly, a comparison between the hardware accelerators and
GPU/many-core implementations is presented.

4.1. Software-Only Implementations

There are several software-only implementations of SAR algorithms widely men-
tioned in the literature and used as baseline for hardware and other implementations.
MatLab is quite user-friendly for the development, analysis, and test of these algorithms.
Despite providing highly efficient implementations of data processing, usually it is not
used for deployment. The programming language is target dependent, like C programming
for software systems, and CUDA-based (Compute Unified Device Architecture) program-
ming for GPU platforms. In the case of custom hardware systems, an accelerator is usually
developed that speeds up the processing of the algorithm.

In this review, only freely available implementations of algorithms are presented.
Moreover, the authors did not implement any algorithm, as that is not the objective of this
work. The backprojection, matched filter, fast-factorized backprojection and polar format
algorithm implementations are presented. Hardware implementations were not assessed
due to the lack of different platforms and availability.

The backprojection algorithm implementation [28] for circular SAR is the most men-
tioned in the works described in the following sections. The implementation was designed
by LeRoy Gorham and Linda Moore, from the Air Force Research Laboratory (AFRL), and
is implemented in MATLAB. They provide not only a complete, ready-to-use MATLAB
implementation, but also prepare to take, as input, several datasets made publicly available
by the AFRL without needing modifications or pre-processing of data. These datasets are
known as the Gotcha Volumetric SAR Dataset [29], Backhoe Data Dome [30], and GMTI
Challenge Problem [31].

The SAR image formation toolbox for MATLAB [28] also provides an implementation
of the matched filter algorithm. This algorithm implementation is also prepared to receive,
as input, the datasets mentioned above.

The fast-factorized backprojection algorithm is an alternative when the backprojection
is too expensive, since the computational complexity of this algorithm, O(n2 log2 n), is
lower when compared to the backprojection algorithm, O(n3). A MATLAB implementation
of this algorithm was made by Shaun Kelly et al. [32]. This implementation compares
the quality of the resulting images depending on the number of iterations performed.
The source code of this implementation is publicly available and, similarly to the previous
implementations, also takes as input the format of the datasets provided by the AFRL.
In the original paper, the Gotcha Volumetric SAR dataset is used to compare the results.

The polar format algorithm implementation [19] in MATLAB provides the source
code and is also prepared to receive the data in the format of the datasets of the AFRL.

The backprojection, fast-factorized and matched filter algorithms were implemented for
circular SAR. The PERFECT Suite [33] provides a set of applications and kernels for spot-
light SAR implemented in C programming language, with CUDA and OpenMP versions.
The PERFECT suite provides an implementation of the backprojection algorithm, and two
implementations of the polar format algorithm, with different modes of interpolation, range
and azimuth. The PERFECT suite provides a dataset in three different sizes of simulated data.

A comparison between the implementations mentioned in this section is performed
in the next section, Section 4.2.

4.2. Comparison Between Software-Only Implementations

This section features the comparison between the software implementations discussed
in Section 4.1. These implementations are compared in terms of execution time and
image quality. To recap, the software implementations compared in this section are
the matched filter and backprojection algorithms [28], and fast-factorized backprojection
algorithm [32]. These implementations, as mentioned, are written in MATLAB, use the same
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data format, and are tested using the Gotcha Volumetric SAR dataset [29], the GMTI
Challenge Problem [31], and a synthetic dataset that generates point targets, also provided
with the backprojection implementation [28].

The PERFECT suite implementations, in C programming language, of the backpro-
jection algorithm and the polar format algorithms, with two interpolations, range and
azimuth, are also tested using the synthetic dataset provided.

From the algorithms tested in this review, the matched filter algorithm has the highest
computational complexity, O(n4), making it impractical for most applications. The images
generated by the matched filter algorithm using the GOTCHA Volumetric dataset are
presented in Figure 9, the one generated using the GMTI Challenge problem in Figure 10b
and the synthetic point target one in Figure 11b. The execution times of the formation
of these images are given by Table 5. From this table, it is possible to observe that this
algorithm takes between 53 and 517 times longer than any of the others, backprojection
algorithm and fast-factorized backprojection. For this reason, it was not possible to generate
larger images using this algorithm. Fifty degrees of azimuth takes around 5 hours, and
for the GMTI dataset, almost 7 hours. Every image and test presented in this review
was executed on a PC desktop with a quad-core Intel Core i7-9700F processor, a NVIDIA
GeForce RTX 2060 GPU, 32GB of RAM and 1TB of SSD.

Table 5. Execution times and SSIM values of the images generated by the backprojection algorithm,
matched filter algorithm, and fast-factorized backprojection algorithm. The SSIM values were
obtained in comparison with the backprojection algorithm images, which is why the algorithm does
not have a value. The asterisk in the fast-factorized backprojection image indicates that the SSIM
value of the GMTI was obtained compared with the image the matched filter algorithm generated,
instead of the backprojection. This is due to the differences in the algorithm implementations,
where the backprojection leaves dark triangles in the corners, while the other two algorithms leave
an extremely unfocused area. Since the unfocused is more similar, the comparison is assumed to be
fairer this way.

Backprojection
Algorithm

Matched-Filter
Algorithm

Fast-Factorized
Backprojection Algorithm

Time Time SSIM Time SSIM

Gotcha 39º 2.13s 364.30 s 0.999101 1.14 s 0.861199
1–10º 20.49 s 3755.68 s 0.999100 7.85 s 0.824825
1–50º 104.36 s 18625.73 s 0.999117 36.60 s 0.832565

1–100º 208.74 s — — 73.10 s 0.817611
1–360º 759.96 s — — 266.99 s 0.817061

GMTI 387.86 s 24791.79 s 0.843764 71.91 s 0.946678 *
Point Target 2.04 s 107.34 s 0.995989 1.05 s 0.904601

(a) (b) (c)

Figure 9. Images generated using the matched filter algorithm and the Gotcha Volumetric SAR
dataset at different azimuth angles: 39º, 1–10º and 1–50º. Due to the computational complexity
of the algorithm, larger ranges were not generated, since they would take days. (a) GOTCHA Vol-
umetric dataset image generated using the matched filter algorithm at 39º azimuth. (b) GOTCHA
Volumetric dataset image generated using the matched filter algorithm from 1º to 10º azimuth.
(c) GOTCHA Volumetric dataset image generated using the matched filter algorithm from 1º to 50º azimuth.
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(a) (b) (c)

Figure 10. Images from the GMTI dataset generated using the backprojection algorithm, matched
filter algorithm, and fast-factorized backprojection algorithm. (a) GMTI dataset image generated
using the backprojection algorithm. (b) GMTI dataset image generated using the matched-filter
algorithm. (c) GMTI dataset image generated using the fast-factorized backprojection algorithm.

(a) (b) (c)

Figure 11. Images from the point target dataset generated using the backprojection algorithm,
matched filter algorithm and fast-factorized backprojection algorithm. (a) Point target dataset im-
age generated using the backprojection algorithm. (b) Point target dataset image generated using
the matched-filter algorithm. (c) Point target dataset image generated using the fast-factorized
backprojection algorithm.

The backprojection algorithm, which has a lower computational complexity of O(n3),
is a more suitable approach for SAR image formation than the matched filter algorithm. The
images using the GOTCHA dataset using this algorithm are presented in Figure 12, the one
using the GMTI challenge in Figure 10a and the synthetic point target one
in Figure 11a. The execution times are displayed in Table 5, where we can observe the exe-
cution times range from 2 s for one degree of azimuth to 12 min for 360º of azimuth.

Lastly, the fast-factorized backprojection algorithm is a more efficient version
of the backprojection algorithm, with a complexity of O(n2 log2 n). This algorithm was
tested with a maximum recursion depth of 4, oversampling ratio of 2, and decimation in
phase history. The images from the GOTCHA Volumetric dataset generated using this
algorithm are presented in Figure 13, the one using the GMTI challenge in Figure 10c
and the synthetic point target one in Figure 11c. The execution times of these tests are
available in Table 5, where it is possible to observe that this algorithm takes significantly
less time than the backprojection. The largest execution time, the formation of 360º of the
azimuth of the GOTCHA dataset, is almost three times quicker than the execution time
of the backprojection algorithm.

The images generated using the GMTI dataset with the matched filter, backprojection
and fast-factorized backprojection algorithms are presented in Figure 10 and the images
generated using the synthetic point target dataset in Figure 11. Since these images are
very similar to the naked eye, a metric called SSIM is used to compare them. This metric
compares the similarity of two images using three comparison measurments: luminance,
contrast and structure. The value of SSIM varies between 0 and 1, with 1 representing
an exact copy of the image.
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(a) (b) (c)

(d) (e)

Figure 12. Images generated using the backprojection algorithm and the Gotcha Volumetric SAR
dataset at different azimuth angles: 39º, 1–10º, 1–50º, 1–100º and 1–360º. (a) GOTCHA Volumetric
dataset image generated using the backprojection algorithm at 39º azimuth. (b) GOTCHA Volumetric
dataset image generated using the backprojection algorithm from 1º to 10º azimuth. (c) GOTCHA
Volumetric dataset image generated using the backprojection algorithm from 1º to 50º azimuth.
(d) GOTCHA Volumetric dataset image generated using the backprojection algorithm from 1º to 360º
azimuth. (e) GOTCHA Volumetric dataset image generated using the backprojection algorithm
from 1º to 100º azimuth.

(a) (b) (c)

(d) (e)

Figure 13. Images generated using the fast-factorized backprojection algorithm and the Gotcha
Volumetric SAR dataset at different azimuth angles: 39º, 1–10º, 1–50º, 1–100º and 1–360º. (a) GOTCHA
Volumetric dataset image generated using the fast-factorized backprojection algorithm at 39º azimuth.
(b) GOTCHA Volumetric dataset image generated using the fast-factorized backprojection algorithm
from 1º to 10º azimuth. (c) GOTCHA Volumetric dataset image generated using the fast-factorized
backprojection algorithm from 1º to 50º azimuth. (d) GOTCHA Volumetric dataset image generated
using the fast-factorized backprojection algorithm from 1º to 100º azimuth. (e) GOTCHA Volumetric
dataset image generated using the fast-factorized backprojection algorithm from 1º to 360º azimuth.
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The SSIM values obtained when comparing the images generated using the back-
projection algorithm and the matched filter are close to 1, with a difference up to 0.004.
This is an expected outcome, since these algorithms generate high-quality images, and
the backprojection is able to maintain a quality similar to the matched filter algorithm with
a smaller execution time. The fast-factorized algorithm falls behind when it comes to image
quality, with a difference in the SSIM values between 0.04 and 0.14. However, it may
satisfy the quality requirements for some applications, with its lower execution times. As
for the special case of the GMTI image, the SSIM values are so different due to differences
in the algorithms, with the backprojection creating dark triangles in the corners while
the other two algorithms generate an extremely unfocused region. A fairer comparison is
between the matched-filter algorithm generated image, Figure 10b, and the fast-factorized
backprojection generated image, Figure 10c. The difference between these two images,
represented by the SSIM value, is 0.095399.

The PERFECT suite provides two different algorithms for SAR image formation: the
backprojection algorithm and polar format algorithm, in two versions, with range inter-
polation, and another with azimuth interpolation. The images generated using the back-
projection algorithm are presented in Figure 14, the small input size (512× 512 px), in Fig-
ure 14a, the medium input size (1024× 1024 px), in Figure 14b and the large input size
(2048× 2048 px), in Figure 14c. The images generated using the polar format algorithm
with range interpolation are presented in Figure 15, the small, medium and large images
are presented in Figure 15a, Figure 15b and Figure 15c, respectively.

Lastly, the images generated using the polar format algorithm with azimuth interpo-
lation are presented in Figure 16, the small, medium and large images are presented in
Figure 16a, Figure 16b and Figure 16c, respectively. In these images it is possible to observe
the noise surrounding the bright spots, or point targets, of the synthetic images. The noise
is more visible when x = 200 and x = 400 m, approximately, for the small image, when
x = 200, x = 300 and x = 700 m, approximately, for the medium image and x = 600,
x = 1100, x = 1500, x = 1900 m, approximately, for the large image.

The execution times of these algorithms vary significantly, as can be observed from
the data gathered in Table 6. This table also presents the pixel generation rate in pixels
per second (PPS), proportional to the total number of pixels in the image and the time
for the algorithm to process them. The execution times vary between 0.06 s and 5.84 s, 0.21
s and 57.91 s and 0.80 s and 9 m 25.04 s for the small, medium and large input datasets,
respectively. The polar format algorithm takes at most 1.05 s to generate each image,
while the backprojection algorithm takes over nine minutes to generate the larger image.
The smaller size is generated by the BP algorithm in 5.84 s, a more reasonable execution
time for a 512× 512 px image.

It should be noted that even though the algorithms are tested with similar datasets
of the same three sizes, there are differences in the datasets which do not allow the direct
comparison between their quality [33].

(a) (b) (c)

Figure 14. Images generated using the backprojection algorithm with the PERFECT dataset
(sizes small, medium and large). (a) Perfect dataset image (size small) generated using the back-
projection algorithm. (b) Perfect dataset image (size medium) generated using the backprojection
algorithm. (c) Perfect dataset image (size large) generated using the backprojection algorithm.
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(a) (b) (c)

Figure 15. Images generated using the polar format algorithm with range interpolation with the PER-
FECT dataset (sizes small, medium and large). (a) Perfect dataset image (size small) generated
using the polar format algorithm with range interpolation. (b) Perfect dataset image (size medium)
generated using the polar format algorithm with range interpolation. (c) Perfect dataset image
(size large) generated using the polar format algorithm with range interpolation.

(a) (b) (c)

Figure 16. Images generated using the polar format algorithm with azimuth interpolation with
the PERFECT dataset (sizes small, medium and large). (a) Perfect dataset image (size small) generated
using the polar format algorithm with azimuth interpolation. (b) Perfect dataset image (size medium)
generated using the polar format algorithm with azimuth interpolation. (c) Perfect dataset image
(size large) generated using the polar format algorithm with azimuth interpolation.

Table 6. Execution times, and the average pixels per second, of the formation of the PERFECT suite
dataset image using the backprojection algorithm and the polar format algorithm with two different
interpolations: range and azimuth.

Backprojection
Algorithm

Polar Format
Algorithm (Range)

Polar Format
Algorithm (Azimuth)

Small 5.844 s 0.056 s 0.065 s
(512 × 512) 44.8 k PPS 4681 k PPS 4032 k PPS
Medium 57.913 s 0.205 s 0.238 s

(1024 × 1024) 18.1 k PPS 5115 k PPS 4405 k PPS
Large 565 s 0.798 s 1.054 s

(2048 × 2048) 7.4 k PPS 5256 k PPS 3979 k PPS

4.3. GPU Accelerators for SAR

In this section are described three GPU accelerators for SAR, three high-performance com-
puting (HPC) systems with several nodes, all of which implement the backprojection algorithm,
and a solution using a digital-signal processing (DSP) for the Range–Doppler algorithm.

An implementation of the backprojection algorithm for frequency-modulated contin-
uous wave (FMCW) SAR tested on three different devices is presented in [34]. CUDA is
used to program the GPU, mainly the NVIDIA CUDA FFT library (cuFFT) and the com-
plex vector operations available in the NVIDIA CUDA Basic Linear Algebra Subrou-
tines (cuBLAS) library. The pixel calculation is calculated using the GPU accelerator,
implementing the operations presented in Equation (28). The implementation was tested
on a NVIDIA GeForce GT 650 M, on a NVIDIA GeForce GTX 660 Ti, and a NVIDIA Tesla
K20c. Compared to a C programming language CPU-based implementation, the NVIDIA
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GeForce GT 650 M achieves a speedup of 4.9, the NVIDIA GeForce GTX 660 Ti achieves
a speedup of 19.5 and the NVIDIA Tesla K20c a speedup of 30.2. Compared to the NVIDIA
GeForce GT 650 M implementation, the NVIDIA GeForce GTX 660 Ti achieves a speedup
of 4.0 and the NVIDIA Tesla K20c a speedup of 6.2. The implementations were tested using
a dataset from a previous experiment of the authors [35].

A real-time GPU implementation of the backprojection algorithm for Stripmap SAR is
presented in [36]. The ability to execute the algorithm in real-time comes from the reduction
of pulse contributions calculated for each pixel. In its original form, the backprojection
algorithm calculates the value of each pixel using every pulse, however, in practice, not
all pulses are going to contribute to every pixel. This factor is taken into consideration
in this work in order to reduce the computations and reduce the execution time, making
real-time a reality for GPU implementations. Data is divided into batches that fit into
the GPU memory and processed. Using the texture cache of the GPU, the final execution
time is real-time, compared to the original 60 and 70 s, depending on the interpolation.
The implementation is tested using the CASIE dataset [37] on a 2008 Mac Pro with a 2-3.2
quad-core Intel Xeon processor, 16 GB of memory and a NVIDIA GTX 285.

An implementation of the backprojection algorithm for GPU is presented in [38].
It should be noted that this implementation, unlike the others presented in this review, per-
forms a considerable part of the computation, i.e., the pre-processing, in MATLAB or Python
and uses this data as input for the final implementation. This pre-processing includes the ap-
plication of a sliding window to the data, filtration for frequency deweighting and inverse
FFT. Similarly to other works, this implementation takes advantage of the texture cache of
the GPU for interpolated values. The input data is divided into batches, processing sub-
images simultaneously. The final result is tested using the Volumetric dataset, or GOTCHA,
Ref. [29] and the GMTI dataset [31], both provided by the AFRL. For the GOTCHA dataset,
a single-threaded C application executed on a quad-core 2.66 GHz Intel Xeon processor is
compared to the CUDA implementation executed on a NVIDIA Quadro FX 5600. When it
comes to the GMTI dataset, the same C application is compared to the CUDA implemen-
tation on a NVIDIA Tesla C1060. The speedup obtained ranges from 40 to 60, depending
on the block size used, when compared to the original version.

Due to the intensive signal processing required to generate SAR images, real-time
implementations are a challenge. HPC systems have a large computing capabilities, thus
being used for real-time implementations of SAR algorithms. With a cluster of four nodes,
Ref. [39] presents an implementation for Stripmap SAR. The received signals are divided
into sections and sent to different nodes. The resulting image sections overlap among
themselves and are merged after the algorithm execution. Using four nodes, where each
node is composed of two Intel Xeon E5-2690v3 and 4 NVIDIA Tesla M60 GPU, the image is
generated in 1.0 s, after receiving the raw data during 17.7 s. The final configuration shows
a speedup of 11.5 when compared to a single GPU.

Another real-time implementation of the backprojection algorithm is presented in [40].
In this implementation, several approximate strength reduction optimizations, such
as quadratic polynomial approximations, Taylor series as square root calculation method
and trigonometric function strength reduction, are used to reduce the computational load
of the algorithm. The computation is partitioned between Intel Xeon and Intel Xeon
Phi processors and MPI and OpenMP is used to program the system. A single node is
able to generate a 3000× 3000 px image in real-time while 16 nodes are able to generate
a 13000× 13000 px image in real-time.

Using the implementation of the backprojection algorithm presented
in Section 4.1 [28], Ref. [41] presents an accelerator for the backprojection algorithm.
Calculating 1 degree of azimuth data using C/MPI code takes 4.7 s for a 512× 512 px
image, whereas only takes 0.15 seconds using the GPU, resulting in a speedup of 31×.
Speedup increases with the image size, as for 2048× 2024 px images the speedup increases
to 55× and for 4096× 4096 px images the speedup achieves 58×. The implementation was
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tested on 4 nodes of the Ohio Supercomputer Center’s BALE Visualization GPU cluster,
each with two 2.6 GHz AMD Opteron processors and a NVIDIA Quadro 5600 GPU.

Lastly, a real-time implementation of the Range–Doppler algorithm using a DSP is
presented in [42]. The device used is a TMX320C6678 DSP from Texas Instruments and
provides 128 GLOPs in single precision. In this implementation, the raw data is stored
in the DDR3 memory and transmitted using EDMA3. The input data is divided into 8
portions and each core processes one portion. This implementation is able to generate
a 4096× 4096 px pixel image in only 0.25 s, in other words, in real-time, with a power
consumption of 10 watts.

The works described in this section are summarized in Table 7. This table includes
the algorithm, execution times, whether it runs in real-time or not, devices used and addi-
tional notes, such as obtained speedups, image quality metrics and power consumption.

Final remarks on the implementations mentioned in this section and Section 4.4 are
made in Section 4.5.

Table 7. Comparison between the different GPU/many-core implementations of SAR image forma-
tion algorithms described in Section 4.3. This table includes the implemented algorithm, execution
time and average pixels per second (PPS), whether is real-time, device used and number of cores,
image dimension, speedups and additional notes.

Alg. PPS Execution
Time Device Image

Dimension Notes

[34] BP n/a

315 s

79 s

51 s

NVIDIA GeForce
GT 650M (384 cores)

NVIDIA GeForce
GTX 660 Ti (1344 cores)

NVIDIA Tesla
K20c (2496 cores)

— —

[36] BP n/a Real-time NVIDIA GTX
285 (240 cores) — —

[38] BP n/a

40× to 60×
of speedup,

depending on
block size

NVIDIA Quadro
FX 5600 (128 cores)

NVIDIA Tesla
C1060 (240 cores)

501 × 501 px
8 K × 384 px SNR > 30 dB.

[41] BP 1747 k 0.15 s
(real-time)

4 nodes, each
with NVIDIA
Quadro 5600
(128 cores)

512 × 512 px *

Speedup of 31×.
* More image sizes
were tested, with

different speedups.
For more details,
check Section 4.3.

[40] BP n/a Real-time

Node with dual-socket
Intel Xeon E5-2670

(8 cores) processors and
two Intel Knights

Corner co-processor
(60 cores)

3 K × 3 K px *

* Using 16 nodes,
13 K × 13 K images
can be generated in

real-time.

[39] BP 63337 k 1.0 s
(real-time)

4 nodes, each with
two Intel Xeon

E5-2690v3 (12 cores)
and 4 NVIDIA Tesla

M60 (2048 cores)

8965 × 7065 px
Speedup of 11.5×
compared to 1 node
(4 GPUs).

[42] RD 64000 k 0.25 s
(real-time)

TMX320C6678 DSP
(8 cores) 4 K × 4 K px 10 Watts of power

consumption.

4.4. Hardware Accelerators

Software implementations tend to take longer to execute and have a higher power con-
sumption when compared to hardware implementations. Many hardware implementations
of SAR image formation algorithms exist due to these benefits.
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An implementation of the backprojection algorithm capable of generating real-time
images with 60000 pixels with resolution of 2× 2 meters is presented in [43]. This im-
plementation uses 64 Tinuso cores [44], a soft processor, with a 2D mesh interconnect.
The device used to implement this design was a Xilinx Virtex-7 7VX550T FPGA, with 60%
of 550 thousand logic elements used and a clock speed of 300 MHz. A single-precision
floating point unit (FPU) is used to implement basic arithmetic operations and square root,
while sinc, sine and Hamming window functions are implemented using look-up tables.
With the real-time requisites, the final system consisted of 64 cores and 4 memory controllers
with a power consumption of 10 watts. It is important to note that this implementation is
merely simulated, not being tested on the device itself.

Cholewa et al. present the implementation of the backprojection algorithm using
the Unified Emulation Framework (UEMU) [45]. This framework allows the development
of hardware for different devices, such as software-defined radio (SDR) platforms, FPGA
and application-specific integrated circuits (ASIC). A backprojection module was developed
to generate one line of the final image at a time, looping over all pulses for each line. To
calculate the square root and trigonometric functions, sine and cosine, a coordinate rotation
digital computer (CORDIC) is used. The results obtained show that the implementation
scales almost linearly with the parallelization factor. Using a Virtex-6 FPGA ML605 Eval-
uation Kit, running at 100 MHz, the execution has a speedup of 68 with a parallelization
factor of 8 when compared to a software implementation in MATLAB [28] on an Intel i5
3.2 GHz with 4 cores. This implementation occupies 78% of LUTs, 62% of BRAMs and 40%
of DSPs. The execution times were 0.03 s, 0.18 s, 1.44 s and 10.94s for square images with N
equal to 256, 512, 1024 and 2048, respectively.

Backprojection units were developed in another implementation of the backprojection
algorithm for FPGA [26]. These units are independent and can be used as many as they fit
into the target device. Each unit is responsible for receiving raw data and generating a pixel
contribution, which is then added to the current pixel value. In this implementation, an Arria-V
SoC from Altera is used, which also integrates an ARM Cortex-A9 dual-core processor. In
this device, 20 backprojection cores were used, and the accelerators on the FPGA ran at a clock
frequency of 133 MHz. The final image, using the GOTCHA dataset [31], is calculated in 120.34
milliseconds, with a total power consumption of 26.55 watts.

A design for ASIC in 65nm complementary metal–oxide–semiconductor (CMOS) is pre-
sented in [27]. The device has a clock frequency of 1.2 GHz and implements in hardware
the MATLAB version of the algorithm [28]. The authors of the work realize it is possible to de-
crease the precision of the algorithm while still obtaining high quality images. The algorithm is
divided into blocks, each block with a customized floating-point data representation. Ultimately,
the objective of the authors is to decrease the mantissa as much as possible, while maintaining
the SSIM metric above 0.99. More details on this metric are provided in Section 4.2. This work
does not mention execution times, only the ability to save 75.5% of area using mantissa widths
between 6 and 27 bits.

An implementation of the Range–Doppler algorithm using four Xilinx Virtex-6-550T
devices with 16 processing elements split among the 4 devices is presented in [46]. The com-
munication between these elements uses a message passing scheme and a 2D mesh in-
terconnect floating-point calculations are supported using the Xilinx FPU, which allows
the calculation of basic arithmetic operations and square root and a look-up table is used
to calculate the Hamming window and sine functions. The final implementation is able
to generate 2048× 4096 px images in 12.03 s, running at 130 MHz, with 67% of logic ele-
ments occupied and a power consumption of 85 watts, compared to 189.34 seconds when
a Intel Core i7-930 processor at 2.8 GHz is used, reaching a speedup of 15.74. The authors
calculated the Peak Side Lobe Ratio (PSLR)f and Mean Squared Error (MSE), which have
almost identical values, however, do not specify values.

An implementation of the polar format algorithm using FPGA is presented in [47].
This implementation uses a floating-point data representation, except when the CORDIC
algorithm is used, when the data are converted to fixed-point. The whole system was tested on a
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Xilinx Kintex-7 XC7K325T-2FFG900C evaluation board and is able to generate a 4096× 4096 px
image in approximately 1 second. The FPGA runs at a clock speed of 200 MHz and the imple-
mentation occupies 68% of LUTs, 48% of registers, 42% of BRAMs and 96% of DSP. When it
comes to quality metrics, they obtained a range PSLR of −28 dB and range resolution of 2.65 m,
an azimuth PSLR of −40 dB and an azimuth resolution of 1.03 m.

Ref. [48] presentes a system composed of nodes with dual 2.2 GHz Intel Xeon proces-
sors running Linux and an Annapolis Microsystems WildStar II FPGA accelerator board
with two Xilinx Virtex-II FPGA. The software is programmed using MPI, and is used to set
up the FPGA and to read the radar data. The radar data is also converted from floating-
point to fixed-point and then the data is organized into chunks and sent to the FPGA.
The backprojection algorithm is implemented in hardware. The input is simulated data [1].
The application uses 36-bit complex integers (18-bit real and 18-bit imaginary) and is able
to achieve speedups between 167.4 and 217.6, depending on the dataset, for the backpro-
jection algorithm. The complete app, which includes image formation, achieves speedup
values between 49.8 and 108.4×. The FPGA are able to run at 133 MHz of clock frequency.

Lastly, an implementation of the Range–Doppler algorithm is presented in [49].
This implementation was tested using a DE2-115 Terasic Development Kit, based on a
Cyclone E IV (60 nm) FPGA running at 50 MHz of clock frequency, and uses a NIOS II
soft processor. The FFT and IFFT functions are implemented in hardware, while the rest
is performed in software. The total execution of this implementation takes 20.31 s for
a 2048× 2048 px image and occupies 57% of LUTs, 31% of registers, 21% of BRAMs and
56% of DSP.

The works described in this section are summarized in Tables 8 and 9. Table 8 includes
the algorithm, execution times, whether the work is real-time or not, image dimensions and
quality metrics. Table 9 includes the device, clock frequency, hardware resources, power
consumption and additional comments. Notes marked with an asterisk are displayed in the last
column of Table 9, named Notes. Few works (three of eight) do not report power consumption,
which can be an important requisite when designing systems. [49] is capable of computing
a 2048× 2048 image within a second. However, it is based on the Range–Doppler algorithm
which generates not so good images. Similar result was reported by [47] using the polar
format algorithm. On the other hand, backprojection generates images with higher quality but
for the same image size [45] required more than 35× of the execution time.

4.5. Comparison Between GPU and Hardware Implementations

Following the comparison presented in the last section, a final comparison of the works
detailed in this review in Sections 4.4 and 4.3 is warranted.

There are several hardware implementations already published. As can be seen in Ta-
bles 8 and 9, which present the details of the papers described for easier comparison,
most works lack in quality metrics and power consumption information. Only three
of the five Backprojection algorithm implementations presented in this review are executed
in real-time and are using at the time of publication high-end devices such as the Altera
Arria-V SoC [26] and Xilinx Virtex-7 [43] or many-core systems, namely a dual-core Intel
Xeon processor with an Anapolis Microsystems WildStar II FPGA board with two Virtex-II
FPGA [48]. The first work was only simulated and the reports are given by the simulation
tool, Xilinx Vivado. The many-core implementation with FPGA [48], even though the au-
thors do not report the exact numbers in their paper, has a higher power consumption than
the rest of the implementations. The implementation achieves speedup values between 49.8
and 108.4 times, depending on the dataset. The polar format algorithm implementation [47]
generates images in real-time, using a Xilinx Kintex-7 FPGA. The polar format algorithm,
more efficient than the others, is a suitable alternative for real-time applications when
the warping and side lobes do not represent a main concern.
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Table 8. Comparison between the different hardware implementations of SAR image formation
algorithms, described in Section 4.4. This table includes the algorithm, execution time and average
pixels per second (PPS), whether the work is real-time or not, image dimensions and quality metrics.
Notes marked with an asterisk are displayed in the last column of Table 9, named Notes.

Ref Alg. PPS Image
Dimension

Execution
Time Real-Time Quality

Metrics

[43] BP 60 k 1500× 40 px 1.0 s X —

[27] BP n/a 501× 501 px — — SSIM > 0.99

[45] BP

2184 k
1456 k
728 k
383 k

256× 256 px,
512× 512 px,

1024× 1024 px,
2048× 2048 px

0.03 s
0.18 s
1.44 s

10.94 s

7 —

[26] BP 2085 k 501× 501 px 120.34 ms X —

[46] RD 697 k 2048× 4096 px 12.03 s 7
PSNR and MSE

almost identical *

[47] PF 16777 k 4096× 4096 px 1.0 s X

Range PSLR: −28 dB
Range resolution: 2.65 m
Azimuth PSLR: −40 dB

Azimuth resolution: 1.03 m

[48] BP n/a — 146 ms to
351 ms X

Depending on
the dataset,

error percentage
ranges from
0.9% to 5.6%.

[49] RD 13530 k 2048× 2048 px 0.31 s X

Range PLSR
of −44.11 dB
and azimuth

PSLR between
−46.44 dB and
−39.40 dB

Lastly, GPU and other many-core systems are a great option when power consumption
is not a concern due to their high performance. Table 7 presents the details of the works
mentioned in Section 4.3. As can be observed, power consumption not reported in any
of the works mentioned in this review except for the DSP implementation [42]. This work
implements the Range–Doppler algorithm, known for its simplicity and efficiency. Five out
of the nine implementations of the Backprojection algorithm presented in this review are
real-time, even for images with dimensions as large as 13 K×13 K px.

4.6. Precision Analysis

One of the main concerns when implementing algorithms using accelerators is
the tradeoff between performance and precision. This is specially true for hardware
accelerators, where operations are commonly implemented using fixed-point notation due
to the overhead introduced by the implementation of floating-point units. GPU imple-
mentations tend to use single precision values instead of double precision, either because
the devices do not support it or because of the overhead introduced. In an attempt to show
the influence of precision in SAR algorithms, this section presents the results of testing
the PERFECT [33] implementation of the Backprojection algorithm with variables in single-
precision only and the original implementation of the algorithm where most of the variables
are in double-precision, including intermediary calculations, except the phase history and
final image.
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Table 9. Comparison between the different hardware implementations of SAR image formation
algorithms, described in Section 4.4. This table includes the device reference, device frequency,
hardware resources, power consumption and additional comments.

Ref Device Device
Frequency

Hardware
Resource

Occupation

Power
Consumption Notes

[43] Xilinx Virtex-7 300 MHz 60% 10W This work was
simulated.

[27] ASIC 1.2 GHz — — —

[45] Xilinx ML605 100 MHz
78% LUTs

62% BRAMs
40% DSPs

—

Speedup of 68
with a parallelization

factor of 8
compared to the
execution on a
quad-core Intel

i5 3.2 GHz.

[26] Altera Arria-V SoC 133 MHz — * 26.55 W * 20 BP cores fitted
into the device.

[46] 4 Xilinx Virtex-6-550T 130 MHz 67% LUTs 85 W

* The paper did
not specify
values of

quality metrics.

[47] Xilinx Kintex-7 200 MHz

68% LUTs
48% registers
42% BRAM
96% DSPs

— —

[48]

Dual 2.2 GHz
Intel Xeon PC
and Anapolis
Microsystems

WildStar II FPGA
board with two
Virtex-II FPGAs

133 MHz — — —

[49]
DE2-115 Terasic
Development kit

with Cyclone E IV
50 MHz

57% LUTs
31% registers
21% BRAMs
56% DSPs.

— —

The images generated are compared with the golden reference images, provided
in the PERFECT suite. The results of these tests are presented in Table 10. Figure 17
presents the images generated in this test, Figure 17a is the golden reference of the small
dataset, Figure 17b is the image generated using the original implementation, with variables
in single and double-precision, and, lastly, Figure 17c is the image generated using single-
precision only. There is no difference to the naked eye between Figure 17a, the golden
reference, and Figure 17b. There is, however, difference between these two and the single-
precision image, Figure 17c. It is possible to see the noise when x = 200 and x = 400.

Regarding the execution time, it heavily depends on the system where the computation
happens. For example on a modern Intel Core i7-9700F CPU, running at 3.0 GHz, the dif-
ference between single and double precision is less than one second out of a total of 5.8 s
for the double precision case. This variation in the execution which may not be significant
for most use cases, but the quality varied from 15 dB, for the single-precision, to 138 dB,
for the double-precision. To make the difference more apparent, this test was performed
on a Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit, with a ZU7EV device with a quad-
core ARM Cortex-A53 and a dual-core ARM Cortex-R5 processors. The execution time
of the application running on a single core of the ARM Cortex-A53 is 270.80 s for the origi-
nal version and 259.75 s for the single-precision version. There is a significant difference
in the SNR of the generated images, less 90% than the original version, and a difference
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of 10 in the SSIM. To sum up, the execution time will depend more on the performance
of CPU where the computation happen, and less on the wordlength. Custom reconfigurable
architectures are able to perform more efficiently than general purpose CPUs. Yet, any
savings in the execution time, by considering smaller wordlengths, will lead to the loss
of quality in the resulting image.

Table 10. Comparison of image quality and execution time for the small dataset of the PERFECT
suite between the original version and the float-only. These images are compared to the golden
reference, which is provided with the dataset.

SNR SSIM Time

Original 139.16 dB 1.000000 270.80 s
Single-Precision 15.02 dB 0.893861 259.75 s

(a) (b) (c)

Figure 17. Small dataset of the PERFECT suite in three versions: golden reference, original imple-
mentation and single-precision only. (a) Golden reference of the small dataset of the PERFECT suite.
(b) Small dataset of the PERFECT suite generated using the original provided code, with variables
in double and single-precision. (c) Small dataset of the PERFECT suite generated using the original
provided code, with variables in single-precision only.

5. Conclusions

This review presented an introduction to the topic of SAR, including SAR functioning,
different types of SAR, namely stripmap, spotlight and circular SAR, some of the most used
SAR image formation algorithms and a comparison between them. Furthermore, a review
of the state of art was presented, describing accelerators for different SAR algorithms
implemented in hardware, GPU, HW/SW solutions and software implementations of SAR
algorithms. These software implementations, publicly available, were compared and their
generated images, execution times, and image quality metrics were assessed.

Designing SAR imaging systems can be challenging, especially when deciding the al-
gorithm to implement and the target device. This review introduced SAR image formation
algorithms, their advantages, and described the trade-off between image quality and
efficiency. As a conclusion, frequency-domain algorithms are more efficient, however,
the image quality is inferior when compared to other time-domain algorithms.

Real-time implementations of SAR image formation algorithms are available in the lit-
erature, and most take advantage of the efficiency of frequency-domain algorithms. Real-
time systems with higher performance and increased power consumption are available,
however, do not satisfy the requisites for on-board systems which are battery-powered.

The choice regarding SAR image formation algorithms depends on the requisites
of the application or system. Execution times, power efficiency and image quality are factors
that need to be taken into consideration when deciding. On-board systems cannot provide
the necessary energy for GPU or other many-core systems, making hardware devices
a good alternative. However, when performance and speed is the main concern and power
efficiency is not an issue, GPU devices are great alternatives. The Backprojection algorithm
provides high-quality images, however, with a larger overhead, while the frequency-
domain algorithms mentioned in this review, Range–Doppler, chirp scaling, omega-K, and
polar format algorithms have a lower computational complexity.
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MSE Mean Squared Error
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OS Operating System
PC Program Counter
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PSLR Peak Side Lobe Ratio
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RCMC Range Cell Migration Correction
SAR Synthetic-Aperture Radar
SNR Signal-to-Noise Ratio
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SoC System-on-Chip
SRC Secondary Range Compression
SSIM Structural Similarity
UAV Unmanned Aerial Vehicle
UEMU Unified EMUlation Framework

Appendix A. Mathematical Notation

This document adopts the mathematical notation of [1,7], presented in Table A1.

Table A1. Symbols used throughout the document, meaning and units.

Symbol Meaning Units

A Complex constant —
A0 Complex constant, A0 = A′0 exp(iφ) —
A′0 Magnitude —
c Speed of light m/s
da(τn) Range to the scene center, also referred to as r0 m
da0(τn ) Distance between the radar and the pixel m
D() Migration factor in Range–Doppler domain —
Dy Diameter of the radar in the azimuth domain m
f0 Carrier frequency Hz
f1 Minimum frequency for every pulse Hz
fk Frequency sample per pulse Hz
fη Azimuth frequency Hz
fηc Azimuth FM rate of point target signal Hz
fηre f Reference azimuth frequency Hz
fτ Range frequency Hz
f ′τ Range frequency after Stolt mapping Hz
gr Ground reflectivity —
G( fr) Frequency domain matched filter —
Haz Second frequency domain matched filter —
kc Wavenumber at carrier frequency m
K Number of frequency samples per pulse —
Ka Azimuth FM of the point target signal in Range–Doppler domain Hz/s
Km Range FM of the point target signal in Range–Doppler domain Hz/s
Kr Chirp rate Hz/s
L Half size of the aperture m
m Range bin —
N f f t FFT length —
Np Number of pulses —
pa(η) Amplitude of the azimuth impulse response m
pr(τ) Pulse envelope —
Pa(η) IFFT of the window Wa( fη) —
rn Target radial distance from center of aperture m
R0 Slant range of closest approach m
Rre f Reference range m
Rt Instantaneous slant range m
sr Reflected SAR signal —
st Emitted SAR signal —
S( fk , τn) Phase history —
Tr Pulse duration s
Vr Effective radar velocity m/s
Vrre f Effective radar velocity at reference range m/s
wa Azimuth envelope (a sinc-squared function) —
wr Range envelope (a rectangular function) —
Wa Envelope of the Doppler spectrum of antenna beam pattern —
Wr Envelope of range spectrum of radar data —
(xa(η), ya(η), za(η)) Position of the radar —
∆a Azimuth resolution m
∆ f Frequency step size Hz
∆r Range resolution m
∆R Differential range m
η Azimuth time s
ηc Beam center crossing time relative to the time of closest approach s
θn(0) Aspect angle of the nth target when radar is at (0, 0) rad
θz Average depression angle of target area rad
θ(τ, η) Target phase —
λ Wavelength of carrier frequency, f0 m
λc Wavelength at carrier fast-time frequency m
ρmax Maximum polar radius in spatial frequency domain for support of a target at center of the spotlighted area m
ρmin Minimum polar radius in spatial frequency domain for support of a target at center of the spotlighted area m
τ Range time s
τn Transmission time of each pulse s
φ Phase change resulting from the scattering process —
φ0 Polar angle in spatial frequency domain rad
ω0 Radar signal half bandwidth rad
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