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Abstract: Atmospheric particulate matter (PM) is a major air pollutant. PM2.5 and PM10 pose
particularly serious threats to the ecological environment and human health. Vegetation plays an
important role in reducing the concentration of particles. Based on a long time series of air quality,
meteorological, and vegetation coverage data in the Beijing–Tianjin–Hebei (BTH) region, the present
paper evaluated the influence at the overall and built-up area scales and quantified the process
involved in the dry settlement of particles on vegetation based on a mathematical model. The
experimental results showed that (1) the total amounts of PM10 reduced by vegetation in the BTH
area were 505,200 t, 465,500 t, 477,200 t and 396,500 t in 2015, 2016, 2017 and 2018, respectively, and the
total amount of PM2.5 was reduced by 19,400 t, 19,200 t, 16,400 t and 12,700 t, respectively. The annual
reduction in PM10 and PM2.5 from 2015 to 2018 by vegetation in the BTH region showed a downwards
trend, and the annual reduction was mainly caused by the significant decrease in PM concentration.
(2) More than 80% of the reduction in annual yield was concentrated in May–September, and a large
leaf area was the main reason for the largest yield reduction in the growing season. The efficiency of
PM reduction in forestland was approximately five–seven times that in grassland, and the deciduous
broad-leaved forest was the main driver of this reduction in each forest. (3) The reduction in PM10 by
vegetation was approximately 30 times that of PM2.5. However, the reduction in PM2.5 by vegetation
should not be ignored because PM2.5 has a stronger correlation with human production and living
activities. Increasing the area and density of green space via afforestation, returning farmland to
forest and giving full play to the self-purification function of green spaces are very important to
reducing and controlling the concentration of PM.

Keywords: PM2.5; PM10; UFORE; air pollution; dust; LAI; remote sensing; China

1. Introduction

Air is indispensable to all human production and life. Breathing fresh air promotes
human blood circulation and improves human immunity. Excessive particulate matter (PM)
damages human respiratory, immune and blood circulation systems, leading to respiratory
and cardiovascular diseases and death. Medical studies have consistently confirmed the
serious impact of air pollution on human health and the importance of the quality of the
atmospheric environment [1–3]. Air pollution is a worldwide public health problem and
an environmental problem that has attracted the attention of academia and the public.
Air pollution directly or indirectly changes ecosystem structure, diversity and stability;
greatly affects human health, crop growth and road traffic; and seriously endangers normal
social life [4,5]. Several studies have analyzed the relationship between PM concentrations
and the incidence of heart and lung disease based on statistical data, and the results show
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positive correlations and that people’s health will be greatly affected when they are exposed
to high concentrations of PM [6–8].

Vegetation is the main component of terrestrial ecosystems, and it plays an important
role in maintaining water and soil, regulating the atmosphere, slowing the increase in
greenhouse gas concentrations and maintaining the entire ecosystem. Vegetation coverage
has become an important part of the study of global environmental change, and it is of
great value to geological, hydrological, meteorological and ecological changes [9–11]. To
control the concentrations of PM in the atmosphere, various measures must be taken to
reduce emissions and control the reduction of vegetation. Particles fall on vegetation,
buildings, roads and bare ground via dry sedimentation, and vegetation intercepts and
absorbs particles via retention, attachment and adhesion to leaves, stems and other organ
structures [12,13]. Some differences exist in the PM retention effect between different
vegetation types due to their different canopy structures, morphological characteristics and
leaf roughness. The vegetation itself, its growth stage and its health level also affect PM
retention ability [13–15]. Forestland, grassland and agricultural land are primarily covered
by vegetation and effectively reduce the spread of PM [16,17]. Forests and grasslands
are important components of ecosystems that have self-purification functions, which help
improve environmental quality, regulate ecological balance, protect human health and play
an important role in beautifying urban landscapes [18,19]. Studies indicate that native
plants and green belt projects also contribute to reducing the annual rates of PM by 68.4%
in western parts of Asia [20,21]. Escobedo et al. found that high vegetation coverage will
increase the amount of PM in the area [22]. Vos et al. proved that the improvement effect
of green space on air quality is positively correlated with canopy closure and negatively
correlated with porosity [23]. Zhang et al. confirmed that the increase in PM retention
benefits of shelterbelts in the Three Norths of China is closely related to the increase
in the leaf area index (LAI) [24]. Al-Dousari et al. indicated that forestation is likely
to exacerbate drought and could also increase air pollutants, which was indicated by a
9.9% lower pollen content within trapped aeolian deposits in 2010–2011 than in 2009–
2010 [25,26]. Therefore, exploring the relationship between vegetation coverage and PM
pollution using scientific experiments and quantitative evaluation of the effect of vegetation
on PM reduction will provide powerful references for regional development and scientific
and rational suggestions for urban greening.

Dry deposition is an important way for vegetation to reduce PM, and its process is
difficult to accurately quantify using simple mathematical relationships. Previous studies
focused more on differences in the PM retention abilities of different leaves and tree species
and compared differences in the PM retention abilities of different stands on a small
scale. These studies proposed reasonable suggestions for regional garden and green space
planning via comparisons of the results, but few studies quantified the reduction effect
of vegetation on PM on a large scale. The present study chose the Beijing–Tianjin–Hebei
(BTH) region because atmospheric particulate pollution is frequent and serious. The urban
forest effects (UFORE) model was used to quantify the vegetation dry subsidence process
using the measured data of air quality monitoring stations and multisource satellite data.
The reduction effect of vegetation on PM2.5 and PM10 in the BTH region was estimated
on the scale of the entire city and the built-up area. The research conclusions provide a
scientific basis and theoretical reference for air pollution prevention, regional land planning
and urban greening.

2. Materials and Methods
2.1. Overview of the Study Area

The BTH region is located in North China (Figure 1). The terrain is inclined, high in
the northwest and low in the southeast, with complex and changeable landforms, including
plateaus, mountains, hills, basins and plains. From northwest to southeast, the region is
roughly divided into the Bashang Plateau, the Yanshan-Taihang Mountains and the Haihe
Plain. The BTH region has a temperate semihumid continental monsoon climate, with
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distinct winters and summers, with different conditions in the mornings and evenings,
and greater than 67% of precipitation is concentrated in the summer. The BTH region
covers an area of approximately 217,200 square kilometres, which accounts for 2.3% of
China. This area has a dynamic economy, the highest degree of economic openness, the
strongest innovation ability and the largest foreign population in China. However, many
PM indicators seriously exceed the standards due to the dense population and industrial
agglomerations, smog and other air pollution phenomena that frequently occur in the BTH
region with the rapid development of the economy. Air pollution seriously threatens the
ecological environment and human health and affects the quality of life of residents. The
pollution situation in the BTH region is the most representative in China and the world.

Figure 1. Geographical location (113◦27′–119◦51′E, 36◦05′–42◦40′N) of the study area.

2.2. PM Reduction

The reduction effect of vegetation on PM is generally obtained by calculating the
amount of dust retention of vegetation and its economic benefits in designated areas, and
quantitative analysis by modelling is the most commonly used method [14,19,27]. In this
paper, the variation in PM concentration is quantified using the data provided by the BTH
regional ground air quality monitoring station. Scholars established scientific models based
on different methods and attempted to quantify the dust retention of vegetation. The
UFORE model is widely recognized [16]. The UFORE model was produced in the 1990s
and developed by the Northeast Forest Research Center of the United States Department
of Agriculture (USDA). This model is widely used in research in many parts of the world.
The UFORE model can be applied to landscape and regional scales at the stand sample
scale and urban and nonurban areas at any scale. It quantitatively evaluates the structure
and function of urban forests and green spaces, and it was determined as an authoritative
forest benefit evaluation model in recent years [14,16]

The UFORE-D model is a submodel that is used to calculate the dry sedimentation
process of forest particles. It can be used to estimate the dry deposition of O3, NO2, SO2,
CO, PM10 and PM2.5 during a certain time and over a certain range and the corresponding
percentage of air quality improvement. The current experiment used the core method of the
UFORE-D model to estimate the reduction in PM2.5 and PM10 by forestland and grassland
in the BTH region from 2015 to 2018. The reduction in PM was calculated as the cumulative
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temporal value of the product of dry deposition flux and the total area of vegetation leaves
in the region using the following formula:

P =
n

∑
t=1

Fluxt·LAIt·SV. (1)

where p represents the reduction in PM, Fluxt represents the dry sedimentation flux of
PM per unit area at time t, LAIt represents the LAI value at time t and SV represents the
vegetation coverage area. As the LAIt and SV values were extracted from remote sensing
data, the dry deposition flux is the key to calculating the reduction in PM.

2.3. Leaf Area Index and Vegetation Coverage Area

LAI is defined as the unilateral green leaf area per unit ground area in a broadleaf
canopy and one-half of the total needle surface area per unit ground area in a coniferous
canopy [28,29]. LAI is related to the density and structure of vegetation, the biological
characteristics of trees and environmental conditions. It comprehensively represents the
utilization of light energy and the canopy structure of vegetation. Based on the MODIS
global LAI/FPAR product MCD15A3H with a spatial resolution of 500 m, the LAI values
of vegetation types in each region were obtained, and the temporal resolution of the data
was 4 days. The LAI values of vegetation types in each region were extracted from each
dataset as the LAI values of the entire city of the current day and the next 3 days. For the
built-up area scale, the LAI value at the whole-city scale was used for calculation because
some MCD15A3H data were missing in the built-up area. The LAI values of forestland
types were the area-weighted average of LAI values of evergreen coniferous forest (ECF),
deciduous, coniferous forest (DCF) and deciduous broad-leaved forest (DBF), and the LAI
values of shrubland and grassland were used separately on the whole-city scale.

The land use/land cover data used in the experiment included the MODIS land cover
type product MCD12Q1 with a spatial resolution of 500 m and finger resolution observation
and monitoring of global land cover (FROM-GLC) data with a spatial resolution of 10 m.
On the whole-city scale, the annual areas of ECF, DCF, DBF and shrubland were extracted
based on MCD12Q1 data, and the coverage rate of each vegetation type in each city was
calculated according to the total area of each city. On the scale of the built-up area, the
overall scope of each city’s built-up area was extracted according to MCD12Q1 data, and
then the areas of forestland, shrubland and grassland in each city’s built-up area were
extracted based on FROM-GLC land use data with a 10 m spatial resolution.

2.4. Dry Sedimentation Rate and Resuspension Rate

The dry deposition of forests was taken into account first. According to the results for
PM10 in references [30,31], Vd was set to 0.0064 m·s−1 when the LAI value was 6. The Vd
value was adjusted in the experiment according to the actual LAI value and leaf growth
condition and was calculated using the following formula [32]:

Vd = Vd,PM10
(BAI + LAI)

(BAI + LAIPM10)
(2)

where Vd,PM10 is 0.0064 m·s−1, BAI is the bark area index of 1.7, LAI is the leaf area index
and LAIPM10 is the leaf area index of 6.0 based on the literature [30,31] under experimental
conditions. Therefore, the dry sedimentation rate of PM10 was primarily related to the
LAI [11,33]. Since the diameter and mass of PM10 are much larger than those of PM2.5, the
resuspension of PM10 is generally not considered in the calculation process.

For PM2.5, the dry settlement rate of the leaf surface is the reciprocal of the sum of the
migration resistance of particles from the leaf surface to the interior and was calculated
using the following formula [34]:

Vd = (Ra + Rb + Rc)− 1 (3)
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where Ra is the aerodynamic resistance, Rb is the turbulent boundary layer resistance and
Rc is the canopy resistance, all in m·s−1. The following formulas were used:

Ra = u(z)/u∗2 (4)

Rb = 2(Sc)2/3(Pr)−2/3(ku∗)
−1 (5)

Rc =
(
(rs + rm)

−1 + rt
−1 + rsoil

−1
)−1

(6)

where u is the wind speed, u* is the friction velocity, Sc is the Schmidt number, Pr is the
Prandtl number, k is the von Karman constant, 0.4, rs is the stomatal resistance, rm is the
mesophyll resistance, rt is the stomatal resistance and rsoil is the soil resistance [19,35,36].
Ra and Rb are primarily related to wind speed, and forest removal of PM was not directly
related to transpiration.

For PM2.5, the dry settling rate of PM2.5 was greatly affected by wind speed, and
the Vd value was generally based on the results of literature research. References [37–39]
measured the dry sedimentation rate of PM2.5 of 17 types of trees at wind speeds of 1, 3, 6,
8.5 and 10 m·s−1, as shown in Table 1. The Vd of wind speed was estimated for each speed
using the median deposition speed measured in the literature, and the nearest measured
value was interpolated to obtain the deposition speed that corresponded to the unmeasured
wind speed, as shown in Table 2 [37–39]. Statistics revealed that the maximum hourly wind
speed of each city in the study area from 2015 to 2018 did not exceed 13 m·s−1. Therefore,
wind speeds greater than 13 m·s−1 were not considered.

Table 1. Deposition velocity (m·s−1) of PM2.5 by wind speed per unit leaf area (taken from [37–39]).

Varieties of Trees
Wind Speed (m·s−1)

1 3 6 8.5 a 10

Quercus petraea [37] 0.00831 0.01757 0.03134
Alnus glutinosa [37] 0.00125 0.00173 0.00798

Fraxinus excelsior [37] 0.00178 0.00383 0.00725
Acer pseudoplatanus [37] 0.00042 0.00197 0.00344

Psuedotsuga menziesii [37] 0.01269 0.01604 0.0604
Eucalyptus globulus [37] 0.00018 0.00029 0.00082

Ficus nitida [37] 0.00041 0.00098 0.00234
Pinus nigra [38] 0.0013 0.0115 0.1924 0.2805

Cupressocyparis × leylandii [38] 0.0008 0.0076 0.0824 0.122
Acer campestre [38] 0.0003 0.0008 0.0046 0.0057

Sorbus intermedia [38] 0.0004 0.0039 0.0182 0.0211
Populus deltoides [38] 0.0003 0.0012 0.0105 0.0118

Pinus strobus [39] 0.000108
Tsuga canadensis [39] 0.000193

Tsuga japonica [39] 0.000058
Maximum value for Picea abies b [39] 0.000189
Minimum value for Picea abies b [39] 0.00038

Median 0.0003 0.00152 0.00197 0.00924 0.0211
Standard error 0.00012 0.00133 0.00281 0.0161 0.05257

Maximum c 0.00057 0.00442 0.00862 0.05063 0.14542
Minimum d 0.00006 0.00018 0.00029 0.00082 0.0057

a Combination of 8 m·s−1 and 9 m·s−1 wind speed. b Based on maximum and minimum of reported range.
Included particles up to 3.8µm in diameter. c Based on 95 percent confidence interval above median value. d Based
on lowest recorded for any species.

Since PM2.5 is generally composed of very fine particles, at a certain wind speed, some
of the PM2.5 that has settled on the surface of vegetation will be resuspended into the
atmosphere. The amount of resuspension should be considered when calculating PM2.5.
Resuspension refers to the process of dry settling particles attached to the plant surface and
returning to the atmosphere, and its proportion is related to wind power. One reference [39]
estimated the variation in the PM2.5 resuspension rate in trees with wind speed and
measured the resuspension rate of PM2.5 in leaves of three types of trees at wind speeds
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of 6.5, 10 and 13 m·s−1. The resuspension rate is generally assumed to be 0% when the
wind speed is 0 m·s−1, and the resuspension rate corresponding to the unmeasured wind
speed can be obtained via interpolation with the nearest measured value. When the wind
speed was greater than 13 m·s−1, the resuspension rate at 13 m·s−1 was used, as shown
in Table 2 [37–39]. The wind speed and precipitation data used in the experiment came
from the global meteorological data provided by the National Environmental Information
Center (NCEI). A total of 18 meteorological monitoring stations located in the study area
were selected for the experiment. If one or more monitoring stations were located in a city,
the arithmetic average value of the monitoring station was used to represent the city; if
no stations were located in a certain area, the arithmetic average value of several adjacent
cities was used.

Table 2. Deposition velocities and resuspension rates (taken from [39]). of PM2.5 by wind speed per
unit leaf area.

Wind Speed (m·s−1) Deposition Velocity (m·s−1) Resuspension Rate [39]

1 0.0003 0.015
2 0.0009 0.030
3 0.0015 0.045
4 0.0017 0.060
5 0.0019 0.075
6 0.0020 0.090
7 0.0056 0.100
8 0.0092 0.110
9 0.0092 0.120
10 0.0211 0.130
11 0.0211 0.160
12 0.0211 0.200

Few direct studies on the dry deposition rate of grassland PM were conducted, but
some studies compared the reduction efficiency of forestland and grassland PM. The
observations and predictions of Shreffler et al. [40,41] showed that the deposition rate
in forests was 2–3 times the rate in grassland, and Fowler et al. [11,42,43] demonstrated
that the dry deposition rate in forestland was approximately 3 times the rate in grassland.
Therefore, the dry deposition rate of grassland in the current experiment was set to 1/3 of
that of forestland under the same environment.

2.5. Dry Sedimentation Flux

The dry sedimentation flux represents the dry settling amount of PM per unit area per
unit time, and it is the product of the dry sedimentation rate and PM concentration. The
dry settling flux occurring at time t was calculated as follows:

f luxt = Vd·C·3600s. (7)

where fluxt represents the dry sedimentation flux per square metre per hour in g·m−2·h−1,
Vd represents the dry settlement rate of the blade surface in m·s−1 and C represents the
concentration of PM in g·m−3·h−1. The PM concentration data used in the experiment
were real-time monitoring data from the monitoring stations, which came from the national
urban air quality real-time publishing platform of the China National Environmental
Monitoring Station (http://106.37.208.233:20035/) (accessed on 1 December 2021). A
total of 78 stations are located in the study area, and each station measures the hourly
concentrations of PM2.5, PM10, PM, SO2, NO2, CO, O3, etc.

The amount of resuspension should be considered when calculating PM2.5. If no
precipitation occurs, the settled particles accumulate on the blades over time and return to
the atmosphere at the resuspension speed of the amount accumulated at that time. The
resuspension amount at time t is the sum of the accumulated PM amount on the blade at

http://106.37.208.233:20035/
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time t−1 and the dry sedimentation amount at time t multiplied by the resuspension rate,
and it was calculated as follows:

Rt = (Acct−1 + f luxt)·rrt/100 (8)

where Rt is the amount of air resuspended at time t in g·m−2·h−1, Acct-1 is the amount
of PM accumulated on the blade at t−1 in g·m−2·h−1 and rrt is the resuspension rate at
time t. When resuspension occurs, the accumulated amount of particles on the blade was
calculated as follows:

Acct = (Acct−1 + f luxt)− Rt (9)

where Acct is the amount of PM accumulated on the leaves at time t, with the unit
of g·m−2·h−1. Therefore, the net flux at time t is the difference between the dry sedi-
mentation flux and resuspension amount, and it was calculated as follows:

Fluxt = f luxt − Rt. (10)

where Fluxt is the net flux per unit area at time t, i.e., the amount of PM reduced by vegeta-
tion in units of g·m−2·h−1. When the net flux is negative due to excessive resuspension and
the absolute value of the net flux per unit area is greater than the total amount of PM per
unit area of the atmosphere (Mtotal), the net flux is adjusted to Mtotal. Mtotal was calculated
as follows:

Mtotal = C·MLH (11)

where Mtotal is the total amount of PM in the air per unit area in g·m−2·h−1, C is the
concentration of PM per hour in g·m−3·h−1 and MLH is the height of the mixed layer in
metres. The heights of the mixed layers in the study area in spring, summer, autumn and
winter were 700 m, 620 m, 500 m and 480 m, respectively [44].

When precipitation occurred, particles that accumulated on the blades or were washed
to the ground were determined. According to the literature reports, leaves capture approxi-
mately 0.2 mm of precipitation. Therefore, the total precipitation storage capacity of the
canopy was calculated as follows [45]:

Ps = 0.2·LAI (12)

where Ps is the total rainfall storage capacity of the canopy in mm. When the precipitation
accumulation reaches Ps, the particles accumulated on the leaf surface are assumed to flow
to the surface from the leaves, and the resuspension amount declines to zero. When the
precipitation is less than Ps, the assumption is that no particles flow down from the leaves.
When the precipitation stops, the particles begin to accumulate again, and resuspension
begins to recur. The accumulated moisture on the blade evaporates back into the air each
hour according to the evaporation speed. The total amount of annual sedimentation can be
calculated as the sum of the number of particles flowing to the ground from the leaf surface
and the number of particles remaining on the leaf surface at the end of the year.

2.6. Assessment of Air Quality Improvement Effect

Due to dry sedimentation, the hourly air quality improvement rate per unit area in
the vegetation-covered area was calculated as follows:

Iunit = Fluxt/(Fluxt + Mtotal)·100, Fluxt > 0
Iunit = Fluxt/(Mtotal)·100, Fluxt < 0

(13)

where Iunit is the air quality improvement rate of the vegetation coverage area per unit
area, Fluxt is the net flux of PM per unit area in g·m−2·h−1 and Mtotal is the total amount
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of PM in the air per unit area in g·m−2·h−1. For the entire region, the hourly air quality
improvement was calculated as follows:

Itotal = Fluxt·Sv/
(

Fluxt·Sv + Mtotal ·Sregion
)
·100, Fluxt > 0

Itotal = Fluxt·Sv/
(

Mtotal , ·, Sregion
)
·100, Fluxt < 0

(14)

where the improvement rate of air quality per unit area of the entire district is in %, SV is
the area covered by vegetation in m2 and Sregion is the area of the entire area represented
by m2. The variation in PM concentration caused by dry sedimentation was calculated as
follows:

∆C = C·
(
(1− Itotal/100)−1 − 1

)
(15)

where ∆C represents the hourly PM concentration change caused by dry sedimentation in
g·m−3·h−1 and C is the hourly PM concentration measured by the air quality monitoring
station.

3. Experiment
3.1. Temporal and Spatial Distribution Analysis of PM Concentration

The monthly average concentrations of PM in each city obtained from hourly data of
the air quality monitoring station are shown in Figure 2. Similar to the previous analysis
results, the concentration of PM2.5 in winter was obviously higher than that in summer,
and the concentrations in spring and autumn were similar and between those of winter and
summer. The concentrations of PM10 were generally winter > spring > autumn > summer.
The highest PM2.5 and PM10 values appeared in December 2015 and were 135.7 µg·m−3 and
199.3 µg·m−3, respectively. The lowest values appeared in September and August 2018, at
27.9 µg·m−3 and 57.6 µg·m−3, respectively. The ratio of PM2.5 to PM10 fluctuated between
30% and 70%, and two peaks occurred near July and December in each year. The maximum
value was 68.1% in December 2015, and the minimum value was 33.2% in May 2017.

Figure 2. Variation trend of the monthly mean PM concentration in the BTH region from 2015 to 2018.

The China Environmental Air Quality Index (AQI) Technical Regulations (HJ633-2012)
stipulate that air quality can be divided into six levels. To characterize the changes more
intuitively, the AQI value of the six levels is translated into PM2.5 and PM10 concentrations
according to the AQI formula, and the concentrations of PM are divided as follows: a
PM2.5 concentration of 0–35 µg·m−3 is excellent; 35–75 µg·m−3 is good; 75–115 µg·m−3 is
light pollution; 115–150 µg·m−3 is moderate pollution; 150–250 µg·m−3 is heavy pollution;
and greater than 250 µg·m−3 is serious pollution. A PM10 concentration of 0–50 µg·m−3

is excellent; 50–150 µg·m−3 is good; 150–250 µg·m−3 is light pollution; 250–350 µg·m−3 is
moderate pollution; 350–420 µg·m−3 is heavy pollution; and greater than 420 µg·m−3 is
serious pollution. The daily average concentrations of PM in the BTH region from 2015
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to 2018 are shown in Figure 3. From 2015 to 2018, excellent and good PM2.5 grades were
observed on days 245, 271, 294 and 309, which showed a gradually increasing trend, and the
number of days in which air quality grades reached the standard increased annually. Light
pollution was observed on days 70, 59, 42 and 38, and moderate pollution was observed on
days 31, 20, 14 and 15. Heavy pollution was observed on days 17, 14, 15 and 3, and severe
pollution was observed on days 2, 2, 0 and 0. All pollution levels exhibited a downwards
trend. Excellent and good days of PM10 occurred on days 266, 288, 314 and 308, increasing
annually from 2015 to 2017. Although the number of days that reached the standard in
2018 was slightly less than that in 2017, the number of days with good air quality increased
annually. Light pollution occurred on days 82, 67, 42 and 50, and moderate and above
pollution were observed on days 17, 11, 9 and 7. The number of days of mild and moderate
pollution generally decreased.

Figure 3. Daily count of daily average PM concentration in different grades from 2015 to 2018.

The daily average particle concentrations in the BTH region were calculated from 2015
to 2018. Red indicates a high concentration, and green and blue indicate a low concentration.
The results are shown in Figures 4 and 5. The daily average value was higher in winter,
and a large difference occurred between daily concentrations. The concentration was
generally low in summer when small fluctuations and relatively stable concentrations were
observed [46]. The daily average concentrations on 4 May 2017, 5 May 2017, 28 March 2018
and 26 November 2018 were significantly higher than those in other years, and the first
three days were primarily in spring. The vegetation coverage rate was low, and severe
sandstorms occurred in most of the study areas. On the fourth day, severe haze appeared
in most areas of the study area due to the heating period in winter and the meteorological
conditions that were unfavourable to the diffusion of particulates.

3.2. Analysis of Environmental Elements
3.2.1. Meteorological Factors

The monthly average wind speed in the study area was evaluated from hourly data,
and the results are shown in Figure 6. The wind speed was low in January each year,
approximately 2.50 m·s−1. The monthly average wind speed gradually increased and
reached a maximum value of 3.05 m·s−1 in May. The wind speed gradually decreased from
May to August and reached a minimum value of 2.17 m·s−1 in August. The wind speed
was stable from August to December. The annual average wind speeds in the study area in
2015, 2016, 2017 and 2018 were 2.46 m·s−1, m·s−1, 2.53 m·s−1 and 2.52 m·s−1, respectively.

BTH has a temperate semihumid continental monsoon climate with great differences
among the four seasons, and precipitation is primarily concentrated in summer. Monthly
precipitation in the study area was calculated, and the results are shown in Figure 6. The
monthly average precipitation in the study area had obvious periodicity, with 68.9% of
precipitation concentrated in summer, 12.0% concentrated in spring, 17.2% concentrated in
autumn and only 1.9% concentrated in winter. The average monthly precipitation in July
was the highest for the entire year, and the average monthly precipitation in December was
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only 1.7 mm. Precipitation reached a peak of 268.6 mm in July 2016, and only 0.2 mm was
observed in December 2017. Some cities received no precipitation for an entire month. The
annual precipitation in the study area in 2015, 2016, 2017 and 2018 was 505.5 mm, 639.3 mm,
518.2 mm and 510.3 mm, respectively, and the precipitation in 2016 was obviously higher
than that in the other years.

Figure 4. Thermographic calendar of daily PM2.5 concentration.

Figure 5. Thermographic calendar of daily PM10 concentration.
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Figure 6. Variation trend of meteorological factors in the study area.

3.2.2. Vegetation Factors

(1) Forestland and grassland area

Table 3 show the statistics on the area and coverage rate of vegetation types in each
city from 2015 to 2018. The area of forestland in the study area increased overall, and the
entire forest area increased by 2190 km2. The area of DBF increased by 2568 km2, and
that of shrubland decreased by 403 km2. The coniferous forest area changed very little.
The grassland area showed a downwards trend, with a decrease of 2288 km over the past
four years. In terms of stand composition, DBF was the main forest type in the study area
and accounted for 93%, 94%, 95% and 95% of the total forest area in 2015, 2016, 2017 and
2018, respectively. Shrubland accounted for 7%, 6%, 4% and 5% in 2015, 2016, 2017 and
2018, respectively, and coniferous forest accounted for only approximately 0.4% each year.
Notably, the forestland and grassland area and coverage used in the overall scale of the
city were extracted from the 500 m resolution land cover classification results, and only the
areas where the land cover types were forestland and grassland were calculated. Forests
and grasslands with small areas and unconnected plots were not considered. Therefore,
the obtained results may contain some errors regarding the forest area and coverage of
each city.

Table 3. Forestland and grassland coverage of each city from 2015 to 2018.

Time ECF DCF DBF Shrubland Grassland

2015 107 29 29,358 2089 63,452
2016 108 30 30,907 1992 61,000
2017 110 31 32,621 1429 59,661
2018 114 29 31,944 1686 61,164

(Unit: km2).

(2) LAI

The monthly mean and spatial distribution of the LAI of forestland and grassland
from 2015 to 2018 were calculated, and the results are shown in Figure 7. The monthly mean
LAI of forestland and grassland in the study area changed periodically with the annual
cycle and was significantly higher in summer than in winter. From November to April each
year, the LAI was less than 0.5. After May, trees entered the stage of leaf spreading, and
the LAI value increased rapidly to reach the highest value in August. The leaves began
falling in September, and the LAI value dropped rapidly and then returned to a lower level
in October. The variation in LAI was closely related to vegetation growth. Because the
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study area contains little evergreen vegetation, the LAI increased rapidly with the growth
of leaves in spring and summer, and the LAI declined rapidly when the leaves began to
fall after autumn and reached the lowest level in winter. Among the monthly mean LAI
values, the highest value of 2.30 occurred in August, and the lowest value of 0.17 occurred
in January. The highest LAI value appeared in August 2016 and reached 2.43, and the
lowest value appeared in November 2015 and reached 0.13.

Figure 7. Spatial distribution of monthly mean values of LAI from 2015 to 2018.

The monthly mean LAI values of various vegetation types in the study area were
calculated, and the results are shown in Figure 8. The LAI of ECF and DCF was slightly
higher than those of the DBF and shrubland in the months with a low LAI. The LAI of
DBF and shrubland were significantly higher than those of ECF and DCF in the months
with a high LAI. Because the DBF and shrubland accounted for a large proportion of all
vegetation types, the temporal variation pattern of the LAI was basically consistent with
the LAI of the entire study area. The monthly LAI of grassland was lower than that of
forestland. The annual average LAI values of the ECF, DCF, DBF, shrubland and grassland
vegetation types were 1.01, 0.98, 1.34, 1.27 and 0.69, respectively.

Figure 8. Monthly mean value of LAI of each forest stand from 2015 to 2018.
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3.3. Analysis of the Total Scale of Cities
3.3.1. Reduction Effect of Vegetation Factors on PM10

Using the calculation methods above, we quantified the emission reduction effect
of vegetation on the whole city and built-up area. The total amount of PM10 reduced by
forestland and grassland in the BTH area was 505,200 t, 465,500 t, 477,200 t and 396,500 t
in 2015, 2016, 2017 and 2018, respectively, and the reduction per unit area was 5.32 g·m−2,
4.95 g·m−2, 5.09 g·m−2 and 4.19 g·m−2, respectively. The concentration of PM10 was
reduced by 0.454 µg·m−3, 0.417 µg·m−3, 0.429 µg·m−3 and 0.356 µg·m−3 in 2015, 2016,
2017 and 2018 in forestland and grassland in the BTH area, respectively, which reduced the
concentration of PM10 by 0.366%, 0.374% 0.397% and 0.355%, respectively.

Figure 9 show the statistics of the monthly PM10 reduction and unit area reduction
on the overall scale of the city from 2015 to 2018. The annual reduction in each month pri-
marily occurred from May to September, and the reduction in these five months accounted
for greater than 85% of the reduction for the entire year. The monthly reductions were
82,000 t, 80,000 t, 94,000 t, 89,000 t and 55,000 t in May, June, July, August and September,
respectively. The monthly decline was highest in August 2015 and reached 125,000 tons,
and the lowest decline was 0.3 tons in February 2016. The reduction per unit area from
May to September was significantly higher than that in the other months, with values of
0.87 g·m−2, 0.85 g·m−2, 1.00 g·m−2, 0.95 g·m−2 and 0.58 g·m−2 in May, June, July, August
and September, respectively. The differences in monthly reduction were primarily due
to the change in LAI. The BTH area has four distinct seasons. The period from May to
September corresponds to the growth season of trees and grass. The effective dust-retaining
area increased during this time, and the reduction in PM was significantly enhanced.

Figure 9. PM10 removal of each month at an overall scale from 2015 to 2018.

The total amount of PM10 reduction and the reduction in vegetation types per unit area
in the whole city from 2015 to 2018 were counted, and the results are shown in Figure 10.
Among all vegetation types, DBF was the most important stand type in the BTH area, which
was the main source of PM10 reduction and accounted for 78.6%, 78.5%, 80.3% and 76.8% of
the total reduction in 2015, 2016, 2017 and 2018, respectively. ECF and DCF accounted for
approximately 0.2% and 0.1% of the total reduction, respectively, annually. The shrubland
area was smaller than the DBF and grassland area, and it contributed approximately 4.1%
of the total decrease each year. Although the area of grassland was much larger than that of
forestland, the reduction rate of PM was approximately 17.1% due to the low efficiency in
grassland. The unit area reduction of DBF and shrubland was relatively high and reached
11.65 g·m−2 and 10.61 g·m−2, respectively; the unit area reduction was 8.02 g·m−2 and
7.69 g·m−2 for ECF and DCF, respectively, and only 1.28 g·m−2 for grassland. These results
showed that DBF contributed more to the reduction in PM10 in the BTH region.
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Figure 10. PM10 removal of each vegetation type at the overall scale from 2015 to 2018.

3.3.2. Reduction Effect of Vegetation Factors on PM2.5

The total amounts of PM2.5 reduction in forestland and grassland in the BTH area
in 2015, 2016, 2017 and 2018 were 19,400 t, 19,200 t, 16,400 t and 12,700 t, respectively.
The reductions per unit area were 0.20 g·m−2, 0.20 g·m−2, 0.17 g·m−2 and 0.13 g·m−2,
respectively. The concentrations of PM2.5 in forestland and grassland in the BTH area
were reduced by 0.017 µg·m−3, 0.017 µg·m−3, 0.015 µg·m−3 and 0.011 µg·m−3 in 2015,
2016, 2017 and 2018, respectively, and the concentrations of PM2.5 were reduced by 0.025%,
0.027%, 0.025% and 0.023%, respectively. Similar to the settlement results of the PM10
reduction effect, the significant reduction in PM concentration over the four years resulted
in a decrease in the total reduction amount and the reduction amount per unit area in the
study area. Compared with PM10, the reduction in PM2.5 by vegetation was relatively low,
which indicated that the reduction effect of vegetation on particles with larger aerodynamic
equivalent diameters was more obvious. Because PM2.5 particles are relatively small, they
do not readily settle via gravity, and the dry settlement is significantly lower than that
of PM10 [19,47]. Measurements of aerosol fluxes using eddy methods in different regions
and towns showed limited deposition of ultrafine particles but an increased frequency of
deposition of fine and coarse particles, which was consistent with the research results of
other scholars [48,49].

The total amount of PM2.5 reduction and the amount of reduction per unit area from
2015 to 2018 were calculated, and the results are shown in Figure 11. The annual reduction
was primarily concentrated from May to September. The reduction in these five months
accounted for greater than 80% of the reduction for the entire year and reached 91.9% in
2017. The average monthly reductions in May, June, July, August and September were
2171 t, 3642 t, 3689 t, 3060 t and 2188 t, respectively. The reduction per unit area was
significantly higher in May, June, July, August and September (0.023 g·m−2, 0.039 g·m−2,
0.039 g·m−2, 0.032 g·m−2 and 0.023 g·m−2, respectively) than in the other months. The
change in leaf area was the main reason for the differences in the reduction value each
month. The decline was the highest in June 2016 and reached 4668 t, and it was negative
in January 2018 and reached −18 t. From November 2017 to mid-March 2018, very little
precipitation occurred in the BTH area. According to the observation standard, an effective
precipitation day was when the daily precipitation of a meteorological observation was
greater than 0.1 mm. Using Beijing as an example, no effective precipitation occurred for
145 days from 23 October 2017 to 16 March 2018, the longest record ever. A long-term lack
of effective precipitation led to a gradual increase in PM accumulation on leaves. When the
wind speed was high, the resuspension amount exceeded the dry sedimentation amount,
which led to a negative value.
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Statistics of the total amount of PM2.5 reduction and the reduction in vegetation types
per unit area in the whole city were calculated from 2015 to 2018, and the results are shown
in Figure 12. Among all vegetation types, the decline in DBF in 2015, 2016, 2017 and 2018
accounted for 73.2%, 73.9%, 75.9% and 72.8% of the total decline, respectively. ECF and
DCF accounted for approximately 0.2% and 0.1% of the total annual reduction, respectively.
The shrubland area was smaller than the DBF and grassland areas, and it accounted for
approximately 3.4% of the total annual decrease. Although the area of grassland was much
larger than that of forestland, the reduction rate of PM was approximately 22.4% due to
low efficiency. The reduction per unit area of DBF forest was relatively high and reached
0.40 g·m−2, and the reductions in shrubland, ECF and DCF were 0.32 g·m−2, 0.30 g·m−2

and 0.30 g·m−2, respectively. The reduction per unit area of grassland was only 0.06 g·m−2.
In contrast to PM10, DBF remained the most important vegetation type for PM2.5 reduction,
but the relative contribution of DBF to total PM2.5 reduction was lower than its contribution
to PM10 reduction, and grassland accounted for a larger proportion of PM2.5 reduction.

Figure 11. PM2.5 removal of each month at the overall scale from 2015 to 2018.

Figure 12. PM2.5 removal of each vegetation type at the overall scale from 2015 to 2018.

3.4. Analysis on the Scale of the Built-Up Area
3.4.1. Reduction Effect of Vegetation Factors on PM10

The calculation results showed the reduction effect of all forestland and grassland on
PM in the whole region, and the built-up area scale emphasized the reduction effect of
urban green space on PM in the built-up area. Urban green space generally refers to urban
land with natural and artificial vegetation as the main forms, including green park space,
green production space, protected green space, subsidiary green space and other green
spaces. The main types of land use are forestland, shrubland and grassland. Built-up areas
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are the main places for human activities, and the air quality of built-up areas has a more
direct impact on human life. Urban green spaces are primarily distributed in built-up areas.
Because the concentration of PM in built-up areas is generally higher than that in other
areas, urban green space reduces PM more directly.

The calculation results showed that the total amount of PM10 in the urban green
space in the BTH area in 2015, 2016, 2017 and 2018 was 8616 t, 8319 t, 8648 t and 7227 t,
respectively, and the reduction amount per unit area was 3.03 g·m−2, 2.91 g·m−2, 3.00 g·m−2

and 2.45 g·m−2, respectively. The PM10 concentration was reduced by 0.101 µg·m−3,
0.096 µg·m−3, 0.099 µg·m−3 and 0.082 µg·m−3 per hour and was reduced by 0.079%,
0.082%, 0.088% and 0.080%, respectively. Although the area of urban green space increased
slightly in the past four years due to a series of measures, such as the promotion of clean
energy, the improvement of motor vehicle oil quality and the renovation and relocation of
urban factories, the amount of urban green space that is available to reduce PM and the
amount of reduction per unit area decreased slightly.

Figures 13–15 show the statistics of the PM10 reduction amount and reduction amount
per unit area in cities, months and vegetation types on the overall scale of cities from
2015 to 2018. The reduction in Beijing was far greater than that in the other cities and
reached 4509 t, 4784 t, 4856 t and 3862 t in 2015, 2016, 2017 and 2018, respectively. The
average annual reduction in built-up areas in Tangshan and Tianjin exceeded 500 t, and
the reduction in Cangzhou, Langfang and Hengshui was less than 100 t. The regional
difference was primarily caused by the difference in urban green space areas. The green
space area in Beijing is approximately 2900 km2, which is much larger than that of the other
cities. Among the cities, the maximum reduction per unit area was 7.37 g·m−2 in Chengde,
followed by 4.52 g·m−2 and 3.37 g·m−2 in Handan and Beijing, respectively. Similar to the
calculation results of the overall scale of the city, the reduction in each month was primarily
concentrated from May to September and accounted for 84.6% of the reductions for the
entire year. The reductions in May, June, July, August and September were 1559 t, 1361 t,
1497 t, 14,829 t and 1044 t, respectively. August 2015 had the highest value of 1855 t, and
February 2016 had the lowest value. The maximum reduction per unit area in each month
was 0.54 g·m−2 in May, and the minimum was 0.03 g·m−2 in February. Among the green
space types, forestland, shrubland and grassland contributed 53.2%, 2.2% and 44.6% of the
total reduction, respectively, and the reduction per unit area was 11.16 g·m−2, 10.86 g·m−2

and 1.48 g·m−2, respectively. Compared with the calculation results at the whole-city scale,
grassland contributed more to the total reduction because grassland was the main type of
urban green space, and its proportion of the green space area was much larger than that
of forestland.

Figure 13. PM10 removal of each city at the built-up area scale from 2015 to 2018.
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Figure 14. PM10 removal in each month at the built-up area scale from 2015 to 2018.

Figure 15. PM10 removal of each green space type at the built-up area scale from 2015 to 2018.

3.4.2. Reduction Effect of Vegetation Factors on PM2.5

The total amounts of PM2.5 in the urban green space in the BTH area were 360 t, 388 t,
277 t and 237 t in 2015, 2016, 2017 and 2018, respectively, and the reductions per unit area
were 0.13 g·m−2, 0.14 g·m−2, 0.10 g·m−2 and 0.08 g·m−2, respectively. The concentrations
of PM2.5 were reduced by 0.004 µg·m−3, 0.004 µg·m−3, 0.003 µg·m−3 and 0.003 µg·m−3

per hour, which were reductions of 0.006%, 0.006%, 0.005% and 0.005%, respectively. The
reduction amount, concentration reduction value and concentration improvement rate of
PM10 by vegetation were significantly higher than those of PM2.5, which demonstrated
that the reduction effect of vegetation on particles with larger aerodynamic equivalent
diameters was more obvious. However, because PM2.5 had a stronger correlation with
human production and living activities, the reduction effect of vegetation on PM2.5 should
not be ignored.

Statistics were applied to the total amount of PM2.5 reduction and the amount of
reduction per unit area of each city, month and vegetation type on the overall scale of
cities from 2015 to 2018, and the results are shown in Figures 16–18. Among the cities,
the reduction in Beijing was larger than that in the other cities and reached 193 t, 211 t,
142 t and 128 t in 2015, 2016, 2017 and 2018, respectively, and the reductions in Cangzhou,
Langfang and Hengshui were relatively low. Among the cities, the maximum reduction per
unit area was 0.30 g·m−2 in Chengde, followed by 0.15 g·m−2 and 0.14 g·m−2 in Handan
and Beijing, respectively. The monthly reduction from May to September accounted for
86.9% of the reduction for the entire year, and the reductions in May, June, July, August
and September were 38 t, 72 t, 69 t, 54 t and 40 t, respectively. The highest value of 105 t
was observed in June 2016, and the highest reduction per unit area in June was 0.03 g·m−2.
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Among the green space types, forestland, shrubland and grassland contributed 44.8%,
1.7% and 53.5% of the total reduction, respectively, and the reduction per unit area was
0.36 g·m−2, 0.33 g·m−2 and 0.07 g·m−2, respectively. Grassland was the main green space
type for reducing PM2.5 in cities.

Figure 16. PM2.5 removal of each city at the built-up area scale from 2015 to 2018.

Figure 17. PM2.5 removal each month at the built-up area scale from 2015 to 2018.

Figure 18. PM2.5 removal of each green space type at the built-up area scale from 2015 to 2018.
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4. Discussion
4.1. Comparisons with Other Studies

Research on PM10 reduction in foreign countries started earlier. Nowak et al. [19]
estimated the reduction in PM in 55 cities in the United States and found that the annual
reduction in each city ranged from 22 t to 11,000 t, and the reduction per unit area ranged
from 6.2 g·m−2 to 23.1 g·m−2, with a median of 10.8 g·m−2. The experimental results of
Escobedo et al. [22,41] in the Santiago metropolitan area, Chile, showed that the annual
removal of PM10 by forest was approximately 1754 t, and the reduction of PM10 per unit area
by forestland, shrubland and grassland was 7.4–8.0 g·m−2, 5.7–8.5 g·m−2 and 1.73 g·m−2,
respectively. McDonald et al. [43] demonstrated that the vegetation in the West Midlands
of England removed up to 110 t of PM10 each year. Tallis et al. [11] demonstrated that the
annual reduction in PM10 by forests in Greater London was approximately 852 t–2121 t.
Scott et al. [50] calculated that the annual reduction in PM10 by forests was 679 t. More
recent scholars have turned their attention to the study of PM2.5 reduction. Although the
reduction in PM2.5 by vegetation is much lower than that of PM10, it is more closely related
to human health. Nowak et al. [47] estimated the annual reduction in PM2.5 in 10 cities
in the United States and found that the reduction amount varied from 4.7 t in Syracuse
to 64.5 t in Atlanta, with the reduction amount per unit area ranging from 0.13 g·m−2 to
0.36 g·m−2 and the concentration reduction value per hour ranging from 0.006 µg·m−3 to
0.033 µg·m−3. Nowak et al. [18] showed that trees in 86 cities in Canada removed 665 t
of PM2.5 in 2010, with a reduction of 0.15 g·m−2 per unit area, a change in concentration
of approximately 0.009 µg·m−3 and a concentration improvement rate of approximately
0.145%.

Research by Chinese scholars on the reduction of PM by vegetation is limited. Yang
et al. [35] showed that the trees in the eight central urban areas of Beijing removed a total
of 1261.4 t of pollutants in 2002, of which the total reduction in PM10 was 772 t, and the
reduction per unit area was approximately 16.8 g·m−2 per year. Chang Yamin [51] showed
that the total reduction in PM2.5 by afforestation in the plains area of Beijing in 2012 was
approximately 26.66 t, and the removal amount per unit leaf area was approximately
0.27 g·m−2. The experimental results above are similar to some of the results related to
forestland in the current experiment. According to Xiao Yu et al. [17], the total amount of
PM2.5 was reduced by 1861 t, 2987 t and 3852 t in 2000, 2005 and 2010, respectively; the
reduction amount per unit area was 2.27 g·m−2, 2.46 g·m−2 and 3.34 g·m−2, respectively;
and the improvement rate of PM2.5 concentration was 0.07%, 0.12% and 0.19%, respectively.
Chen Long et al. [52] showed that the total amount of PM2.5 reduction by afforestation in the
plains area of Beijing in 2012 was 451 t, and the reduction per unit area was approximately
2.66 g·m−2, which reduced the concentration of PM2.5 by 0.57 µg·m−3 on average. Cao
Hongliang et al. [16] showed that the total amount of PM2.5 in the Shanghai urban forest was
approximately 442.4 t in 2013, which reduced the concentration of PM2.5 by 0.44 µg·m−3 on
average, and the improvement rate of the PM2.5 concentration was 0.07%. The experimental
results above are slightly higher than our experimental results, primarily because of the
different calculation methods. The daily time step was used in the above studies, and only
the daily dry settlement on nonprecipitation days was considered when calculating the
resuspension of PM2.5. To determine the resuspension of PM2.5 in the present experiment,
the sum of the accumulated PM on the leaves after the last effective precipitation and the
current dry settlement was calculated, which led to some differences in the results. Because
the amount of fine particles absorbed by vegetation is low, most of these particles return to
the atmosphere due to resuspension. Therefore, leaf accumulation should be considered
when calculating the resuspension amount to increase the accuracy of the results.

4.2. Error Analysis

This manuscript estimated the reduction effect of vegetation on PM2.5 and PM10 in
the BTH area at the scales of the whole city and built-up area. The estimation process
may involve some errors. The error sources may include the following factors. (1) The
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dry settlement rate in the experiment was calculated based on literature reports, and the
same calculation method was adopted for different tree species. The dry sedimentation
rates of different tree species may be different, and the planting structure of tree species
in the literature and the BTH local tree species may be different, resulting in potential
errors. (2) The related literature includes many experiments on the effect of forestland
on PM reduction, but few studies have focused on grassland. The current paper set
the dry settlement rate of grassland to 1/3 of the rate of forestland with reference to the
experience of foreign scholars, and different grassland types were not distinguished. (3) The
resuspension rate was not considered in the calculation of PM10 reduction, and the amount
of dust retention by leaves may reach saturation without effective precipitation for a long
time, which was not considered in the experiment. (4) The boundary layer height should
be considered when calculating the particle stock and concentration improvement rate in
the entire region. The boundary layer height fluctuates in different spatial positions and
different times, and only different seasons were distinguished in the experiment. (5) When
calculating the whole scale of the city, the forestland and grassland area data were extracted
from the results of large-scale land use classification, and forests and grasslands with small
areas and unconnected plots were not considered. This approach may also have an impact
on the calculation results. (6) The spatial distribution data on PM concentration used in
the experiment were based on the measured data of air quality monitoring stations and
obtained using the kriging method of spatial interpolation. Due to the limited number of
stations and uneven spatial distribution, some errors may occur between the interpolation
results and the actual data at some spatial positions far away from the stations.

Despite these influences, this experiment made some improvements to the traditional
methods. (1) It divided the large area into several small areas, divided the forestland into
different types according to different stands, extracted the LAI values of various vegetation
types in different places, calculated the amount of PM reduction and summed the results
to obtain the total amount of reduction in the study area. (2) The present experiment
quantified the reduction of PM in forestland and grassland on the scale of the whole city
and the reduction of urban green space on the scale of the built-up area and compared
their similarities and differences. The experimental results are highly relevant to the
prevention and control of PM pollution and the planning and construction of urban forests
and grasslands. The effect of vegetation on PM reduction is a complex process, but there
are many other factors that have more or less influence on this process, in addition to the
parameters already considered. Therefore, there is still much room for improvement in
the methods used to quantify the effect of vegetation on PM reduction. As people become
increasingly aware of the important role of vegetation in improving environmental quality,
relevant in-depth research will be performed and the methods will be optimized and
refined continuously to more accurately quantify the effects of vegetation on reducing PM.

5. Conclusions

On the scale of entire cities and built-up areas, the reduction effect of forestland,
grassland and urban green space on PM in the BTH area was calculated, and the reduced
amount of vegetation on PM was quantified according to different regions, different times
and different vegetation types. The results confirmed that the self-purification function
of forestland and grassland played important roles in reducing and controlling PM con-
centrations, providing a scientific reference and theoretical basis for better exploiting the
ecological and environmental benefits of vegetation. The following main conclusions were
drawn.

(1) The reduction in PM10 by vegetation was approximately 30 times that of PM2.5.
However, the reduction in PM2.5 by vegetation should not be ignored because PM2.5
has a stronger correlation with human production and living activities. The total
amounts of PM10 reduced by forestland and grassland in the BTH area were 505,200 t,
465,500 t, 477,200 t and 396,500 t in 2015, 2016, 2017 and 2018, respectively, and the
concentrations of PM10 were reduced by 0.454 µg·m−3, 0.417 µg·m−3, 0.429 µg·m−3
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and 0.429 µg·m−3, respectively, per hour. The total amount of PM2.5 was reduced by
19,400 t, 19,200 t, 16,400 t and 12,700 t in 2015, 2016, 2017 and 2018, respectively, and
the concentration of PM2.5 was reduced by 0.017 µg·m−3, 0.017 µg·m−3, 0.015 µg·m−3

and 0.011 µg−3 per hour, respectively.
(2) The reduction amount, concentration reduction value and concentration improvement

rate of vegetation for PM10 were significantly higher than those for PM2.5. However,
because PM2.5 has a stronger correlation with human production and living activities,
the reduction effect of vegetation on PM2.5 cannot be ignored. More than 80% of
the reduction in annual yield was concentrated in May–September, and a large leaf
area was the main reason for the largest yield reduction in the growing season. The
efficiency of PM reduction in forestland was approximately five–seven times that in
grassland, and DBF was the main driver of PM reduction in each forest. Reducing
and controlling the concentration of PM by increasing the area and density of green
space to create an environment suitable for dry sedimentation and giving full play to
the functional effect of green space ecosystems are very important.

The reduction effect of vegetation on PM is a continuous, dynamic process. Dry
deposition per unit time occurs under the combined action of temperature, humidity,
wind speed, precipitation, PM concentration, leaf shape and many other environmental
conditions. Future research will be more integrated with actual measurements and better
analyses, incorporating the influence of more environmental factors into experiments. In
addition, given that human emissions are one of the important causes of excessive PM
concentrations, future research will more comprehensively explore its relationship with
vegetation reduction.
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