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Abstract: Scientifically revealing the spatiotemporal patterns of cultivated land quality (CLQ) is
crucial for increasing food production and achieving United Nations Sustainable Development Goal
(SDG) 2: Zero Hunger. Although studies on the evaluation of CLQ have been conducted, an effective
evaluation system that is suitable for the macro-regional scale has not yet been developed. In this
study, we first defined the CLQ from four aspects: soil fertility, natural conditions, construction level,
and cultivated land productivity. Then, eight indicators were selected by integrating multi-source
remote sensing data to create a new CLQ evaluation system. We assessed the spatiotemporal patterns
of CLQ in Guangzhou, China, from 2010 to 2018. In addition, we identified the main factors affecting
the improvement of CLQ. The results showed that the CLQ continuously improved in Guangzhou
from 2010 to 2018. The area of high-quality cultivated land increased by 13.7%, which was mainly
distributed in the traditional agricultural areas in the northern and eastern regions of Guangzhou. The
areas of medium- and low-quality cultivated land decreased by 8.1% and 5.6%, respectively, which
were scattered throughout the whole study area. The soil fertility and high productivity capacity
were the main obstacle factors that affected the improvement of CLQ. Simultaneously, the obstacle
degree of stable productivity capacity gradually increased during the study period. Therefore, the
targeted improvement measures could be put forward by applying biofertilizers, strengthening
crop management and constructing well-facilitated farmland. The new CLQ evaluation system
we proposed is particularly practical at the macro-regional scale, and the results provided targeted
guidance for decision makers to improve CLQ and promote food security.

Keywords: cultivated land quality; spatiotemporal patterns; evaluation system; remote sensing;
obstacle factor

1. Introduction

Cultivated land is the most important natural resource that plays a vital role in
ensuring food security and the sustainable development of human society [1]. However,
cultivated land is currently suffering from frequent natural disasters [2,3], soil nutrient
loss [4,5], soil acidification, and heavy metal pollution [6,7] due to climate change and
high-intensity utilization [8]. The degradation of cultivated land quality (CLQ) not only
caused serious eco-environmental problems but also posed great threats to food security [9].
Therefore, how to improve CLQ and increase food production have become a research

Remote Sens. 2022, 14, 1250. https://doi.org/10.3390/rs14051250 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051250
https://doi.org/10.3390/rs14051250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4638-8544
https://doi.org/10.3390/rs14051250
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051250?type=check_update&version=2


Remote Sens. 2022, 14, 1250 2 of 20

hotspot globally. Moreover, implementing CLQ evaluation and revealing its spatiotemporal
changes can provide key information for stakeholders to understand and manage CLQ.

Research on CLQ evaluation generally includes three steps: defining the CLQ, con-
structing a CLQ evaluation system, and grading CLQ evaluation results [10]. The defi-
nition of CLQ is the basis of evaluation, but there is currently no unified definition for
the CLQ [11,12]. In most previous studies, the soil quality or soil fertility of cultivated
land received the greatest attention and has often been considered as equivalent to the
CLQ [13–15]. However, cultivated land is a semi-artificial and semi-natural ecosystem,
and the CLQ should be the integration of multiple qualities [16]. Therefore, some other
elements of CLQ have gradually attracted attention, such as field management [15,17],
ecological environment [18,19], and productivity [20,21].

Because of the complexity of CLQ, it should be evaluated from multiple dimen-
sions [10]. Constructing a scientific evaluation indicator system is helpful for reflecting the
comprehensive characteristics of CLQ [22]. The Chinese government has always attached
great importance to the protection and improvement of CLQ [23]. Therefore, a series of
CLQ indicator systems has been proposed [24–26], which emphasizes the productivity
capacity and ecological environment of cultivated land. Simultaneously, many scholars
have also constructed a variety of evaluation indicator systems with different functions and
purposes. The evaluation indicator systems developed in these studies are mainly char-
acterized by soil quality/fertility [27–29], natural quality/conditions [30–32], utilization
conditions [12,33], productivity capacity [15,21,34], ecological environment [10,18,19], and
economic level [12]. However, the quantification methods of these indicators in existing
studies were not suitable for regional scales or cannot reflect the spatial details of CLQ.

It is still a major challenge to obtain a large number of ground-measured data to
evaluate CLQ at a large regional scale [35,36]. To efficiently evaluate CLQ, remote sensing
data with a wide coverage have been used to characterize some of the attributes of CLQ. For
example, Liu et al. [35] and Wang et al. [37] used different vegetation indexes extracted from
remote sensing images to represent the soil fertility and soil moisture of cultivated land.
Askari et al. [14] and Omer et al. [38] evaluated soil quality using visible and near-infrared
spectroscopy. Ma et al. [34] used gross primary productivity (GPP) based on Moderate
Resolution Imaging Spectroradiometer (MODIS) data to characterize the productivity of
cultivated land. However, these studies mainly used remote sensing data to characterize a
single attribute of the CLQ. Few studies have comprehensively evaluated the CLQ based
on remote sensing data.

In addition, the CLQ has obvious spatiotemporal heterogeneity [27]. It is crucial to
reveal the spatiotemporal changes in the CLQ and to identify its main influencing factors
to improve CLQ [11,39]. Qian et al. [40] revealed the spatiotemporal characteristics of
the production function, ecological function, and social function of the cultivated land
in Shenyang city. However, its spatial resolution was low (10 × 10 km), resulting in the
spatial details of CLQ being poorly displayed. Lin et al. [27] carried out a study on the
spatiotemporal evaluation of CLQ at a finer spatial scale (plot scale), but the authors
assumed that there was no change in the CLQ grade during the study period. At present,
there is still a lack of research on the spatiotemporal evaluation of CLQ at a fine spatial
scale (e.g., 30 × 30 m).

This study aimed to (1) construct a new CLQ evaluation system by integrating multi-
source remote sensing data to improve the efficiency of the spatiotemporal evaluation of
the CLQ; (2) reveal the spatiotemporal patterns of CLQ in Guangzhou from 2010 to 2018;
(3) identify the main obstacle factors affecting the improvement of the CLQ in Guangzhou.
The potential scientific contributions of this study include (1) exploring the potential of
using multi-source remote sensing data in the comprehensive evaluation of the CLQ; (2) pro-
viding scientific guidance for improving CLQ in Guangzhou, increasing food production,
and ensuring regional food security.
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2. Materials and Methods
2.1. Study Area

Guangzhou (112◦57′–114◦03′ E, 22◦26′–23◦56′ N) is the capital city of Guangdong
Province and the largest city in southern China (Figure 1). Guangzhou contains 11 districts,
including Yuexiu, Haizhu, Liwan, Tianhe, Baiyun, Huangpu, Nansha, Panyu, Huadu,
Conghua, and Zengcheng. The minimum terrain altitude of Guangzhou is 0 m, the
maximum is 1181 m, the mean is 107 m, and the median is 34 m. The terrain in Guangzhou
is high in the northeast and low in the southwest, with mountains and hills in the north,
hilly basins in the middle, and coastal alluvial plains in the south. The cultivated land is
dominated by paddy fields, and rice is the main crop, with the rice planting area accounting
for 88% of the total cultivated land area [41]. Other crops, such as vegetables, only account
for approximately 10%. The soil type of the cultivated land is lateritic red soil (Ferralsol,
World Reference Base for Soil Resources 2015), which is characterized by strong acidity and
low nutrient content. The mean annual temperature (MAT) in Guangzhou is 21.9 ◦C, and
MAT is higher in the south and lower in the north. The mean annual precipitation (MAP) in
Guangzhou is about 1800 mm, and MAP is lower in the south and higher in the north, and
the precipitation is mainly concentrated from April to September. We chose Guangzhou as
the study area because, in 2018, the Guangzhou municipal government proposed to build
the “Vegetable Basket” production and circulation service system of the Guangdong–Hong
Kong–Macao Greater Bay Area [42] with Guangzhou as the hub, aiming to provide more
and better edible agricultural products. However, a large amount of cultivated land in
Guangzhou has been converted into built-up land due to urbanization [43]. In this context,
the CLQ in Guangzhou will be a key factor in achieving the goal of providing more and
better edible agricultural products to a large extent. Therefore, it is urgent and important to
carry out a spatiotemporal evaluation of the CLQ in Guangzhou to promote the efficient
improvement of the CLQ.

Remote Sens. 2022, 14, x FOR PEER REVIEW  3  of  22 
 

 

2. Materials and Methods 

2.1. Study Area 

Guangzhou  (112°57′–114°03′ E,  22°26′–23°56′ N)  is  the  capital  city  of Guangdong 

Province and the largest city in southern China (Figure 1). Guangzhou contains 11 dis‐

tricts,  including  Yuexiu,  Haizhu,  Liwan,  Tianhe,  Baiyun,  Huangpu,  Nansha,  Panyu, 

Huadu, Conghua, and Zengcheng. The minimum terrain altitude of Guangzhou is 0 m, 

the maximum is 1181 m, the mean is 107 m, and the median is 34 m. The terrain in Guang‐

zhou is high in the northeast and low in the southwest, with mountains and hills in the 

north, hilly basins in the middle, and coastal alluvial plains in the south. The cultivated 

land is dominated by paddy fields, and rice is the main crop, with the rice planting area 

accounting for 88% of the total cultivated land area [41]. Other crops, such as vegetables, 

only account for approximately 10%. The soil type of the cultivated land is lateritic red 

soil (Ferralsol, World Reference Base for Soil Resources 2015), which is characterized by 

strong acidity and low nutrient content. The mean annual temperature (MAT) in Guang‐

zhou is 21.9 °C, and MAT is higher in the south and lower in the north. The mean annual 

precipitation (MAP) in Guangzhou is about 1800 mm, and MAP is lower in the south and 

higher in the north, and the precipitation is mainly concentrated from April to September. 

We chose Guangzhou as the study area because, in 2018, the Guangzhou municipal gov‐

ernment proposed to build the “Vegetable Basket” production and circulation service sys‐

tem of the Guangdong–Hong Kong–Macao Greater Bay Area [42] with Guangzhou as the 

hub, aiming to provide more and better edible agricultural products. However, a large 

amount of cultivated land in Guangzhou has been converted  into built‐up  land due to 

urbanization [43]. In this context, the CLQ in Guangzhou will be a key factor in achieving 

the goal of providing more and better edible agricultural products to a large extent. There‐

fore,  it is urgent and important to carry out a spatiotemporal evaluation of the CLQ in 

Guangzhou to promote the efficient improvement of the CLQ. 

 

Figure  1. Overview map  of  the  study  area. CH: Conghua district; ZC: Zengcheng district; HP: 

Huangpu district; NS: Nansha district; HD: Huadu district; TH: Tianhe district; BY: Baiyun district; 

HZ: Haizhu district; PY: Panyu district; LW: Liwan district. 

Figure 1. Overview map of the study area. CH: Conghua district; ZC: Zengcheng district; HP:
Huangpu district; NS: Nansha district; HD: Huadu district; TH: Tianhe district; BY: Baiyun district;
HZ: Haizhu district; PY: Panyu district; LW: Liwan district.
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2.2. CLQ Evaluation Method
2.2.1. The Definition of CLQ

This study defined the CLQ from four aspects, including soil fertility, natural condi-
tions, construction level, and cultivated land productivity. Soil fertility is the foundation
of crop growth and is the most critical indicator used to measure the CLQ [44,45]. The
natural conditions of cultivated land can reflect some of the background properties that
are closely related to the CLQ [27,33]. Cultivated land is a semi-artificial and semi-natural
ecosystem; thus, the impact of construction level on the CLQ cannot be ignored [15,17]. The
productivity capacity of cultivated land is the most direct manifestation of the CLQ [46]
and should be taken into account.

2.2.2. Indicator Selection

Based on the proposed definition of CLQ, eight indicators were selected by inte-
grating multi-source remote sensing data to construct a comprehensive CLQ indicator
system (Table 1).

Table 1. The indicator system for evaluating cultivated land quality.

Target Definition Indicator Calculation
Method Grade Weight

Cultivated land quality

Soil fertility

Soil fertility size
Mean of NDVI for
three consecutive

years

High: >0.7;
Medium: 0.5–0.7;

Low: <0.5.
0.1403

Soil fertility stability
CV of NDVI for

three consecutive
years

High: <5%;
Medium: 5–10%;

Low: >10%.
0.0954

Natural conditions

Slope Steepness of the
cultivated land

High: <2◦;
Medium: 2–5◦;

Low: >5◦.
0.1094

Topsoil texture Ratio of sand, clay,
and loam

High: Fine;
Medium: Medium;

Low: Coarse.
0.0805

Construction level

Road accessibility
The distance from
the cultivated land
to the nearest road

High: <0.5 km;
Medium: 0.5–1.5 km;

Low: >1.5 km.
0.1234

Centralized contiguity Contig landscape
index

High: >0.85;
Medium: 0.75–0.85;

Low: <0.75.
0.1008

Cultivated land
productivity

High productivity
capacity

Mean of the NPP
for three

consecutive years

High: >600;
Medium: 450–600;

Low: <450.
0.1882

Stable productivity
capacity

CV of NPP for
three consecutive

years

High: <5%;
Medium: 5–10%;

Low: >10%.
0.1620

The indicators used to evaluate soil fertility are soil fertility size and stability. Soil
fertility size represents whether the current soil fertility is good, while soil fertility stability
focuses on the state of soil fertility over a period of time. Soil fertility is affected by many
factors, but the growth status of the vegetation can be used as a direct reflection of soil fertil-
ity [47]. Normalized Difference Vegetation Index (NDVI) is obtained from remote sensing
images and can accurately reflect the growth of vegetation; thus, it is often referred to as the
“soil fertility index” and has been used to fully characterize the soil fertility of cultivated
land [37,48]. In this study, we used the mean of NDVI and coefficient of variation (CV) of
NDVI of cultivated land for three consecutive years to characterize the size and stability
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of soil fertility, respectively. For soil fertility size, we first calculated the average NDVI
within one year and then calculated the average NDVI for three consecutive years. Due to
weather conditions, high-quality remote sensing images (cloud cover was less than 10%)
within one year were concentrated from September–November. September–November is a
critical period for crop growth and harvesting in Guangzhou [49]. Therefore, the average
NDVI during this period can effectively characterize the soil fertility of cultivated land. If
the mean of NDVI is larger and the CV of NDVI is smaller for three consecutive years, then
the soil fertility of cultivated land is better.

To evaluate the natural conditions of the cultivated land, we chose the slope and
topsoil texture, which are the most frequently used and representative indicators due to
their wide availability [50,51]. Previous studies have found that the slope is closely related
to CLQ; that is, the greater the slope, the worse the CLQ [30]. Moreover, topsoil texture
(0–30 cm) is most relevant to soil quality and crop growth, which is widely used in many
previous CLQ evaluation studies [11,40]. If the slope is smaller and the topsoil texture is
fine, then the natural conditions of the cultivated land are better.

To facilitate field production activities and meet the needs of agricultural mechanized
production, farmers usually build a sound field road system and carry out land consolida-
tion projects [19]. Therefore, in this study, road accessibility and centralized connectivity
were used to represent the construction level of the cultivated land. Road accessibility refers
to the distance from the cultivated land to the nearest road [52]. Centralized connectivity
refers to whether the cultivated land is connected and to which degree of connectivity. In
this study, the CONTIG landscape index was used to represent the centralized connectivity
of cultivated land. The CONTIG index is a contiguity index, which can effectively assess
the spatial connectedness of objects [53]. If road accessibility is smaller and centralized
connectivity is larger, then the construction level of the cultivated land is better.

The productivity capacity of cultivated land was evaluated from the perspectives of
the high productivity capacity and the stable productivity capacity. Previous studies have
shown that net primary productivity (NPP) derived from MODIS 17 A3 (MOD17A3) can
effectively characterize the productivity level of cultivated land [54,55]. The advantage of
using NPP is that time-series data are readily available, and they can serve as a common
comparable unit across different crop types [55]. In this study, we used the mean of NPP
and the CV of NPP for three consecutive years to represent the high productivity capacity
and stable productivity capacity of cultivated land, respectively. If the mean of NPP is
large and the CV of the NPP is small for three consecutive years, then the cultivated land
productivity is better.

2.2.3. Calculation of the CLQ index

The CLQ index was used to evaluate CLQ and mainly consists of three steps: (1) indica-
tor selection and weight determination; (2) grading and scoring indicators; (3) calculation of
the weighted sum of different indicators [10]. The impact of different evaluation indicators
on the CLQ should be different; that is, their weight values are different [32]. Therefore,
it is critical to set appropriate weight values for the evaluation indicators. In this study,
we consulted ten experts from Guangdong Academy of Agricultural Sciences and South
China Agricultural University in the form of questionnaires. They ranked the importance
of the selected indicators. We combined the expert survey results with an analytic hierarchy
process (AHP) to calculate the weight coefficients. In addition, the weight results passed
the consistency test (consistency ratio value less than 0.1) [56]. We divided each evaluation
indicator into three grades: high, medium, and low (Table 1). The grading of slope refers
to China’s national standard: the regulation for gradation of agricultural land quality [25].
The grading of the topsoil texture refers to the classification standard of the Harmonized
World Soil Database (http://www.fao.org/soils-portal/, accessed on 10 October 2020).
The grading of road accessibility refers to a previous study on CLQ evaluation [57]. The
grading of the remaining five indicators is based on Jenks classification, which can reduce
the intra-class variance and maximize the inter-class variance [58]. We used the scoring

http://www.fao.org/soils-portal/
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method to score the high, medium, and low grades as 3, 2, and 1, respectively. Finally, we
calculated the CLQ index as follows:

CLQI =
n

∑
i=1

Wi ×Yi (1)

where CLQI is the CLQ index; Wi is the weight of the evaluation indicator; Yi is the score of
the evaluation indicator; n is the number of evaluation indicators (n = 8 in this study).

2.2.4. Grading the CLQ index

The CLQ index ranges from 1.00 to 3.00. The larger the index is, the better the CLQ. In
this study, the CLQ was divided into three grades, including high quality, medium quality,
and low quality, according to the following criteria:

CLQ grade =


High− quality 2.40 ≤ CLQI ≤ 3.00
Medium− quality 2.10 ≤ CLQI < 2.40
Low− quality 1.00 ≤ CLQI < 2.10

(2)

2.3. Data Sources and Preprocessing
2.3.1. Multi-Source Data

Detailed information about the data used in this study is presented in Table 2. The
cultivated land data for Guangzhou were obtained from China’s National Land Use and
Cover Change (CNLUCC) dataset. The dataset was generated using a uniform classification
method with visual interpretation based on Landsat images, and it was provided by the
Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. The
overall accuracy of the dataset was >90% [59].

Table 2. Data information.

Data Indicator Source Year Attribute Resolution

Landsat/
Sentinel-2 images Soil fertility

USGS Earth Resources Observation and Science Center
(http://earthexplorer.usgs.gov/,

accessed on 11 August 2020)

2009–2011;
2014–2019.

Raster 30 × 30 m
Raster 10 × 10 m

DEM Slope
Geospatial Data Cloud

(http://www.gscloud.cn/,
accessed on 12 October 2020)

2011 Raster 30 × 30 m

Harmonized
World Soil
Database

Topsoil texture FAO Soils portal (http://www.fao.org/soils-portal,
accessed on 10 October 2020) 2009 Raster 1 × 1 km

Road vector data Road accessibility
OpenStreetMap

(https://www.openstreetmap.org,
accessed on 18 October 2020)

2010/2015/2018 Vector -

China’s National
Land Use and
Cover Change

Centralized
contiguity

Resource and Environment Data Cloud Platform
(http://www.resdc.cn, accessed on 27 June 2020) 2010/2015/2018 Raster 30 × 30 m

MODIS 17A3
NPP

Cultivated land
productivity

NASA LAADS DAAC
(http://e4ftl01.cr.usgs.gov/MOLT,

accessed on 25 May 2021)

2009–2011;
2014–2019. Raster 500 × 500 m

The NDVI was calculated to evaluate the soil fertility of the cultivated land based
on the Landsat Thematic Mapper/Operational Land Imager (TM/OLI) data in ENVI 5.3.
However, due to the quality of Landsat remote sensing image being not good (cloud cover
was greater than 10%) in 2018, we chose a high-quality Sentinel-2 image with higher spatial
resolution (10 × 10 m) as a substitute. To maintain the same resolution as the Landsat
images, the Sentinel-2 image was resampled to 30 m.

Using ArcGIS (version 10.6; Software for Spatial Analysis; Environmental Systems
Research Institute, Redlands, CA, USA, 2019), the slope of the cultivated land was extracted
based on the Digital Elevation Model (DEM) data, and the distance from each cultivated
land pixel to the nearest road was calculated. In this study, the Fragstats (version 4.2;
Software for Categoracal Map Patterns; Oregon State University, Corvallis, OR, USA, 2017)

http://earthexplorer.usgs.gov/
http://www.gscloud.cn/
http://www.fao.org/soils-portal
https://www.openstreetmap.org
http://www.resdc.cn
http://e4ftl01.cr.usgs.gov/MOLT
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was used to calculate the Contig landscape index. The calculation of the mean and CV of
the NPP was conducted in ENVI 5.3. To unify the evaluation unit, all data were resampled
to 30 m.

2.3.2. Validation Dataset

In this study, the validation data consisted of the comprehensive evaluation results
of field-measured indicators, including soil organic matter, total nitrogen, available phos-
phorus, available potassium, pH, slope, topsoil texture, soil thickness, soil bulk density,
soil parent material, irrigation guaranteed rate, drainage conditions, yield. Due to the
limitations of the acquisition of the validation data, we took the Conghua, Zengcheng, and
Nansha districts as examples to verify the results. There were 75 ground monitoring points
in Conghua district, 89 ground monitoring points in Zengcheng district, and 65 ground
monitoring points in Nansha district. The number and spatial location of the ground
sampling points in the three districts were the same for all study years (Figure 1).

To further verify the evaluation results of the CLQ in the entire study area, we chose the
spatiotemporal distribution data for well-facilitated farmland (i.e., high-quality cultivated
land formed through land consolidation and construction within a certain period) in
Guangzhou as an additional validation dataset. Well-facilitated farmland construction
is considered to be a strategic measure to ensure China’s national food security [57,60].
The purpose of well-facilitated farmland construction is to improve the comprehensive
quality of the cultivated land; thus, its spatial distribution data consisted of a validation
dataset suitable for the needs of this study. According to China’s National Overall Plan for
Well-Facilitated Farmland Construction, when the construction of well-facilitated farmland is
completed, the CLQ grade will be significantly improved. Therefore, we reasonably believe
that the CLQ in a well-facilitated farmland construction area is significantly better than that
in a non-well-facilitated farmland construction area. We further verified the accuracy of the
evaluation results for the study area by comparing the CLQ index values (obtained in this
study) of a well-facilitated farmland and non-well-facilitated farmland.

Guangzhou started implementing the well-facilitated farmland construction project
in 2012, and by the end of 2018, 309 well-facilitated farmland construction projects had
been completed (Figure 1). Therefore, we used the spatial distribution data for the well-
facilitated farmland constructed in 2015 and 2018 to verify the evaluation results of the
CLQ for 2015 and 2018, respectively.

2.4. Obstacle Factor Diagnosis Model

In this study, the obstacle factor diagnosis model was used to identify the main factors
affecting the improvement of the CLQ. The obstacle factor diagnosis model identifies the
obstacle factors based on three basic variables: the factor contribution degree, indicator
deviation degree, and obstacle degree [28]. The greater the obstacle degree of the evaluation
indicator is, the stronger its negative effect on the improvement of the CLQ. The equation
for calculating the obstacle degree is as follows:

Oi =
Ii ×Wi

∑n
i=1(Ii ×Wi)

× 100% (3)

where Oi is the obstacle degree of the ith indicator; Wi is the factor contribution degree of
the ith indicator, which is equal to the weight of the indicator; Ii is the deviation degree of
the ith indicator, which is equal to the difference between the highest value and the actual
value of the indicator. Here, Ii = 3.00 − Yi.
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3. Results
3.1. Accuracy Verification of the CLQ

The results of CLQ based on field measurements (measured) and the remote sensing
evaluation (evaluated) are shown in Figure 2. In the Conghua district, there was a good
spatial consistency between the measured results and the evaluation results. High-quality
cultivated land was mainly concentrated in the central and western regions, and medium-
and low-quality cultivated land was widely distributed throughout the entire region. In
the Zengcheng district, there is a relatively good spatial consistency between the measured
results and the evaluation results. High-quality cultivated land was concentrated in the
southeastern and northern regions, medium-quality cultivated land was widely distributed,
and low-quality cultivated land occupied a relatively small proportion. In the Nansha
district, there is a slightly larger spatial difference between the measured results and the
evaluation results in 2010. However, in 2015 and 2018, the evaluation results were in good
agreement with the measured results. Overall, the verification results can largely indicate
that the resultant CLQ based on remote sensing evaluation was reliable.
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surements (measured) and the remote sensing evaluation (evaluated). CH: Conghua district; ZC:
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The grade difference between the remote sensing evaluation results and the measured
results of CLQ is shown in Figure 3. From 2010 to 2018, in the Conghua district, the average
49% of CLQ had a grade difference of 0, the average 40% of CLQ had a grade difference of
1 (including 1 and −1), and the average 11% of CLQ had a grade difference of 1 (including
2 and −2). In the Zengcheng district, the average 48% of CLQ had a grade difference of 0,
the average 40% of CLQ had a grade difference of 1 (including 1 and −1), and the average
12% of CLQ had a grade difference of 1 (including 2 and −2). In the Nansha district, about
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40% of CLQ had a grade difference of 0 in 2010, which was relatively low. In 2015 and 2018,
the average 47% of CLQ had a grade difference of 0, the average 39% of CLQ had a grade
difference of 1 (including 1 and −1), and the average 14% of CLQ had a grade difference of
2 (including 2 and −2). This indicated that the remote sensing evaluation results of CLQ
were in good agreement with the measured results.
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The comparison of the CLQ results for the well-facilitated farmland and the non-
well-facilitated farmland is shown in Table 3. In 2015 and 2018, the CLQ index of the
well-facilitated farmland construction area was significantly greater than that of the non-
well-facilitated farmland construction area. Moreover, the CLQ of the well-facilitated
farmland construction areas was mainly high quality (about 50%), while the CLQ in the
non-well-facilitated farmland construction area was mainly medium quality (about 40%) in
these two years. These results are consistent with the reasonable hypothesis made in this
study, indicating that the resultant CLQ evaluation using integrated remote sensing data
is reliable.

Table 3. Comparison of the cultivated land quality (CLQ) of the well-facilitated farmland and
non-well-facilitated farmland.

Year Results Well-Facilitated Farmland Non-Well-Facilitated Farmland

2015

CLQ index 2.30 1.90
High quality 45.77% 25.69%

Medium quality 40.18% 41.73%
Low quality 14.05% 32.58%

2018

CLQ index 2.33 2.01
High quality 52.09% 28.38%

Medium quality 28.51% 44.09%
Low quality 19.40% 27.53%
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3.2. Spatiotemporal Changes of the CLQ
3.2.1. Spatiotemporal Changes of CLQ in Guangzhou

The CLQ index in Guangzhou increased steadily from 2010 to 2018 (Figure 4), indicat-
ing that the CLQ in Guangzhou continuously improved. From 2010 to 2018, the high-quality
cultivated land increased by about 10,000 ha, and the proportion increased by 13.65%. The
medium-quality and low-quality cultivated land decreased by 12,000 and 8000 ha, respec-
tively, and their proportions decreased by 8.10% and 5.55%, respectively (Table 4).

Spatially, from 2010 to 2018, the high-quality cultivated land in the eastern and north-
ern parts of Guangzhou expanded continuously, and the medium- and low-quality cul-
tivated lands decreased significantly, which indicated that the CLQ in these two regions
continuously improved. In the western and southern parts of Guangzhou, the high-quality
cultivated land initially decreased and then increased. Correspondingly, the medium-
and low-quality cultivated land initially increased and then decreased. The CLQ in these
two regions improved slightly overall. The CLQ in the central region was low, and there
was no significant change during the study period (Figure 5).
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Figure 4. The changing trend of cultivated land quality (CLQ) index in Guangzhou from 2010 to 2018.

Table 4. Cultivated land quality evaluation results of Guangzhou from 2010 to 2018.

Year
High Quality Medium Quality Low Quality

Area (ha) Percent Area (ha) Percent Area (ha) Percent

2010 29,796 28.26% 45,662 43.30% 29,996 28.44%
2015 34,782 35.14% 39,786 40.20% 24,408 24.66%
2018 40,045 41.91% 33,642 35.20% 21,871 22.89%
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3.2.2. Spatiotemporal Changes of CLQ in Unchanged/Lost/Gained Area

Spatiotemporal changes of CLQ in the unchanged area (cultivated land that had not
been converted to other land use types during the study period) are presented in Table 5.
In these three different periods, the quality grade of about 50% of the cultivated land did
not change. The proportion of cultivated land with an improved quality grade (including
improvement by 2 grades and 1 grade) was greater than that of the cultivated land with a
decreased quality grade (including a decrease by 2 grades and 1 grade). This indicated that
the quality of the unchanged cultivated land improved from 2010 to 2018.

Spatially, the unchanged cultivated land with no change in quality grade was widely
distributed throughout the entire study area. The unchanged cultivated land with improved
quality (including improvement by 2 grades and 1 grade) was mainly concentrated in the
eastern, northern, and southern parts of Guangzhou. The unchanged cultivated land with
decreased quality (including a decrease by 2 grades and 1 grade) was mainly concentrated
in the western part of Guangzhou (Figure 6).
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Table 5. Change characteristics of CLQ in unchanged area.

Year Statistical
Measure

Improved
by 2 Grades

Improved
by 1 Grade

Grade
Unchanged

Decreased
by 1 Grade

Decreased
by 2 Grades

2010–2015
Area (ha) 2438 15,772 35,051 15,683 1873

Percent (%) 3.44 22.27 49.49 22.15 2.65

2015–2018
Area (ha) 3265 19,131 37,156 13,069 1143

Percent (%) 4.43 25.93 50.37 17.72 1.55

2010–2018
Area (ha) 3949 17,685 29,998 11,192 1531

Percent (%) 6.14 27.48 46.61 17.39 2.38
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Spatiotemporal changes of CLQ in lost/gained area (including the lost cultivated land
in the previous year and the gained cultivated land in the following year during the study
periods) are presented in Table 6. In these three different periods, the lost cultivated land
(cultivated land converted to non-cultivated land) was mainly medium quality and low
quality, accounting for about 77%, while the gained cultivated land (non-cultivated land
converted to cultivated land) was mainly high quality and medium quality, accounting for
about 72%.
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Table 6. Change characteristics of CLQ in changed area.

Year Lost/Gained area High Quality Medium Quality Low Quality

2010–2015

Lost cultivated land (ha) 7836 14,835 11,965
Percent (%) 22.63 42.83 34.54

Gained cultivated land (ha) 9160 11,067 7883
Percent (%) 32.59 39.37 28.04

2015–2018

Lost cultivated land (ha) 5691 10,570 8932
Percent (%) 22.59 41.96 35.45

Gained cultivated land (ha) 7845 7882 6068
Percent (%) 35.99 36.16 27.85

2010–2018

Lost cultivated land (ha) 9508 17,747 13,822
Percent (%) 23.15 43.20 33.65

Gained cultivated land (ha) 11,450 10,990 8706
Percent (%) 36.76 35.29 27.95

There was large spatial heterogeneity in the quality changes of the lost/gained cul-
tivated land. From 2010 to 2015 and from 2010 to 2018, the lost medium-quality and
low-quality cultivated lands were mainly located in the southern and western parts of
Guangzhou. The gained medium- and high-quality cultivated lands were mainly con-
centrated in the eastern and central-northern areas (Figure 7a,c). From 2015 to 2018, the
lost medium- and low-quality cultivated lands were mainly located in the western and
northern parts of Guangzhou. The gained medium- and high-quality cultivated lands were
mainly concentrated in the eastern and southern areas (Figure 7b).
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3.3. Obstacle Factors Affecting the Improvement of CLQ

Based on the obstacle factor diagnosis model, the obstacle degree of each evaluation
indicator was calculated (Figure 8). The soil fertility size, high productivity capacity, and
slope were the main obstacle factors to the CLQ in Guangzhou from 2010 to 2018. The sum
of the obstacle degrees of the three indicators was about 50.0%. In addition, the obstacle
degree of the stable productivity capacity gradually increased from 12.1% in 2010 to 17.5%
in 2018. The obstacle degree of the road accessibility gradually decreased from 15.1% in
2010 to 5.4% in 2018.
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Figure 8. The obstacle degrees of the evaluation indicators in Guangzhou (GZ) and its 10 districts
from 2010 to 2018. CH: Conghua district; ZC: Zengcheng district; HP: Huangpu district; TH: Tianhe
district; NS: Nansha district; HD: Huadu district; BY: Baiyun district; HZ: Haizhu district; PY: Panyu
district; LW: Liwan district.

The obstacle degrees of the evaluation indicators differed among the 10 districts in
Guangzhou. From 2010 to 2018, slope was the largest obstacle factor of CLQ in Conghua,
Huangpu and Tianhe districts, with an average obstacle degree of 24.1%, 20.6% and 21.2%,
respectively. High productivity capacity was the largest obstacle factor of CLQ in Nansha,
Haizhu, Panyu and Liwan districts, with an average obstacle degree of 30.3%, 34.1%, 33.5%
and 36.3%, respectively. Soil fertility size, slope and stable productivity capacity were the
main obstacles to the CLQ in Zengcheng district, and their obstacle degrees were 16.3%,
15.4% and 15.1%, respectively. High productivity capacity and soil fertility size were the
main obstacles to the CLQ in Huadu and Baiyun districts, and their obstacle degrees were
18.7%, 18.6%, 22.3% and 19.4%, respectively.

4. Discussion
4.1. CLQ Evaluation Method Integrating Multi-Source Remote Sensing

An efficient evaluation method is the basis for revealing the spatiotemporal patterns of
CLQ. However, traditional evaluation methods need to acquire a large number of ground-
measured soil data, which is time-consuming and laborious, and the evaluation results
depend on a spatial interpolation method. Different spatial interpolation methods will
affect the evaluation results of CLQ [10], and thus, the spatial information of the CLQ
cannot be reflected objectively. Satellite remote sensing data have the advantages of wide
coverage, abundant historical data, and objective spatial information, which are suitable
for the spatiotemporal evaluation of the CLQ.

The existing abundant remote sensing data can effectively support the comprehensive
evaluation of the CLQ. However, previous studies have only focused on a single attribute
of the CLQ, such as soil fertility or soil moisture [35,37]. Few studies have integrated
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multi-source remote sensing data to comprehensively evaluate the CLQ. In this study, a
comprehensive indicator system for evaluating the CLQ was developed by integrating
Landsat, Sentinel-2, and MODIS NPP data products. These remote sensing data and
related products satisfy the spatial scale and temporal continuity requirements to reveal
the spatiotemporal changes in the CLQ.

The verification for the accuracy of the results obtained in this study showed that the
results of CLQ evaluation calculated by integrating multi-source remote sensing data were
reliable. Our results on the spatial distribution of CLQ were also consistent with previous
studies [49]. This indicated that the CLQ evaluation method integrating remote sensing
data is reasonable and feasible.

4.2. The Mechanism behind the Spatiotemporal Changes of CLQ in Guangzhou

Previous studies have emphasized that formulating a specific policy and plan is an
important measure for improving the CLQ [61,62]. Guangzhou has paid considerable atten-
tion to the protection and improvement of the CLQ and has formulated and implemented a
series of strict cultivated land protection policies in recent years. For example, Guangzhou
city started to construct well-facilitated farmland in 2012 and released the Action Plan for
Cultivated Land Protection in 2014 to effectively improve the CLQ (http://ghzyj.gz.gov.cn/,
accessed on 1 February 2021). By the end of 2018, the construction area of the well-facilitated
farmland in Guangzhou accounted for 63.58% of the total cultivated land area, which was
helpful in the overall improvement of the CLQ.

At the same time, socio-economic development also promotes the improvement of
the CLQ [63]. Economic growth enables governments to invest more funds in agricultural
production activities [64]. Moreover, increasing subsidies to farmers can motivate them to
actively protect and improve the CLQ [65]. After 2015, Guangzhou’s municipal government
issued a series of agricultural machinery purchases and subsidy implementation plans,
which greatly improved the level of agricultural mechanization and strengthened farmer
awareness of protecting and improving the CLQ.

In addition, rational planning of land use and crop planting structure is also a potential
driving mechanism for improving the CLQ in Guangzhou (http://g.mnr.gov.cn/, accessed
on 11 January 2021). Agronomic measures are also crucial to the improvement of CLQ. For
example, increasing the application of organic fertilizer and planting green manure can
improve the soil structure and enhance the ability of soil to retain fertilizer and water [66,67].
The development of agrotechnology has provided a lasting impetus for the improvement
of the CLQ. High-quality seeds and cultivated land management technology adapted to
local conditions can promote the continuous improvement of CLQ [17,68].

4.3. Corresponding Measures to Improve the CLQ in Guangzhou

How to improve CLQ in a targeted manner is one of the purposes of carrying out
the evaluation of CLQ [10]. The obstacle factor diagnosis model can identify the main
factors that affect the improvement of CLQ. In this study, the diagnosis results showed that
the soil fertility size, high productivity capacity, and slope were the main obstacle factors
affecting the improvement of the CLQ in Guangzhou, while the obstacle degree of the
stable productivity capacity gradually increased during the study period.

Lateritic red soil is the main soil type in the cultivated land in Guangzhou. Its typical
characteristics are low nutrient contents and poor ability to retain fertilizer [69], which
lead to soil fertility being one of the main obstacle factors affecting the improvement of
the CLQ in Guangzhou. Relevant studies have shown that stakeholders can improve
soil fertility through reasonable crop rotation, application of biofertilizers, and biochar
amendment [20,67,70].

The high productivity capacity had a great obstacle effect on the improvement of
the CLQ, which may be the main reason that the yield per unit area of the grain crops in
Guangzhou was significantly lower than that in Guangdong Province and China’s national
average level (Figure 9). This indicates that the production capacity of cultivated land in

http://ghzyj.gz.gov.cn/
http://g.mnr.gov.cn/
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Guangzhou needs to be further improved. A large number of previous studies have shown
that improving the utilization rates of water and fertilizer, rationally optimizing the spatial
distribution of the crop production, and improving the agricultural production conditions
can help increase the productivity of cultivated land [71–73].
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Figure 9. Yield per unit area of grain crops in Guangzhou, Guangdong, and China during the study
period. Data were obtained from the Guangdong Rural Statistical Yearbook and the National Bureau
of Statistics of China (http://www.stats.gov.cn/, accessed on 5 January 2021).

Previous studies have found that the slope is closely related to CLQ; that is, the greater
the slope, the worse the CLQ [30,74]. More than 70% of the cultivated land in Guangzhou
is distributed in areas with slopes of >5◦, which seriously affects the CLQ in Guangzhou.
Therefore, carrying out land leveling projects and ecological agricultural projects is highly
recommended [75,76].

The obstacle effect of the stable productivity capacity to CLQ in Guangzhou gradually
increased, which was mainly because the cultivated land experienced severe natural disas-
ters from 2010 to 2018 (Figure 10). Implementing conservation agriculture and strengthen-
ing crop management are effective measures for reducing the adverse impacts of natural
disasters [17,77]. To ensure that cultivated land can be harvested after natural disasters,
policymakers should continue to implement well-facilitated farmland construction and
strengthen its maintenance and management after completion.
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Figure 10. The crop areas that suffered from natural disasters in Guangzhou from 2010 to 2018. Data
were obtained from the Guangdong Rural Statistical Yearbook (http://www.stats.gov.cn/, accessed
on 5 January 2021).
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4.4. Limitations and Future Work

Some potential reasons may lead to poor consistency between the remote sensing
evaluation results and measured results of CLQ. First, inconsistent indicators lead to
inconsistent results. In this study, the measured results were calculated based on thirteen
field-measured indicators, while the remote sensing evaluation results were obtained
from eight spatial attribute indicators, which may be the one reason for the inconsistency
between the two results. Second, the remote sensing evaluation indicators of CLQ were
more easily affected by factors such as crop varieties and climate (such as sun radiation
and precipitations). In addition, one limitation of this study was that the spatial resolution
of data was inconsistent. For example, the resolution of the NPP data was 500 × 500 m,
that of the topsoil texture was 1 × 1 km, and that of the remaining data was 30 × 30 m.
This can result in poor reliability of the evaluation results [10].

In the future, we will try our best to obtain indicators consistent with the measured
data, so as to improve the accuracy of remote sensing evaluation of CLQ. The impact of
crop varieties, land use and climate factors on the CLQ should be explored. Moreover,
constructing a more comprehensive and representative evaluation indicator system is still
the key of CLQ evaluation.

5. Conclusions

In this study, a new CLQ evaluation method was developed by integrating multi-
source remote sensing data to reveal the spatiotemporal patterns of the CLQ in Guangzhou
from 2010 to 2018. The results showed that CLQ in Guangzhou continuously improved
during the study period. The amount of high-quality cultivated land increased, while that
of medium- and low-quality cultivated land decreased. CLQ in the eastern and northern
parts of Guangzhou continuously improved, while that in the western and southern areas
initially decreased and then improved. However, CLQ was low in the central region
throughout the study period. Soil fertility size, high productivity capacity, and stable
productivity capacity were the main obstacles for the improvement of CLQ in Guangzhou.
Accordingly, we proposed a series of targeted measures, such as adopting reasonable
crop rotation, strengthening crop management, and constructing well-facilitated farmland.
The CLQ evaluation method proposed in this study is suitable for macro-regional scale
research. The evaluation results provide clear guidance for further improvement of CLQ
in Guangzhou.
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