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Abstract: Large-scale and periodic remote sensing monitoring of marine raft aquaculture areas is
significant for scientific planning of their layout and for promoting sustainable development of
marine ecology. Synthetic aperture radar (SAR) is an important tool for stable monitoring of marine
raft aquaculture areas since it is all-weather, all-day, and cloud-penetrating. However, the scattering
signal of marine raft aquaculture areas is affected by speckle noise and sea state, so their features in
SAR images are complex. Thus, it is challenging to extract marine raft aquaculture areas from SAR
images. In this paper, we propose a method to extract marine raft aquaculture areas from Sentinel-1
images based on the analysis of the features for marine raft aquaculture areas. First, the data are
preprocessed using multitemporal phase synthesis to weaken the noise interference, enhance the
signal of marine raft aquaculture areas, and improve the significance of the characteristics of raft
aquaculture areas. Second, the geometric features of the marine raft aquaculture area are combined
to design the model structure and introduce the shape constraint module, which adds a priori
knowledge to guide the model convergence direction during the training process. Experiments verify
that the method outperforms the popular semantic segmentation model with an F1 of 84.52%.

Keywords: monitoring of mariculture; SAR; image synthesis; semantic segmentation

1. Introduction

In recent years, marine aquaculture has flourished, fueled by the world’s rapidly
growing demand for seafood [1]. In most coastal areas, mariculture has developed into the
backbone of the local rural industry [2]. However, while bringing economic benefits, the
rapidly developing mariculture industry is increasingly in conflict with the marine ecologi-
cal environment. In an effort to pursue high productivity and high benefits, mariculture
has developed in the direction of high density, intensification and scale-up, resulting in a
high bioburden and high input aquaculture model which has caused a series of negative
impacts on marine ecology [3]. Raft aquaculture is the main method of marine aquaculture.
It is important to know the location and distribution of marine raft aquaculture areas to
reasonably lay the marine aquaculture sea, improve and protect the marine ecological envi-
ronment, and promote the sustainable development of the mariculture economy. Satellite
remote sensing earth observation technology has the advantages of large-area synchronous
measurement, repeatability, low cost, and strong timeliness. It is an effective means to
obtain large-scale marine raft aquaculture data [4–6].

The floating raft inside the marine raft aquaculture area is made of plastic and other
materials to build floats with hanging cages and slings and is fixed to the seabed with
ropes [7]. The main part of the structure is underwater, and only the float is exposed above
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the sea surface, which makes it difficult to monitor marine raft aquaculture areas using
remote sensing technology.

In recent years, scholars have carried out a great deal of research on methods for
monitoring marine raft aquaculture areas using remote sensing technology. Among them,
research methods using optical remote sensing images are mainly divided into five cate-
gories. One is the visual interpretation methods, such as Chen et al. [8]. The second is ratio
band methods, such as the one Lu et al. [9] used to extracted the marine raft aquaculture
areas in Sanduao by constructing feature indices through spectral features. The third is
the spatial feature analysis method, such as the one developed by Chu et al. [10], which
used texture information to extract the marine raft aquaculture area on GF1. The fourth is
object-oriented methods, such as the one used by Wang Fang et al. [11], which combined
object-facing and association rule methods to extract mariculture areas. The fifth is deep
learning methods. Liu et al. [12] used the RCF network to extract the marine raft aquacul-
ture areas from GF-2 images in Sanduao. Shi et al. [13] improved the convolutional network
based on FCN for automatic marking of marine raft aquaculture areas on GF1. Cui et al. [14]
improved the structure based on UNet to extract the marine raft aquaculture areas.

Although optical satellite imagery-based monitoring of marine raft aquaculture areas
has been widely researched, optical imagery has difficulty stably acquiring effective images
due to the complex meteorological and sea state in aquaculture areas [15,16]. An increasing
number of scholars have extracted marine raft aquaculture areas from SAR images. Most
studies use the method of artificial design feature fusion methods, and fewer are based
on deep learning. Chou et al. [17] took SAR images of Changhai County as an example,
counted the effective number of looks, and extracted raft aquaculture areas using multiple
methods of filtering and comprehensive analysis. Fan’s team has performed much research
on the extraction of marine floating raft image areas from high-resolution SAR images.
Fan et al. [18] analyzed the imaging characteristics of floating rafts in SAR images and
integrated multisource SAR features of marine raft aquaculture areas to achieve extraction.
Geng et al. [19] proposed a joint sparse representation classification method to extract
marine raft aquaculture areas from high-resolution SAR images. Hu et al. [20] improved a
statistical region merging algorithm for superpixel segmentation and used a fuzzy tight
density and separation clustering algorithms to identify marine raft aquaculture areas from
SAR images. In a previous work we used NSCT to enhance the features of marine rafting
areas and extracted the distribution of marine pastures with raft aquaculture using codec
structured models [21]. Wang et al. [22] used SA-U-Net++ to extract the marine pastures
with raft aquaculture. These two works extracted a large-scale marine raft aquaculture
area end-to-end from SAR images using deep learning, but the independent distribution of
marine raft aquaculture areas has not been studied.

The use of deep learning technology to extract marine raft aquaculture areas from
SAR images faces many difficulties [23,24], but not limited to the following factors: (1) the
system noise and coherent noise generated by the limitation of the SAR system cause the
uneven grey distribution in the same target area of marine raft aquaculture area; (2) the
offshore meteorological and sea conditions are complex, and the scattering characteristics
of marine raft aquaculture areas in different phases and seas are affected by them and
behave differently. This leads to a reduction in the saliency of the features from marine raft
aquaculture areas; (3) the noise and geometric distortion caused by the characteristics of
the SAR system make the identifiable features of the target very different from the optical
image. Existing mainstream segmentation networks do not fully mine the characteristics of
marine raft aquaculture areas in SAR images, resulting in poor results of direct migration
to extract marine raft aquaculture areas in SAR images.

In this paper, an auxiliary shape-constrained extraction method for marine raft aqua-
culture areas based on multitemporal synthetic Sentinel-1 images is proposed, and the
main contributions are as follows:
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1. To address the problem of reduced feature saliency in marine raft aquaculture areas
due to the difference in scattering characteristics caused by dynamic changes in the
ocean background and coherent noise in SAR images, we used multitemporal phase
synthesis to enhance the signal in rafted areas and suppress noise.

2. To address the problem that popular segmentation networks do not fully mine the
characteristics of raft aquaculture areas from SAR images, we optimized the deep
learning model combined with the radiation and geometric characteristics of raft
aquaculture areas, and introduced the shape constraint module to improve the ability
of the model to fit the characteristics of raft aquaculture areas.

2. Feature Analysis of Marine Raft Aquaculture Areas

This section specifies the scattering principle of marine raft aquaculture areas and their
statistical size and rectangularity. Combined with the analysis results, this study selected
the data pre-processing means as multitemporal phase synthesis and deeply optimized
the semantic segmentation model to improve the accuracy of extracting the marine raft
aquaculture areas.

2.1. Scattering Characteristics

In the floating raft structure inside the marine raft aquaculture area, only floats float
on the sea surface (Figure 1a). In the corresponding range of a single pixel of an image,
both floats and seawater are present. Therefore, the greyscale representation of the raft
aquaculture area in a SAR image consists mainly of the interaction between the sea surface
and the floats. The backwards scattering of raft aquaculture consists mainly of scattering
from the surface of the floats and seawater, scattering from the dihedral angle of the
seawater floats, and scattering from the spirals of the seawater floats [18,25], as shown in
Figure 1b. Thus, the DN values of the marine raft aquaculture area on Sentinel-1 images
characterize the mixed image properties, which are highly disturbed by the seawater
background. Unlike land, the seawater is always in motion, and the part of the floating
raft on the sea surface may be submerged at any time by the moving seawater. This causes
individual raft aquaculture areas to break up or blur in images. Meanwhile, coherent
noise is inevitable in SAR images. The presence of coherent noise causes the marine raft
aquaculture area to exhibit an uneven distribution of internal grey values and blurred
edges in the image, as shown in Figure 1c.
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Figure 1. View of the marine raft aquaculture area: (a) natural image of the marine raft aquaculture 
area (http://www.shuichan.cc/news_view-397141.html, (accessed on 21 February 2020); (b) descrip-
tion of the scattering principle of floating raft in the marine raft aquaculture area. 1. Surface scatter-
ing from the seawater and the floats; 2. Double-bounce scattering from seawater and floating balls; 
3. Helix scattering from seawater and floats; (c) marine raft aquaculture areas in Sentinel-1 image. 

Figure 1. View of the marine raft aquaculture area: (a) natural image of the marine raft aquaculture
area (http://www.shuichan.cc/news_view-397141.html, (accessed on 21 February 2020); (b) descrip-
tion of the scattering principle of floating raft in the marine raft aquaculture area. 1. Surface scattering
from the seawater and the floats; 2. Double-bounce scattering from seawater and floating balls;
3. Helix scattering from seawater and floats; (c) marine raft aquaculture areas in Sentinel-1 image.

http://www.shuichan.cc/news_view-397141.html
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The filtering methods commonly used in SAR image processing can effectively stan-
dardize the distribution of greyscale in the image, but they do not enhance detailed infor-
mation such as edges [26]. In addition, it is difficult to cope with the changes in the image
characteristics of the floating raft itself caused by the dynamic changes in the temporal
dimension of the seawater. In this study, we adopt a multitemporal synthesis method to
improve image quality (as shown in Section 3.3.1).

2.2. Geometrical Characteristics

The geometric features of the marine raft aquaculture areas in the SAR images are
obvious, which are densely arranged in strips. In this section, the semi-perimeter(C), the
rectangularity(R) of marine raft aquaculture areas in the training area and the aspect ratio
(AR) of its smallest circumscribed rectangle are calculated by following equations. S0
denotes the area of the marine raft aquaculture area, SM denotes the area of its minimum
outer rectangle. W and L represent the width and length of the minimum outer rectangle
of the marine raft aquaculture area, respectively.

C =
circum f erence

2
(1)

R =
S0

SM
(2)

AR =
W
L

(3)

Figure 2 shows the statistical results, which provide the basis for subsequent work to
optimize the segmentation model and improve the accuracy of the marine raft aquaculture
area extraction.
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As shown in Figure 2a, the marine raft aquaculture area semi-perimeter distribution
in the training data was mainly concentrated between 0 and 128, accounting for 91% of the
total, with 66% of the total below 64 and 29% of the total below 32.

As shown in Figure 2b,c, the statistical results of the rectangularity of most raft
aquaculture areas are distributed above 0.6, accounting for 79% of the total, and the aspect
ratio is mostly distributed below 0.4, accounting for 85% of the total. According to the
statistical results, it can be concluded that the geometric shape of the raft aquaculture area
in the image is relatively regular, approximately slender rectangle. Therefore, the shape
features of the raft aquaculture area can be added to the model learning as an effective prior
knowledge. In this study, the shape constraint method was used to add prior knowledge to
the model to improve its performance to fit the raft aquaculture area. The specific process
is described in Section 3.3.3.

3. Materials and Methods
3.1. Data
3.1.1. Study Area

The eastern coast of Dalian has a large quantity of marine raft aquaculture areas,
which is used as the study area in this paper. The eastern coast of Dalian is located on the
southeastern side of Liaodong Peninsula in China and is part of the Yellow Sea area, with
a vast sea area. The Biliu River, Yingna River, Zhuang River, Zanzi River, Dasha River,
Densha River and Qingshui River converge here, and there are many types of aquaculture,
with shellfish mariculture on rafts being the mainstay. The study area for this paper is
illustrated in Figure 3.
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To present the results of the experimental part of this study more intuitive, seven
areas within the study area were selected as experimental validation areas and numbered
0, 1, 2, 3, 4, 5, and 6, respectively. Moreover, region 0 is used in Sections 3.3.2 and 4.1 to
calculate the evaluation accuracy for comparing and selecting of popular models as well
as data processing methods. Sections 3.3.3 and 4.2 validate the experimental results in
regions 1, 2, 3, 4, 5, and 6 for highlighting validity and applicability of the proposed model
improvements.

3.1.2. Research Data

1. Introduction to the data

In this study, the Sentinel-1 wide (IW, Interferometric Wide Swath) ground range prod-
uct (GRD; ground range detected) of dual-polarized C-band (3.8–7.5 cm, 8000–4000 MHz)
SAR images were used as the data source. It has application advantages in maritime
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monitoring tasks [27]. The GRD data are obtained by multiviewing the SLC data from ESA
and processing the focused data using the WGS84 ellipsoidal projection to ground distance.
The processed data have a pixel spacing of 10 × 10 m and the pixel values on the image
represent the amplitude of the received signal with no phase information. The statistical
analysis shows that the area occupied by marine raft aquaculture in the image is larger
than 3 × 3 pixel, so the Sentinel-1 GRD level-1 data resolution meets the needs of extracting
floating rafts. Furthermore, the low-resolution remote sensing imagery can usually be used
to obtain information over large areas, which is beneficial for mapping the distribution
of marine aquaculture areas. The specific parameters of the obtained data are shown in
Table 1.

Table 1. The specific parameters of the Sentinel-1 IW GRD level-1 data.

Acq. Mode IW

Product Type GRD

Polarization VV/VH

Resolution (Ring × Azi [m]) 20 × 22

Pixel Spacing (Ring × Azi [m]) 10 × 10

Num Looks (Ring × Azi) 5 × 1

Equivalent Number of Appearance (ENL) 4.4

Sentinel-1 IW GRD data have two types of polarization as cross-polarized VH (vertical-
horizontal) and dual-polarized VV (vertical-vertical). In the previous work we found that
marine raft aquaculture areas are more observable in isotropic polarization images, as
shown in Figure 4 [21]. Thus, the image of VV polarization was chosen as the data source.
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2. Sample library construction

For the task of extracting marine raft aquaculture areas from Sentinel-1 imagery, there
is no relevant authoritative dataset, so this study constructed a sample library based on
a small amount of publicly available government data. Marine raft aquaculture areas are
widely distributed. Affected by the dynamic changes in marine background, the scattering
characteristics of raft aquaculture areas in different sea areas are different. Therefore, the
sample database was constructed not only to include areas with typical characteristics, but
also to expand a small number of samples for areas that are far away from the base sample
database by borrowing the idea of nearest neighbor interpolation. The results show that the
construction scheme of this sample library is effective. As shown in Figure 5, the extraction
results of region A and region B have been significantly improved after expanding the data
of neighboring regions as samples.
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Figure 5. Extraction results for regions A and B before and after sample expansion. (a) Test 
image; (b) Ground truth; (c) The extraction result after training of the initial sample; (d) The 
extracti

on result after expansion of the sample 

Figure 5. Extraction results for regions A and B before and after sample expansion. (a) Test image;
(b) Ground truth; (c) The extraction result after training of the initial sample; (d) The extraction result
after expansion of the sample.

3. Dataset construction

The data used in this study were downloaded from ‘Sentinels Scientific Data Hub’
(https://scihub.copernicus.eu/dhus/, (accessed on 5 December 2019)). They are GRD data
from the Sentinel-1 satellite on 16, 28 September and 10 October 2019, covering the eastern
coastal region of Dalian city, with a pixel size of (9839, 5486).

The dataset construction process is shown in Figure 6.
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Figure 6. Overview of the dataset construction process.

(1) Multitemporal synthesis: The temporal average of Sentinel-1 GRD images covering
the study area on 16 September, 28 September, and 10 October 2019, is taken.

(2) Label production: The obtained raft aquaculture area vector annotation data is con-
verted into TIFF image data, 0 for background, 1 for the marine raft aquaculture area.

(3) Image clipping: The image pair (image and ground-truth data) is clipped into slices
with a size of 512 × 512. To reduce the edge effect, the method of sliding window
clipping is adopted.

(4) Data augmentation: Translation and rotation (45/90/270).

https://scihub.copernicus.eu/dhus/
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3.2. Evaluation Metrics

To verify the effectiveness of the method, this study selected the accuracy indicators
of the overall accuracy (OA), mean intersection over union (MeanIOU), and F1-Score (F1)
as evaluation indicators to quantitatively evaluate the extraction results of the marine raft
aquaculture area. OA represents the full-pixel accuracy between the prediction result image
and the ground truth. MeanIOU is the intersection ratio of the predicted image and ground
truth image. F1 is an accuracy index that considers precision and recall. The formulas to
calculate the metrics are as follows:

OA =
TP + TN

TP + FP + FN + TN
(4)

MeanIOU =
∑m IoU

m
(5)

F1 =
2 × Precision × Recall

Precision + Recall
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

IOU =
TP

TP + FP + FN
(9)

3.3. Methods

The overall method process in this paper is shown in Figure 7, including data process-
ing, model comparison and selection, and deep learning model optimization.
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3.3.1. Multitemporal SAR Image Synthesis

The data input to the deep learning model generally undergoes normalization and
standardization, so that the distribution of the data is close to the origin but the image
quality is not improved. The image quality determines the upper limit of the model fitting
data features. The raw data downloaded for this study is Sentinel-1 IW GRD level data
(level-1). Although the GRD data is subjected to overheating noise removal, there is still
random noise interference due to the imaging mechanism. In addition, according to the
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analysis of scattering characteristics in the raft aquaculture area (Section 2.1), the marine raft
aquaculture area is greatly disturbed by the ocean background, especially in the high water
level area, and the floating raft will be submerged due to the influence of sea conditions,
resulting in unclear target objects. To suppress the noise of SAR images and enhance the
raft aquaculture area, this study used a multitemporal synthesis method to preprocess the
data of 16 September, 28 September, and 10 October 2019. Zhao et al. [28] have verified the
effectiveness of multitemporal denoising in improving the quality of SAR images.

As a commonly used denoising method in SAR images, refined Lee effectively homog-
enizes the grey distribution in the target area but also causes the decline of image resolution
and the loss of some original scattering information which makes the edge more blurred, as
shown in Figure 8b. The results of the multi-phase synthesis method used in the study are
shown in Figure 8c. Compared to the unprocessed image (Figure 8a), the contrast between
the marine raft aquaculture area and seawater is enhanced, the edges are clearer, and some
false fracture areas are also improved.

3.3.2. Comparison and Selection of Models for Semantic Segmentation

The refined extraction task of the marine raft aquaculture area aims to identify all of the
pixels belonging to marine raft aquaculture areas in the image and locate their positions to
serve the subsequent statistics of aquaculture area and estimation of aquaculture production.
This task belongs to the full-pixel semantic segmentation problem in the field of computer
vision [29–32]. As popular semantic segmentation models, FCN [33], Unet [34], PSPnet [35]
and DeepLabV3+ [36] each have their own advantages. FCN network is the pioneer of
full convolutional networks; Unet is the classical codec structure model; PSPnet uses the
pyramid pooling module; DeepLabV3+ introduces a new module for atrous convolution.
In this section, we experimentally analyze which of these models is more suitable for
the extraction task of marine raft aquaculture areas. Experiments are conducted using
the same equipment and operating environment for four model fed with multitemporal
synthesized data. Then, the training results of the four models are analyzed qualitatively
and quantitatively in the same validation area which is numbered 0 (as shown in Figure 9
and Table 2).

Figure 9 visualizes the extraction results of the models. As shown in Figure 9c, the
segmentation result of FCN has the most obvious sticking phenomenon. PSPnet introduces
more contextual information than FCN, but excessive multi-scale pooling will lead to
local information loss, and the final presented results have many missed detections, as
shown in Figure 9e. DeepLabV3+ uses atrous convolution to increase the perceptual
field, which becomes sparsely sampled for the input, with loss of detail information. As
shown in Figure 9f, the results are better than those of FCN and PSPnet, but there are still
problems of adhesion and missed detections. In comparison, the Unet visualization result
as shown in Figure 9d is the best among the four models and maintain a good integrity, but
there are still missed detections in the weak signal area, which need to be further solved.
Correspondingly, each accuracy evaluation index of Unet in Table 2 is the best. Its F1 is
8.37% higher than the next best result. The FCN has more adhesions but fewer omissions.
So, the F1 and MeanIOU of it are the second highest. PSPnet has too much false negative
pixels. It can be seen its evaluation result is the worst. Although the visualization effect
of DeepLabV3+ is the best except Unet, there are still many omissions. The recall of it is
44.92%, which is 19.65% lower than Unet. For that, the F1 of DeeplbV3+ is 6.03% lower
than FCN and 14.4% lower than Unet in Table 2.
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the result of refined Lee filtering obtained using SNAP (the ESA Sentinel Applications Platform);
(c) shows the result of multitemporal synthesis.
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Figure 9. Visualization results of extraction for the marine raft aquaculture area by classical semantic
segmentation models. (a) Test image (region numbered 0); (b) Ground truth; (c)The result obtained
by FCN; (d) The result obtained by Unet; (e) The result obtained by PSPnet; (f) is the result obtained
by DeepLabV3+.
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Table 2. Results of accuracy evaluation of classical semantic segmentation models for extracting
marine raft aquaculture areas.

Model OA MeanIOU Recall Precision F1

FCN 0.7499 0.5755 0.5612 0.7530 0.6431
Unet 0.8051 0.6539 0.6457 0.8313 0.7268

PSPnet 0.6637 0.4234 0.2333 0.7669 0.3577
DeepLabV3+ 0.7418 0.5481 0.4492 0.8295 0.5828

Therefore, in this study, the network structure of Unet is chosen as the basis for
proposing a method that is more adapted to the task of extracting marine raft aquaculture
areas from SAR images. In addition, in this part of the experiment we tried Resnet18 to
replace the Unet encoder backbone network. The result does not provide a significant
advantage. We conjectured that simply adding a single layer of convolution is not effective
in improving the performance of the model.

3.3.3. Semantic Segmentation Model with Shape Constraints

The model proposed in this paper is based on the Unet framework and optimized
according to the characteristics of the marine raft aquaculture area in SAR images. The
specific model structure as shown in Figure 10 is optimized in three main aspects: the
number of model layers, the attention mechanism, and the shape constraint module.
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Model Depth Optimization

Different target extraction tasks require different depth and width of the model, with
deeper and wider networks required to fit complex situations [37]. It is important to note
that the model deepening is not unlimited. The depth of the model needs to be appropriate
to the size of the target feature. Convolution, pooling and activation form a standard coding
unit and the deepening of the network is achieved in this study by adding coding units.
We compared the accuracy metrics of different depth networks on raft aquaculture areas
extraction task using an indirect method, based on the classical Unet network structure.
Table 3 presents the prediction accuracy of the different depth networks under the same
experimental conditions.

As shown in Table 3, the accuracy of the model increases as the number of coding
units increases up to Unet_6 before Unet_7. However, the accuracy of the Unet_7 network
declines. Unet_7 includes six down-sampling modules and the image perimeter is reduced
by a factor of 26. The statistics in Section 2.2 show that 66% of the raft aquaculture area
has a half circumference of less than 64 pixels. After six down-samples, the features of
these targets are inundated in one pixel cell. This feature inundating phenomenon causes a



Remote Sens. 2022, 14, 1249 13 of 22

decrease in accuracy. Overall, Unet_6 is a better match to the feature size of marine raft
aquaculture areas, and its predictions remain optimal for MeanIOU, OA, Precision, recall
and F1. Therefore, this study optimized the model depth to six layers.

Table 3. Results of the accuracy evaluation for models with different depths.

Model OA MeanIOU Recall Precision F1

Unet_3 0.8041 0.6699 0.7033 0.9086 0.7867
Unet_4 0.814 0.6793 0.7118 0.9147 0.799
Unet_5 0.82 0.6885 0.7196 0.9223 0.8053
Unet_6 0.8272 0.6913 0.7271 0.9322 0.8141
Unet_7 0.8139 0.68 0.7004 0.9306 0.7959

Attention Module

The attention mechanism mainly suppresses background noise and redundant infor-
mation by assigning weights to the feature map through data-driven, reinforcing the target
features and allowing the network’s computational resources to be skewed towards the
marine raft aquaculture areas.

Commonly used attention mechanisms in convolutional networks include attention in
the spatial domain and in the channel domain. The convolutional block attention module
(CBAM) [38] demonstrates that channel attention and spatial attention in tandem can
work better in networks. In this study, the tandem spatial attention and efficient channel
attention (ECA) [39] module (which is more efficient) are introduced into the encoder-
decoder network structure to improve the model’s ability to capture key features and
weaken the interference of redundant information. In practical applications, the spatial
attention module first finds the maximum and average values between channels to achieve
dimensionality reduction of the channel domain, then learns high-dimensional features in
the spatial domain through 2 × 1 convolution, finally obtaining the weight distribution
through the activation layer to assign weights for the circulation features to the lower layers.
The channel attention module, first, reduces the dimensionality of the input information
spatial domain to the 1 × 1 category through global pooling operation, then encodes the
channel information using a 1 × 1 convolution, and finally assigns weights to the features
in the next layer of the input through the activation layer according to the dependency
relationship between channels. The specific attention mechanism structure is shown in
Figure 11.
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Shape Constraint Module

The statistical results in Section 2.2 show that the marine raft aquaculture area gener-
ally presents the rectangle geometric features, which appears as a striped bright spot in
images. The regular shape feature can effectively help the model to segment the marine
raft aquaculture area on the image. Li et al. [40] extracted shape-regular buildings through
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a network model with shape representation regularizer. Inspired by this, this study intro-
duced the shape constraint module to add the shape prior of the raft aquaculture area to
the model to constrain the model’s feature learning direction. Figure 12 shows the design
idea of shape constraints.
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The shape constraint module consists of two parts: the shape-coding module and
the shape loss function. The shape-coding module learns the shape feature representation
and reconstructs the shape of the input data. The loss function part embeds the shape
representation learned by the shape-coding module into the model loss function, which
adds the shape prior knowledge into the model training process to guide the model
convergence direction.

Shape-coding module: The basic convolution module is used to form the encoding
and decoding structure, and the ground truth mask is input to learn shape features. The
encoder encodes the feature representation of the shape features of the raft aquaculture
area, and the decoder reconstructs the mask according to the input feature representation.
The shape encoder is trained using the training sample data to obtain a pretrained model.

Shape loss function: The shape feature representation output from the shape-coding
module is added to the model loss function to construct a loss that contains shape con-
straints. The model uses a loss function to evaluate the discrepancy between the network
predictions and the true value in the practice of the task of semantic segmentation, updating
the network weights by back propagating the error along the direction of the minimum
gradient. The shape loss function causes the network to converge in the direction of the
shape constraint.

As shown in Equation (10), the loss function used in this study contains two compo-
nents: segmentation loss and shape loss. The shape loss lshape includes the potential shape
representation loss lshp and the shape reconstruction loss lrec.

L = lseg + lshape = lseg + λ1lshp + λ2lrec, (10)

lseg = LBCE
(
yt, yp

)
+ Ljaccard

(
yt, yp

)
(11)

lshp = LBCE(E(yt), E
(
yp

)
) + Ljaccard(E(yt) , E

(
yp

)
) (12)

lrec = LMSE(D(yt), D
(
yp

)
) (13)

As shown in Equation (11), the segmentation loss lseg is calculated using the binary
cross-entropy loss BCELoss commonly used in binary semantic segmentation and introduc-
ing a combination of Jaccard loss [41]. lshp uses the same combined function to calculate
the error in the output of the true and predicted values after the encoder (E(-)) in the
shape coding module, as in Equation (12). lrec uses MSELoss to calculate the ground truth
and predicted values after shape reconstruction in the decoder (D(-)) of the shape coding
module, as in Equation (13).

4. Results

This section presents the visualization results and quantitative evaluation results of
the experiments to verify the validity of the methods in this paper and presents the results.
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The experiments in this study were completed in a Windows 10 environment config-
ured with Anaconda3 and PyTorch. To ensure the fairness of the method comparison, the
experiments were conducted under a unified framework.

4.1. Comparative Experiments on Multitemporal Synthesis Methods

In Section 3.3.1, we introduced the data pre-processing method for multitemporal
synthesis. In this study, the multitemporal synthesis operation is accomplished by taking
the mean value of the three temporal phases. In fact, this is one of the ways. The synthesis
methods for finding the maximum and median values in the temporal phase dimension as
well as image stacking are also commonly used for processing. To verify the superiority
of the mean synthesis approach, this paper compares the prediction results of the models
using the four methods with the same training data and consistent parameter settings.

Figure 13 shows the processing results of the four smoothing methods. It can be seen
intuitively that the image quality after multitemporal synthesis is improved compared to
the original image, and the mean value synthesis method has the best effect. Although the
combination of the maximum value and the median value enhances the signal in the raft
aquaculture area to a certain extent, the discontinuity of the signal is also enhanced. Only
the pixel value information of a single phase is retained. So, there are many omissions in
the prediction results, as shown in the yellow box in Figure 13j,k. The mean synthesis and
image stacking approach retains the most information of the three time phases, but the
image stacking approach has difficulty focusing on the marine raft aquaculture area. The
noise which interferes with the target information on each time phase is retained too. As a
result, there is considerable point noise in the extraction results (as shown in the red box in
Figure 13).

As shown in Table 4, the mean value synthesis method has the highest MeanIOU,
OA and F1. The maximum and median synthesis approaches have more information
loss, their Recall is lower and their MeanIOU, OA and F1 are not dominant. The image
stacking method keeps all of the temporal information intact but does not consider the
denoising function. As shown in Table 4, the result maintains the highest recall value
while maintaining the lowest composite index F1. Overall, multitemporal averaging is
more robust.

4.2. Validity of the Model

In Section 3.3.2 we compared the results of the popular semantic segmentation models
for extracting marine raft aquaculture areas, of which Unet worked best. Therefore, in this
section only the method proposed in this paper is compared with Unet for validation.

Figure 14 presents the prediction results of the models in typical regions. Table 5
shows the quantitative assessment results of the validation experiment.

Although the extraction results of Unet are the best among popular semantic seg-
mentation models, there are still many omissions. We speculate that this is due to the fact
that the Unet model does not extract semantic information deeply enough and does not
learn more critical information, resulting in its poor resistance to noise. As a result, there
are many false negative pixels for regions with weak features in raft aquaculture areas,
as shown in Figure 14c. In addition, incomplete extraction results appear in regions of
the image17 that are obviously attacked by noise, as shown in red boxes in Figure 14c.
The false positive pixels in yellow boxes in Figure 14c further verify that Unet lacks the
ability to extract key features. The model proposed in this paper uses a depth suitable for
the size of the marine raft aquaculture area to learn more advanced semantic information
while ensuring that the features of the target are not completely flooded. In addition, the
shape constraint module guides the model to learn more critical features and improves the
model’s immunity to noise. Therefore, the extraction results of the model presented in this
paper have fewer omissions and higher completeness. As shown in Figure 14d, there are
less false negative pixels in blue and red boxes. Corresponding to the visualization results,
in Table 5, the model proposed in this paper obtained higher evaluation results compared
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to Unet, where the OA improved by 2.31%, the MeanIOU improved by 3.27%, and the F1
improved by 3.99%.
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Figure 13. The results of multitemporal synthesis methods. (a–c) are the original images on
16, 28 September and 10 October 2019; (d) Ground truth; (e–h) are results obtained by using mean
synthesis, maximum synthesis, median synthesis and image stacking in the time-phase dimension;
(i–l) are corresponding prediction results for (e–h).

Table 4. Quantitative assessment results of the comparison test for multitemporal synthetic in region 0.

Method OA MeanIOU Recall Precision F1

Mean 0.8051 0.6539 0.6457 0.8313 0.7268
Max 0.7954 0.6355 0.5994 0.846 0.7017
Mid 0.7896 0.6290 0.6057 0.8235 0.698

Image stacking 0.7832 0.6202 0.6891 0.8124 0.6891

4.3. Large Area Marking of Marine Raft Aquaculture Areas

The results of the marine raft aquaculture area distribution in the eastern coastal region
of Dalian using the method in this study are shown in Figure 15. The distribution of raft
aquaculture areas is basically parallel to the coastline (generally in the southwest-northeast
direction). Combined with the original image, the extraction results of the proposed method
are basically consistent with the real distribution. The marine raft aquaculture area can be
well identified.
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Figure 14. Overview of the results of the experiment for verifying the model’s validity. (a) Test image
(regions numbered 1,2,3,4,5,6); (b) Ground truth; (c) The prediction result obtained by Unet; (d) The
prediction result obtained by our method.

Table 5. Quantitative assessment results of the validation experiment.

Model OA MeanIOU Recall Precision F1

Unet

1 0.7647 0.6188 0.6773 0.8948 0.771
2 0.7218 0.548 0.6731 0.9176 0.7765
3 0.7184 0.5558 0.5406 0.9004 0.6756
4 0.8458 0.7274 0.8043 0.9415 0.8675
5 0.9571 0.8514 0.7923 0.9368 0.8585
6 0.9122 0.8295 0.83 0.9428 0.8828

Mean 0.82 0.6885 0.7196 0.9223 0.8053
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Table 5. Cont.

Model OA MeanIOU Recall Precision F1

Ours

1 0.7838 0.6414 0.8501 0.7652 0.8054
2 0.7435 0.5655 0.891 0.7325 0.804
3 0.7764 0.6344 0.8332 0.7349 0.781
4 0.8696 0.7597 0.915 0.8734 0.8937
5 0.9654 0.8815 0.9263 0.858 0.8908
6 0.9196 0.8444 0.9243 0.8696 0.8961

Mean 0.8431 0.7212 0.89 0.8056 0.8452
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5. Discussion

The popular semantic segmentation methods are more advantageous than the tra-
ditional methods, but they do not work well when directly migrated to SAR images for
extracting the marine raft aquaculture area. The geometric features of the marine raft
aquaculture area on the SAR image are obvious, but the grey value is greatly affected by
noise and sea states, which reduces the significance of the features. Therefore, the proposed
method in this paper uses mean synthesis in the data processing stage to improve the image
quality and combines geometric features to optimize the model.

In terms of data pre-processing, this paper compares the results of model prediction
under four different multitemporal data synthesis schemes: mean synthesis, maximum
value synthesis, median synthesis, and image stacking. All above methods can, to a certain
extent, eliminate the problem of inconspicuous features caused by the combined effect of
their own structural characteristics and ocean movement in raft aquaculture areas. How-
ever, in comparison, the method of retaining the mean value information in the temporal
phase dimension can balance SAR image denoising and feature enhancement of the marine
raft aquaculture area. On the other hand, the maximum and median synthetic image pixel
values are derived from the original pixel values in one view of the multitemporal images,
resulting in loss of information from the marine raft aquaculture area. At the same time,
although the processing method of multitemporal image stacking completely retains the
content of three temporal phases, it mainly enhances the change information between
different temporal images. As a result, the invariant features required for raft aquaculture
area monitoring are not significant in this synthesis method, and the noise is also retained
completely (albeit with stronger interference information). Therefore, the MeanIOU and F1
indices of the multitemporal phase mean synthesis method are the highest.

In terms of model, the popular semantic segmentation models, including FCN, PSPnet,
DeepLabV3+ and Unet, are not ideal for extraction of the marine raft aquaculture area on
Sentienl-1. The upsampling of FCN is too rough, resulting in the model being insensitive
to image details. PSPnet lacks attention to the underlying information due to excessive
multiscale pooling operations. DeepLabV3+ used atrous convolution to expand the recep-
tive field, which also leads to loss of detailed information. There are both ‘omission’ and
‘adhesion’ are obvious in Figure 9e,f. Unet used jump connection to fuse shallow semantics
and deep semantics between encoder and decoder, which shows best performance in the
task of marine raft aquaculture area extraction compared with other popular semantic
segmentation models (Section 3.3.1).

Nevertheless, Unet is not combined with the characteristics of the target, so it is greatly
affected by its greyscale changes when extracting the marine raft aquaculture area and it
is difficult to resist the interference of noise. The model proposed in this paper combines
the geometric features of the raft aquaculture area to optimize the depth of the model
and introduce a shape constraint module. The proposed method has better performance
than Unet. The optimization of model depth makes the model extract more common
features. The shape constraint module adds shape prior knowledge to the model through
the loss function to guide the model to learn more critical features. Therefore, the features
learned by this model are more closely matched to the essential features of the marine raft
aquaculture area. As a result, it is more resistant to noise and less affected by the difference
of target scattering features on the image. So, the method has better performance with
3.99% improvement in F1, 2.31% improvement in MeanIOU, and 4.07% improvement in
OA compared to the original Unet.

Overall, the improvement of the method is effective and provides a reference for
later researchers. In practical applications, the use of multitemporal information is very
necessary for application scenarios where the background changes dynamically with time.
In addition, it is essential to incorporate the characteristics of the target in the method design.
We believe that it is helpful to incorporate shape priors into the method when extracting
objects with regular shapes. Compared to Shi et al. [13], Cui et al. [14] who extracted marine
raft aquaculture areas on high fractional optical images, the proposed method focuses
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on the study on SAR images which can be got all day and all weather. Compared with
Zhang et al. [21], Wang et al. [22], the proposed method refines the extraction unit of the
marine raft aquaculture area. Nonetheless, the method still has room for improvement.
The type of aquaculture has not yet been distinguished, although large-scale marine raft
aquaculture areas were marked in Dalian and the surrounding waters according to the
proposed method. In the future, we expect to mark the marine aquaculture area of animal
and plant separately.

6. Conclusions

The special structure of raft aquaculture and the complex marine background make
the task of the marine raft aquaculture area extraction from Sentinel-1 images challenging.
In this paper, we propose a method for segmenting marine raft aquaculture areas in
multitemporal Sentinel-1 images with shape constraints and experimentally validate the
effectiveness of the method:

1. The data synthesized using the multitemporal average effectively overcomes the prob-
lems of the low signal-to-noise ratio of Sentinel-1 images and the reduction of feature
significance in marine raft aquaculture areas caused by noise and ocean motion.

2. The model proposed in this paper is designed by combining the geometric features
of the marine raft aquaculture area. By determining a network structure suitable for
the size of the object, introducing the attention mechanism, and adding shape prior
knowledge to the network, the extraction accuracy of the marine raft aquaculture area
is effectively improved.

In summary, the proposed method takes more application scenarios into consideration
and incorporates the prior knowledge of the raft aquaculture area into the method system.
Compared with Unet and other popular semantic segmentation methods, the proposed
method has better extraction accuracy, which provides a good application basis for down-
stream practical application tasks and provides convenience for relevant departments to
regularly monitor marine aquaculture on a large scale. It is conducive to the scientific
layout of marine raft aquaculture areas and the protection of marine ecology.

Author Contributions: Conceptualization, Y.Z.; methodology, Y.Z., C.W.; validation, Y.Z., C.W.
and F.W.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z., C.W. and
J.C.; funding acquisition, C.W., F.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by “Big data on Earth in Support of Ocean Sustainable Devel-
opment Goals Research [XDA19090123]” and Self-Topic Fund of Aerospace Information Research
Institute, Chinese Academy of Sciences [E1Z211010F].

Acknowledgments: We would like to thank the Copernicus program of the European Space Agency
for making Sentinel-1 SAR data freely available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. World Fisheries and Aquaculture Overview 2020; FAO Fisheries Department: Rome, Italy, 2020.
2. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2019 China Fisheries Statistical Yearbook. World

Agric. 2020, 2. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 5 January 2020).
3. Zhang, J.H.; Liu, J.H.; Zhang, Y.Y.; Li, G. Approaches for marine aquaculture to practice “negative marine emissions”. Proc. Chin.

Acad. Sci. 2021, 36, 252–258. [CrossRef]
4. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The “13th Five-Year Plan” for the Development

of National Pelagic Fisheries. Rural. Pract. Technol. 2018, 5–8. Available online: https://www.uscc.gov/sites/default/files/
Research/The%2013th%20Five-Year%20Plan_Final_2.14.17_Updated%20%28002%29.pdf (accessed on 5 January 2020).

5. Huang, Q.Q.; Wang, L.H. Research on the application of remote sensing technology in aquaculture planning. China Fish. Econ.
2002, 27–28. [CrossRef]

6. Wang, J.; Sui, L.C.; Yang, X.M.; Wang, Z.H.; Liu, Y.M.; Kang, J.M.; Lu, C.; Yang, F.S.; Liu, B. Extracting Coastal Raft Aquaculture
Data from Landsat 8 OLI Imagery. Sensors 2019, 19, 1221. [CrossRef]

http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm
http://doi.org/10.16418/j.issn.1000-3045.20210217101
https://www.uscc.gov/sites/default/files/Research/The%2013th%20Five-Year%20Plan_Final_2.14.17_Updated%20%28002%29.pdf
https://www.uscc.gov/sites/default/files/Research/The%2013th%20Five-Year%20Plan_Final_2.14.17_Updated%20%28002%29.pdf
http://doi.org/10.3969/j.issn.1009-590X.2002.05.011
http://doi.org/10.3390/s19051221


Remote Sens. 2022, 14, 1249 21 of 22

7. Deng, G.; Wu, H.Y.; Guo, P.P.; Li, M.Z. Evolution and development trend of marine raft cultivation model in China. Chin. Fish.
Econ. 2013, 31, 164–169.

8. Chen, B.Q.; Yang, Y.M.; Xu, D.W. The application of satellite remote sensing technology in the investigation of the current
situation of sea area use—Taking SPOT-5 image and Xiamen sea area as an example. In Proceedings of the Fujian Oceanographic
Society 2008 Academic Annual Conference and the Construction of the Economic Zone on the West Coast of the Taiwan Strait
Symposium on Marine Science and Technology Support and Marine Resources Development, Xiamen, China, 8 July 2008.

9. Lu, Y.; Li, Q.; Du, X.; Wang, H.; Liu, J. A Method of Coastal Aquaculture Area Automatic Extraction with High Spatial Resolution
Images. Remote Sens. Technol. Appl. 2015, 30, 486–494.

10. Chu, J.; Shao, G.; Zhao, J.; Gao, N.; Wang, F.; Cui, B. Information extraction of floating raft aquaculture based on GF-1. Surv. Surv.
Mapp. 2020, 45, 92–98.

11. Wang, F.; Xia, L.H.; Chen, Z.B.; Cui, W.J.; Liu, Z.; Pan, C. Object-Oriented Remote Sensing Recognition of Coastal Marine
Aquaculture Patterns Based on Association Rules. Chin. J. Agric. Eng. 2018, 34, 210–217.

12. Liu, Y.M.; Yang, X.M.; Wang, Z.H.; Lu, C. Extraction of Sandu’ao raft culture area based on deep learning RCF model. Oceanogr.
Soc. 2019, 41, 119–130.

13. Shi, T.; Xu, Q.; Zou, Z.; Shi, Z. Automatic Raft Labeling for Remote Sensing Images via Dual-Scale Homogeneous Convolutional
Neural Network. Remote Sens. 2018, 10, 1130. [CrossRef]

14. Cui, B.; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting Raft Aquaculture Areas from Remote Sensing Images via an Improved U-Net
with a PSE Structure. Remote Sens. 2019, 11, 2053. [CrossRef]

15. Aguilar-Manjarrez, J.; Travaglia, C. Mapping coastal aquaculture and fisheries structures by satellite imaging radar: Case study
of the Lingayen Gulf, the Philippines. ISME J. 2004. [CrossRef]

16. Fan, J.C.; Zhang, F.; Zhao, D.; Wen, S.; Wei, B. Information extraction of marine raft aquaculture based on high-resolution satellite
remote sensing SAR images. In Proceedings of the Second China Coastal Disaster Risk Analysis and Management Symposium,
Haikou, China, 29 November 2014.

17. Chu, J.L.; Zhao, D.Z.; Zhang, F.S.; Wei, B.Q.; Li, C.M.; Suo, A.N. Monitor method of rafts cultivation by remote sense—A case of
Changhai. Mar. Environ. Sci. 2008, 27, 35–40.

18. Fan, J.; Zhao, J.; An, W.; Hu, Y. Marine Floating Raft Aquaculture Detection of GF-3 PolSAR Images Based on Collective
Multikernel Fuzzy Clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2741–2754. [CrossRef]

19. Geng, J.; Fan, J.C.; Chu, J.L.; Wang, H.Y. Target Recognition of Ocean Floating Rafts in SAR Image Based on Deep Cooperative
Sparse Coding Network. J. Autom. 2016, 42, 593–604.

20. Hu, Y.; Fan, J.; Wang, J. Target recognition of floating raft aquaculture in SAR image based on statistical region merging. In
Proceedings of the 2017 Seventh International Conference on Information Science and Technology (ICIST), Da Nang, Vietnam,
16–19 April 2017; pp. 429–432.

21. Zhang, Y.; Wang, C.; Ji, Y.; Chen, J.; Deng, Y.; Chen, J.; Jie, Y. Combining segmentation network and nonsubsampled contourlet
transform for automatic marine raft aquaculture area extraction from sentinel-1 images. Remote Sens. 2020, 12, 4182. [CrossRef]

22. Wang, D.; Han, M. SA-U-Net++: SAR marine floating raft aquaculture identification based on semantic segmentation and ISAR
augmentation. J. Appl. Remote Sens. 2021, 15, 016505. [CrossRef]

23. Sun, M.; Yang, X.; Xie, Y. Deep learning in aquaculture: A review. J. Comput. 2020, 31, 294–319.
24. Zhu, X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep Learning Meets SAR: Concepts, Models,

Pitfalls, and Perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [CrossRef]
25. Fan, J.; Wang, D.; Zhao, J.; Song, D.; Han, M.; Jiang, D. National Sea Area Use Dynamic Monitoring Based on GF-3 SAR Imagery.

J. Radars 2017, 6, 456–472.
26. Li, J. Research on Denoising and Classification of Polarimetric SAR Images Based on Deep Learning. Master’s Thesis, Liaoning

University of Engineering and Technology, Jinzhou, China, 2021.
27. Maritime Monitoring. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/applications/

maritime-monitoring (accessed on 5 January 2020).
28. Zhao, W.; Deledalle, C.A.; Denis, L.; Maître, H.; Nicolas, J.M.; Tupin, F. Ratio-based multi-temporal SAR images denoising. IEEE

Trans. Geosci. Remote Sens. 2019, 57, 3552–3565. [CrossRef]
29. Semantic Segmentation: Wiki, Applications and Resources. Available online: https://www.kdnuggets.com/2018/10/semantic-

segmentation-wiki-applications-resources.html (accessed on 9 December 2020).
30. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques

Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857.
31. Ulku, I.; Akagunduz, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images. arXiv 2019,

arXiv:1912.10230. [CrossRef]
32. Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst.

Appl. 2021, 169, 114417. [CrossRef]
33. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

http://doi.org/10.3390/rs10071130
http://doi.org/10.3390/rs11172053
http://doi.org/10.13140/RG.2.1.4243.5928
http://doi.org/10.1109/JSTARS.2019.2910786
http://doi.org/10.3390/rs12244182
http://doi.org/10.1117/1.JRS.15.016505
http://doi.org/10.1109/MGRS.2020.3046356
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/applications/maritime-monitoring
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/applications/maritime-monitoring
http://doi.org/10.1109/TGRS.2018.2885683
https://www.kdnuggets.com/2018/10/semantic-segmentation-wiki-applications-resources.html
https://www.kdnuggets.com/2018/10/semantic-segmentation-wiki-applications-resources.html
http://doi.org/10.1080/08839514.2022.2032924
http://doi.org/10.1016/j.eswa.2020.114417


Remote Sens. 2022, 14, 1249 22 of 22

34. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
Springer: Cham, Switzerland, 2015; pp. 234–241.

35. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

36. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation; Springer: Cham, Switzerland, 2018.

37. Bengio, Y.; Lecun, Y. Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41.
38. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018.
39. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.

In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
16–18 June 2020; pp. 11534–11542.

40. Wang, C.; Li, L.F. Multi-Scale Residual Deep Network for Semantic Segmentation of Buildings with Regularizer of Shape
Representation. Remote Sens. 2020, 12, 2932. [CrossRef]

41. Jaccard, P. The Distribution of the Flora in the Alpine Zone. New Phytol. 2010, 11, 37–50. [CrossRef]

http://doi.org/10.3390/rs12182932
http://doi.org/10.1111/j.1469-8137.1912.tb05611.x

	Introduction 
	Feature Analysis of Marine Raft Aquaculture Areas 
	Scattering Characteristics 
	Geometrical Characteristics 

	Materials and Methods 
	Data 
	Study Area 
	Research Data 

	Evaluation Metrics 
	Methods 
	Multitemporal SAR Image Synthesis 
	Comparison and Selection of Models for Semantic Segmentation 
	Semantic Segmentation Model with Shape Constraints 


	Results 
	Comparative Experiments on Multitemporal Synthesis Methods 
	Validity of the Model 
	Large Area Marking of Marine Raft Aquaculture Areas 

	Discussion 
	Conclusions 
	References

