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Abstract: Timely crop yield forecasts at a national level are substantial to support food policies,
to assess agricultural production, and to subsidize regions affected by food shortage. This study
presents an operational crop yield forecasting system for Poland that employs freely available
satellite and agro-meteorological products provided by the Copernicus programme. The crop yield
predictors consist of: (1) Vegetation condition indicators provided daily by Sentinel-3 OLCI (optical)
and SLSTR (thermal) imagery, (2) a backward extension of Sentinel-3 data (before 2018) derived
from cross-calibrated MODIS data, and (3) air temperature, total precipitation, surface radiation,
and soil moisture derived from ERA-5 climate reanalysis generated by the European Centre for
Medium-Range Weather Forecasts. The crop yield forecasting algorithm is based on thermal time
(growing degree days derived from ERA-5 data) to better follow the crop development stage. The
recursive feature elimination is used to derive an optimal set of predictors for each administrative
unit, which are ultimately employed by the Extreme Gradient Boosting regressor to forecast yields
using official yield statistics as a reference. According to intensive leave-one-year-out cross validation
for the 2000–2019 period, the relative RMSE for voivodships (NUTS-2) are: 8% for winter wheat,
and 13% for winter rapeseed and maize. Respectively, for municipalities (LAU) it equals 14% for
winter wheat, 19% for winter rapeseed, and 27% for maize. The system is designed to be easily
applicable in other regions and to be easily adaptable to cloud computing environments such as
Data and Information Access Services (DIAS) or Amazon AWS, where data sets from the Copernicus
programme are directly accessible.

Keywords: crop monitoring; crop yield; data calibration; extreme gradient boosting; growing degree
days; machine learning; satellite data; thermal time

1. Introduction

Reliable and timely country-wide crop yield forecasts play an important role in sup-
porting national agricultural policies, food security, and planning of food supplies in
countries affected by food shortage [1]. Moreover, crop yield data have been increasingly
used to analyze agricultural productivity potential [2,3], carbon and nitrogen cycles [4,5],
greenhouse gas emissions from agriculture [6], as well as the impact of climate change on
agricultural production [7]. In this respect, food shortage has become more frequent due to
extreme weather events that are more likely to occur under the changing climate [8].
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Remotely sensed satellite data sets offer unique, timely, objective, economical, and
spatially homogeneous information on agriculture over vast areas [9]. Therefore, they have
been widely used to monitor crop growth and forecast crop yields (e.g., [9–19]). The com-
prehensive overview on the utilization of satellite data for agriculture monitoring is given
by Weiss et al. (2020) [20]. Recently, the Copernicus programme with Sentinel-1 (radar) and
Sentinel-2 (optical) satellite constellations has opened a new chapter in monitoring agricul-
ture production on a country level. Coupling data from these two instruments featuring
frequent revisit (3–6 days depending on latitude) and high spatial resolution (10–20 m)
has proved to provide accurate crop type maps at a regional level [21–23]. Nevertheless,
applicability of Sentinel-2 imagery to forecast crop yields is limited due to a short time
series (5 years to date) and due to a lack of consistent crop yield reference data at a field
scale across a country.

The most common approach to forecast crop yields using satellite data is to build
a statistical model that relates annual crop condition anomalies described by vegetation
indices, e.g., Normalized Difference Vegetation Index (NDVI) or Fraction of Absorbed Pho-
tosynthetically Active Radiation (fAPAR), to national statistics of crop yields [9,11,24–26].
Such an approach benefits from long-term multidecadal satellite observations, which are
available from low and moderate resolution (250–1000 m) satellite sensors such as the
Advanced Very-High-Resolution Radiometer (AVHRR), Végétation, or the Moderate Res-
olution Imaging Spectroradiometer (MODIS). The main drawback of a coarse resolution
imagery is related to heterogeneity of pixels which often contain several agricultural fields
covered by different crops or even by non-agricultural land. MODIS sensors mounted
aboard the Terra and Aqua satellites provide 250 m imagery in the red and near infrared
bands which are crucial for vegetation studies. Consequently, many studies incorporated
MODIS data to forecast crop yields Refs. [9,19,26,27]. Nevertheless, MODIS instruments
operating since 1999 (Terra platform) and 2002 (Aqua platform), several times exceeded
the expected 6 years of mission duration. Therefore, in this study data from Sentinel-3
satellite constellation (designed to operate till 2032) to operationally acquire near-real
time vegetation indices at 300-m resolution have been employed. However, in order to
compute temporal anomalies, the Sentinel-3 time series have been extended with MODIS
measurements, re-calibrated to match the Sentinel-3 signal.

The ultimate aim of this study is to provide a methodology to estimate crop yields on a
country scale during the growing season. This responds to the need of statistical offices (in
this case Statistics Poland) that are obliged to provide statistical information on agricultural
production. In this context, this study aims to evaluate with what accuracy yield forecasts
can be produced using an automated system running on publicly available data. Therefore,
within this study, a novel system for an operational crop yield forecasting at Nomenclature
des Unités Territoriales Statistiques level 2 (NUTS-2) and Local Administrative Units
(LAU) is proposed that builds on a fusion of satellite-based vegetation indices, agro-
meteorological indicators, and crop phenology approximated by thermal time. The system
exploits Copernicus data sets and climate reanalysis available free of charge at a global
scale, and thus can be applied at any location. Within this study, the system is utilized
for predicting yields of winter wheat, winter rapeseed, and maize in Poland for a period
2000–2019. To build a system, the first specific objective is to calibrate vegetation indices
from Sentinel-3, that are used operationally, with MODIS data which extends the data
record to the period before 2018. A second specific objective is to verify the applicability of
ERA-5 climate reanalysis data to describe agro-meteorological conditions that affect crop
development. A third specific objective is to quantify the impact of the length of the time
series used to train the forecasting models, which differs depending on the availability of
reference crop yield statistics, on the model performance. Finally, the details on numerical
implementation of the system are provided.
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2. Data
2.1. Satellite Data
2.1.1. Sentinel-3 Operational Products

The Level-2 Near Real Time (NRT) products (i.e., surface reflectance, vegetation indices,
land surface temperature) acquired by the Ocean and Land Colour Imager (OLCI) and Sea
and Land Surface Temperature Radiometer (SLSTR) mounted onboard Sentinel-3 satellites
are freely available from the Copernicus Open Access Hub (https://scihub.copernicus.eu/
accessed on 20 November 2021) with a delay up to 3 h after satellite acquisition. The
following daily products from the Sentinel-3A and Sentinel-3B satellites for 2018–2020 were
used in this study:

1. Land Full Resolution (LFR) product derived from OLCI imagery at a 300-m resolution
consisting of Global Vegetation Index (OGVI) and Terrestrial Chlorophyll Index (OTCI)
indices accompanied with rectified reflectances at 681 nm (RED) and 865 nm (NIR)
channels used in this study to calculate Normalized Difference Vegetation Index
(NDVI) using formula:

NDVI = (NIR − RED)/(RED + NIR); (1)

2. Land Surface Temperature (LST) from the SLSTR sensor at a 1-km resolution.

The acquired products were further mosaicked, cloud masked using associated qual-
ity flags and reprojected to the Poland CS92 coordinate system (EPSG: 2180) using ESA
SNAP software.

These satellite data provide information related to vegetation vigour and biomass
(from NDVI) and vegetation transpiration (from LST derivatives). The NDVI and LST
indicators provide complementary information on the vegetation physical status and access
to water in the root zone (through evapotranspiration related to LST). These particular
Sentinel-3 products were selected in line with the overall system design to be based on
Copernicus’ ready-to-use products, i.e., not requiring pre-processing of raw data. This
ensures that the system will use the data generated by the latest processing methods
provided by Copernicus (i.e., even if they will be updated).

2.1.2. MODIS Products

The MOD09Q1, MOD11A2 collection 6 (V006) products generated from the Moderate-
Resolution Imaging Spectroradiometer (MODIS) imagery are freely available from the Land
Processes Distributed Active Archive Center (LP DAAC) of the U.S. Geological Survey
(https://lpdaac.usgs.gov accessed on 20 November 2021). The acquired products covered
Poland and the period 2000–2019. The MOD09Q1 product contains 8-day composites of
land surface spectral reflectance acquired in 620–670-nm (RED) and 841–876-nm (NIR)
channels at a 250-m resolution, which were used to calculate NDVI. Information on the
presence of clouds, cloud shadows, and snow was derived from the associated quality flags.
The MOD11A2 product provides 8-day composites of daytime and night-time LST and
emissivity calculated from the 11.03 µm and 12.02 µm channels at a spatial resolution of
1 km. The NDVI and LST MODIS products were mosaicked and reprojected to the Poland
CS92 coordinate system (EPSG: 2180).

These MODIS products were chosen for a backward prolongation of Sentinel-3 prod-
ucts due to a similar processing stage and spatial resolution. They serve as a long term
average for calculation of anomaly-derived indices from Sentinel-3. With this in mind, the
data can be at a certain level of generality, as only the average course of the product along
the vegetation season is needed. For this reason, it was decided to use 8-day composites,
because in the aggregation process the observations with the highest quality are selected
taking into account cloud contamination and the sun zenith angle [28].

https://scihub.copernicus.eu/
https://lpdaac.usgs.gov
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2.2. Agro-Meteorological Data

Agro-meteorological data for the period 2000–2019 at a deg resolution of 0.25 × 0.25
were derived from the ERA-5 reanalysis generated by the European Centre for Medium-
Range Weather Forecasts and freely distributed through the Copernicus Climate Data
Store. They included hourly data at surface level consisting of: 2-m air temperature, total
precipitation, surface incoming solar radiation, and volumetric soil water at 0–7-cm and
7–28-cm depths. These parameters were aggregated into daily means and/or sums using
Climate Data Operators (CDO) software [29]. Additionally, minimum and maximum daily
air temperatures were calculated.

2.3. Crop Mask

A binary crop mask was derived from the Corine Land Cover version 2018 classifica-
tion, freely distributed by the European Environmental Agency (EEA) at https://land.c
opernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 20 November 2021),
by extracting 2.1.1 (non-irrigated arable land) and 2.4.2 (complex cultivation patterns)
classes as arable land. Further, the binary mask was used to generate fractional arable
land products at spatial resolutions matching the Sentinel-3, MODIS, and ERA-5 products.
These fractional estimates were used as weights to spatially aggregate satellite and agro-
meteorological variables for the administrative units. An example of fractional arable land
over Poland is presented in Figure 1.
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Figure 1. Fractional arable land [%] in Poland.

2.4. Crop Yield Statistics

The reference data for the crop yield forecasting model consisted of official yield
statistics provided by Statistics Poland at NUTS-2 and LAU levels (Figure 2). The NUTS-2
data included winter wheat, winter rapeseed, and maize yields expressed in decatons [dt]
for the period 1997–2019 . At the LAU level, the length of the time series was shorter, and
also inconsistent among administrative units (Figure 3).

The yield statistics for each NUTS-2 and LAU region were transformed into temporal
yield residuals (Figure 4) from the Theil–Sen monotonic trend [30] in annual yields estimates
covering the period 1997–2019 (Figure 5). These yield residuals were used as response
variables in crop yield forecasting. The final absolute yield forecast consisted of a sum of
the monotonic trend and a forecasted yield residual for a particular year.

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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Figure 2. Administrative divisions of Poland for which crop yields were predicted: Nomenclature
des Unités Territoriales Statistiques level 2 (NUTS-2)—red lines, and Local Administrative Units
(LAU)—gray lines.

Figure 3. Time span of official crop yield statistics at the LAU level. Black signifies no data.
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Figure 5. Absolute annual crop yields for NUTS-2 units reported by Statistics Poland with a fitted
Theil–Sen monotonic trend. Please mind different limits of Y-axes.

3. Methods
3.1. Spatial Aggregation

Data derived from MODIS, Sentinel-3, and ERA-5 products were spatially aggregated
for arable land (using a crop mask) within administrative units (NUTS-2 and LAU) (Table 1).
The aggregation followed the approach proposed by Genovese et al. (2001) [31] where
the products were initially masked whenever a fraction of arable land within a pixel is
less than 30%. The remaining pixels were averaged within administrative units using the
fraction of arable land as weights. Additional adjustment of weights at the borders between
administrative units was performed to reduce the importance of pixels covered by more
than one unit. The aggregation resulted in a database consisting of predictors at NUTS-2
and LAU administrative levels averaged from MODIS, Sentinel-3, and ERA-5 products at a
native temporal resolution (see Table 1).

Table 1. Satellite, agro-meteorological, and ancillary data used to derive crop yield forecast predictors.

Name Source Temporal Spatial
Resolution Resolution

Satellite indices

NDVI (-) MODIS 8 day 250 m
NDVI (-) Sentinel-3 1 day 300 m
LST (K) MODIS 8 day 1000 m
LST (K) Sentinel-3 1 day 1000 m

Agro-meteorological parameters

Air temperature (K) ERA-5 1 h 0.25 deg
Precipitation (m) ERA-5 1 h 0.25 deg

Surface radiation (J m−2) ERA-5 1 h 0.25 deg
Soil moisture 0–7 cm (m3 m−3) ERA-5 1 h 0.25 deg

Soil moisture 7–28 cm (m3 m−3) ERA-5 1 h 0.25 deg

Crop mask

Fraction of arable land CLC * 2018 static Polygons **

Administrative units

NUTS-2/LAU GUGiK *** static Polygons
* Corine Land Cover; ** With minimum area of 25 ha; *** Head Office of Geodesy and Cartography.
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3.2. Temporal Smoothing of NDVI Values

A 2-iterative original cubic spline smoothing technique (implemented in the R en-
vironment [32]) was applied to filter out spurious NDVI values (MODIS and Sentinel-3)
introduced by residual cloud cover and/or by geolocation errors. This technique assumes
that residual cloud cover decreases NDVI values. Therefore, in a first step, the smoothing
method fitted a spline to the original data. Then, the distance (difference) between the
fit and the original values created weights so that the original values above the spline
fit received high weights and the values below the initial fit received weights equal to 0.
Finally, the smoothed NDVI was generated by the second cubic spline fit that uses these
weights. The applied method is a modification of Chen et al. (2004) [33] who used the
Savitsky–Golay filter (instead of spline fit) in the iterative NDVI smoothing.

3.3. Cross-Calibration of NDVI and LST Products Derived from MODIS and Sentinel-2 Data

The temporal homogeneity of NDVI- and LST-based indices is crucial to derive reliable
anomalies that could serve as crop yield predictors. Therefore, the MODIS NDVI and LST
time series were cross-calibrated with analogous Sentinel-3 products to form homogenous
data records. The calibration method is built on the automatic selection of the optimal
machine learning method amongst: Random Forest (RF), K-nearest Neighbor (kNN),
Support Vector Machine (SVM), and Neural Network (NN), which yielded the largest
modeling efficiency (EF) (formula given in Section 3.6) between re-calibrated MODIS time
series and corresponding original Sentinel-3 time series. The training and validation of
machine learning techniques were performed for the period 2018–2020 when both MODIS
and Sentinel-3 satellites were operational. The validation followed the leave-one-year-out
approach to choose the most accurate machine learning method, which has occurred to
vary for different data sets. To model the differences between MODIS and Sentinel-3
indices, three explanatory variables were used. The first one was calendar time expressed
as a day of the year. The second explanatory variable was thermal time expressed by the
growing degree days (see Section 3.4 for details) indicating the amount of thermal energy
accumulated at a given time and the amount of energy needed to reach a given stage of
crop development. The third explanatory variable was the MODIS product (i.e., NDVI or
LST) to be homogenized with the Sentinel-3 counterpart. Ultimately, the trained calibration
models were applied to the MODIS NDVI and LST time series between the years 2000 and
2017 to extend the Sentinel-3 time series.

3.4. Resampling of Explanatory Variables from Calendar Time to Thermal Time

To ensure year-to-year comparability of vegetation conditions, the explanatory vari-
ables were resampled from calendar time (day of year) to thermal time, which denotes
cumulated mean daily air temperatures at 2 m a.g.l above a crop-specific threshold. Thus, a
thermal time is a good proxy for the crop development stage [34–36]. Analysis of vegetation
indices in respect to thermal time allows derivation of temporal anomalies by referring
instantaneous values of an index to a multiannual average calculated for the same thermal
time (i.e., the same crop development stage). If the calendar time was used instead of the
thermal time, the temporal anomalies could be related to the shift in a vegetation season
(e.g., a delay in biomass accumulation), however not to the actual crop conditions that are
to be used to forecast crop yields.

Thermal time was calculated for a day d of the year as so-called Growing Degree Days
(GDD) from daily maximum (Tmax) and minimum (Tmin) air temperatures using a formula:

GDDd =
d

∑
i=1


(

Tmax,i + Tmin,i

2
− Tbase

)
×
[(

Tmax,i + Tmin,i

2
− Tbase

)
> 0

]
︸ ︷︷ ︸

conditional

 (2)
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where Tbase stands for crop-specific temperature threshold: 5 °C for winter wheat and
winter rapeseed, and 10 °C for maize. In addition, Tmin,i equals Tbase if Tmin,i < Tbase,
and Tmax,i equals 30 °C if Tmax,i > 30 °C. The conditional part of the equation equals 1 if
the condition is met, and 0 otherwise, which implies that only positive values (mean air
temperature values reduced by the threshold) are summarized.

Based on daily GDD values, all yield predictors were resampled for eight GDD values
ranging from 150 °C to 1200 °C with a step of 150 °C. Since GDD were calculated at a daily
time step, all predictors had to have the same 1-day temporal resolution prior resampling.
Therefore, the 8-day MODIS NDVI and LST products were converted to 1-day resolution
using the spline function.

Resampling of NDVI and LST to thermal time allowed derivation of normalized
indicators proposed by Kogan (1997) [37] such as: Vegetation Condition Index (VCI) and
Temperature Condition Index (TCI) defined as:

VCIGDD = 100 × NDVIGDD − NDVImin, GDD

NDVImax,GDD − NDVImin, GDD
(3)

TCIGDD = 100 × LSTmax,GDD − LSTGDD

LSTmax,GDD − LSTmin, GDD
(4)

where GDD indicates the growing degree days (thermal time), NDVIGDD—an instanta-
neous NDVI value, and NDVImin, GDD and NDVImax, GDD—minimum and maximum NDVI
recorded in the period 2000–2019 at a particular location for a given GDD, respectively.
Definition of TCIGDD follows the same logic as VCIGDD.

3.5. Crop Yield Forecasting

Crop yield forecasting proposed in this study employs a machine learning technique
i.e., eXtreme Gradient Boosting (XGBoost) algorithm [38] implemented in R environ-
ment [32,39] to predict crop yield residuals from the Theil–Sen monotonic trend using
a variety of predictors derived from satellite and agrometeorological data. To train the
XGBoost method, an extensive input table was constructed for each administrative unit
(LAU or NUTS-2) consisting of r rows and c columns, where r denotes a number of years
for which predictors and reference crop yields were available, and c indicates a number of
predictors. The following predictors were calculated for each of eight GDD levels (150 °C,
300 °C, 450 °C, . . . , 1200 °C):

• Minimum, maximum and mean air temperature;
• Surface radiation;
• Accumulated surface radiation since 1 April;
• Soil moisture at 0–7 cm and 7–28 cm levels;
• Precipitation;
• Accumulated precipitation since 1 April;
• NDVIGDD;
• VCIGDD;
• LSTGDD;
• TCIGDD;
• Annual maximum NDVI (which does not correspond to the GDD levels).

In total, there were 170 predictors (c) but the number of years (r) varied between crop
types and administrative units due to the reference data availability. For LAUs, the number
of years is presented in Figure 3, whereas for NUTS-2, it equaled 17 for winter wheat and
22 for winter rapeseed and maize.

All predictors were linearly scaled to the range between zero and one. Then, highly
correlated predictors (above 0.75) were removed. Further, the feature selection procedure
was applied based on the recursive feature elimination [40] employing the XGBoost method.
The optimized XGBoost algorithm was ultimately trained based on selected predictors
and crop yield residuals as a dependent variable. The application of the prediction model
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resulted in the forecasted crop yield residuals. The final absolute yield forecast was
then calculated as a sum of this value and the crop yield estimated from the Theil–Sen
monotonic trend.

3.6. Validation Approach

Validation of forecasting models involved the comparison of predicted yields and
reference official statistics that were not used for the model training. For each administrative
unit, crop type, and GDD level, a cross-validation was performed. It followed the leave-
one-year-out procedure, which is a special case of the k-fold cross validation where k
equals a number of years in a time series. It must be noted that the selection of predictors
was repeated at each iteration to avoid the predictor selection procedure to benefit from
‘knowing’ the data from the year that was used for validation.

Three metrics were used to describe the model performance: Mean Bias Error (MBE,
Equation (5)), Root Mean Square Error (RMSE, Equation (6)), and Modeling Efficiency (EF,
Equation (7)) calculated by means of the following formulae:

MBE =
1
n

n

∑
k=1

(Ek − Mk) (5)

RMSE =

√
1
n

n

∑
k=1

(Ek − Mk)2 (6)

EF = 1 − ∑n
k=1(Ek − Mk)

2

∑n
k=1(Ek − M)2

(7)

where: Ek represents the predicted crop yield value, Mk represents the reference crop yield
value, M represents the average value of reference crop yield values, k represents the step
of the time series (i.e., 1 year), and n represents the length of the time series.

The RMSE and MBE were also expressed in relative values (0–100%) denoted as
the RRMSE and RMBE, respectively, by dividing these quality metrics by the mean of a
reference data (M). The MBE, RMSE, and EF were also used to evaluate the accuracy of
cross-calibration between MODIS and Sentinel-3 products. However, in this situation the
Ek denotes re-calibrated MODIS NDVI/LST and Mk, the original Sentinel-3 NDVI/LST
time series.

4. Results
4.1. Accuracy of Cross-Calibration between MODIS and Sentinel-3 Products

The most accurate calibration models homogenizing MODIS NDVI and LST products
with Sentinel-3 counterparts are given in Table 2. The RF and kNN models were found to
be the optimal for the cross-calibration of NDVI and LST, respectively.

Table 2. Accuracy of MODIS NDVI and LST cross-calibration to Sentinel-3 counterparts.

Response Status Predictors MBE RMSE EFVariable

NDVIS-3 prior to calibration – 3.40 5.16 0.73
NDVIS-3 calibrated by RF NDVIMODIS, DOY, GDD 0.07 2.95 0.91
LSTS-3 prior to calibration – −7.16 7.83 −0.65
LSTS-3 calibrated by kNN LSTMODIS, DOY, GDD 0.00 2.51 0.84

DOY—Day of Year; S-3—Sentinel-3; GDD—Growing Degree Days.

Table 2 reveals clear improvement in time series homogeneity between MODIS and
Sentinel-3, which is confirmed by all three quality metrics. Yet, the impact of the remaining
difference between Sentinel-3 and MODIS products on time series homogeneity is not easy
to determine. This in turn may have further implications on the reliability of crop yield pre-
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dictors that are calculated as anomalies or standardized by extreme values (i.e., VCI, TCI).
To compare the spurious temporal variability introduced by the cross-calibration with natu-
ral variability of MODIS-derived predictors (NDVI, LST), the differences between monthly
cross-calibration RMSE and double monthly standard deviations of MODIS-derived pre-
dictors within the period 2000–2019 were computed and revealed for administrative units
(Figure 6). The negative differences (marked with blue) indicate that the cross-calibration
error is lower than the natural variability of a predictor expressed by the double standard
deviation. Overall, such a situation for NDVI occurred in 78% of LAU units and for LST
in 98% of LAU units. This implies that in a great majority of administrative units, the
cross-calibration errors do not obscure the natural variability of the predictors. Thus, it
can be concluded that the developed and validated cross-calibration models are sufficient
to homogenize MODIS products with the Sentinel-3 counterparts and further to use the
homogenized data records to predict crop yields.

Figure 6. Monthly differences (May) for LAU units between cross-calibration error (RMSE) and the
natural variability of the MODIS-derived predictors expressed as double standard deviation. The
negative differences (blue colours) indicate that the calibration error is lower than the natural variability.

4.2. Yield Forecasting Performance
4.2.1. Nuts-2 Level

The best performance of end-of-season crop yield predictions is revealed for winter
wheat (RRMSE = 8.15%), while predictions for maize and winter rapeseed are less accurate
(RRMSE = 13%) (Table 3). For all three crops, the overall relative bias (RMBE) is below 1%.
Yet, for individual NUTS-2 regions, these errors can be greater (Figure 7).

Figure 8 reveals that forecasting quality metrics differ across years. Most evidently,
the predictions tended to overestimate crop yields: for all three crops in 2006, for winter
rapeseed in 2003, and for maize in 2015. KusmierekTomaszewska and Żarski (2021) [41]
reported these years as dry according to the Standardized Precipitation Index (SPI). In 2003,
moderately dry conditions in May may have affected rapeseed development. In 2006, the
very dry (SPI < −1.5) period in June–July impacted all crops. Finally, in 2015, drought
lasted until the end of season limiting maize yields. Figures 9–11 reveal detailed year-
by-year performance of the crop yield forecasts for all three crops. High performance of
winter wheat yield forecasts for Mazowieckie, Świętokrzyskie, Podkarpackie, and Podlaskie
NUTS-2 units can be related to low annual variability of yields ranging from 30 to 40 dt/ha
(Figure 9) that can be well approximated by a monotonic trend.
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Figure 7. Map of crop yield forecasts performance at the NUTS-2 level.

Table 3. Overall performance of crop yield forecasts at NUTS-2 level. MBE–Mean Bias Error, RMSE–
Relative MBE, RMSE–Root Mean Square Error, RRMSE–Relative RMSE.

Crop Type MBE RMBE RMSE RRMSE R2 Correlation (r)
(dt) (%) (dt) (%) (–) (–)

Winter wheat 0.25 0.60 3.43 8.15 0.84 0.92
Winter rapeseed 0.19 0.71 3.39 13.03 0.47 0.69

Maize 0.37 0.63 7.76 13.32 0.51 0.71
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Figure 8. Time series of quality metrics of crop yield predictions for NUTS-2 units after the vegeta-
tion season.

The quality of the prediction models increases along the season when more predictors
become available for the XGBoost model (after every 150 °C GDD step). According to
correlation coefficient, for winter wheat and winter rapeseed, the prediction models on
average outperform the Theil–Sen monotonic trend-model at 450 °C GDD (Figure 12).
However, only after mid-season, this is valid for the vast majority of administrative units.
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For maize it is evident that after 600 °C GDD, the predictions models are significantly more
accurate than the trend-model.

swietokrzyskie warminsko−mazurskie wielkopolskie zachodnio−pomorskie

podkarpackie podlaskie pomorskie slaskie

lubuskie malopolskie mazowieckie opolskie

dolnoslaskie kujawsko−pomorskie lodzkie lubelskie

20 30 40 50 60 20 30 40 50 60 20 30 40 50 60 20 30 40 50 60

20

30

40

50

60

20

30

40

50

60

20

30

40

50

60

20

30

40

50

60

Reference yields (dt)

P
re

di
ct

ed
 y

ie
ld

s 
(d

t)

Year

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Figure 9. Comparison of crop yield predictions with the reference statistics for winter wheat at
NUTS-2 level. The RMSE and bias of this relationship is given in Figure 7.
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Figure 10. Comparison of crop yield predictions with the reference statistics for winter rapeseed at
NUTS-2 level. The RMSE and bias of this relationship is given in Figure 7.
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Figure 11. Comparison of crop yield predictions with the reference statistics for maize at NUTS-2
level. The RMSE and bias of this relationship is given in Figure 7.

maize

winter rapeseed

winter wheat

150 300 450 600 750 900 1050 1200 TREND

0.25

0.50

0.75

−0.3

0.0

0.3

0.6

0.9

−0.25

0.00

0.25

0.50

0.75

Growing degree days (deg C)

C
or

re
la

tio
n 

(−
)

Figure 12. Distributions of temporal correlations for different GDD levels between crop yield predic-
tions and reference statistics. Additionally, the performance of linear trend models is shown on the
rightmost box. Dashed line denotes median correlation of the linear trend-model.
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4.2.2. LAU Level

At the LAU level, the overall quality of the crop yield predictions is lower than for
NUTS-2. The RRMSE is around 14%, 19%, and 28% for winter wheat, winter rapeseed, and
maize, respectively (Table 4).

Table 4. Overall performance of crop yield forecasts at LAU level.

Crop Type MBE RMBE RMSE RRMSE R2 Correlation (r)
(dt) (%) (dt) (%) (–) (–)

Winter wheat −0.01 −0.03 5.20 13.77 0.75 0.87
Winter rapeseed −0.02 −0.07 5.09 18.80 0.45 0.67

Maize 0.07 0.12 14.89 27.36 0.48 0.69

Figure 13 presents the quality metrics for LAU units for which crop yields forecasts
were generated. Some LAU units lack predictions (marked with black) due to insuffi-
cient reference statistics used to train the XGBoost models or because a given crop is not
cultivated there.

Figure 13. Map of crop yield forecasts performance at the LAU level. Black areas denote LAU units
where the crop yield forecast was not possible due to data availability issues.

Quality metrics of crop yield forecasts differ from year to year (Figure 14). For winter
wheat and rapeseed they are in line with the results for NUTS-2, i.e., overestimation in 2011
(rapeseed) and 2018 (winter wheat). However, overestimated maize yields are strongly
related to the amount of data available to train the models (see lowest panel in Figure 14).
It can be seen that for the years 2015–2019, for which the amount of data is sufficient, the
quality of the forecasts is already close to the NUTS-2 ones. In addition, the years when the
forecast quality is lower are consistent with the NUTS-2 statistics, e.g., for 2015.
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Figure 14. Time series of quality metrics of crop yield predictions for LAU units after the vegeta-
tion season.

Variable length of time series of official statistics (used to train the models) among
LAU units allows the assessment of how the size of the training dataset impacts the model
performance. Figure 15 shows that for all three crops, the larger the training dataset (more
years), the higher the accuracy of the crop yield forecasts. This is particularly evident for
maize, for which a long data series corresponds to a more accurate prediction than for the
other two crops.
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Figure 15. Correlation coefficient (r) between reference crop yield statistics (used to train the models)
and crop yield forecast as a function of the available time span in years (color bars).



Remote Sens. 2022, 14, 1238 16 of 22

5. Implementation of the Operational System

The crop yield forecasting system is fully automatic which implies that data collection,
processing, crop yield forecasting, and the generation of graphical and tabular outputs
do not require a human operator. Figure 16 presents the workflow of the crop yield
forecasting system along with software that was used at each processing step. The system
is implemented as an R package, so any external functions (CDO, Python, SNAP) are called
from the R environment. Python is used to retrieve satellite and ERA-5 data, CDO to
process the ERA-5 data, and SNAP to process Sentinel-3 images. Processing of MODIS data,
aggregation to administrative units, preparation of predictors, training and application of
crop yield models, as well as generation of final outputs are implemented in R. Figure 17
shows an example of graphical system output, which complements the tabular data (CSV)
and geospatial vector data (SHP).

To guarantee the portability of the system, everything was installed on a virtual
machine (VirtualBox v6.1.20 with Xubuntu v20.04.2). This allows migration to cloud
computing environments such as Data and Information Access Services (DIAS) or Amazon
Web Services (AWS), where the Copernicus data sets are directly accessible.

Copernicus Climate Data 
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300 m, 1-day
SENTINEL-SAFE

U.S. Geological Survey
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NDVI
mosaiced, 
EPSG 2180
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NDVI
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Time series for NUTS-2/LAU, 2000-2019
Air temperature, precipitation, solar radiation, soil moisture, NDVI, LST
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single levels
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radiation, soil moisture
1-day, EPSG 2180
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Time series for NUTS-2/LAU, 2000-2019, thermal time (GDD levels 150, 300, 450, …)
minimum, maximum and mean air temperature, surface radiation, accumulated surface radiation since April 1st, soil 

moisture at 0-7 cm and 7-28 cm levels, precipitation, accumulated precipitation since April 1st, NDVI, Vegetation 
Condition Index (VCI), LST, Temperature Condition Index (TCI), a seasonal maximum of NDVI
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relative to the previous year and 5-year average
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Figure 16. Workflow of the crop yield forecasting system, data streams, and software used (‘cdo’—
Climate Data Operators v1.9.9 , R v4.1.1, Python v3.8.10).
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Figure 17. An example of the graphical output generated by the crop yield forecasting system: crop
yield forecasts for winter wheat (upper row), winter rapeseed (middle row), and maize (bottom row)
for NUTS-2 (left column) and LAU (right column).

6. Discussion
6.1. System Performance

Relating the accuracy of yield forecasts obtained by the proposed system to existing
solutions is complex and difficult to do adequately. This is due to the facts that: (1) yield
forecasting is carried out at different administrative levels, (2) the quality of reference data
(in this case official statistics) can vary between countries, (3) the inter-annual crop yield
variability varies between countries, related to the level of development of the agricultural
practices and the use of state-of-the-art management methods to reduce the effects of
unfavorable crop growth conditions, (4) models are trained and validated on data of
different lengths, and finally (5) even if the compared systems operate in areas of a similar
climate, other indicators may be a major crop yield-limiting factor. Therefore, embedding
performance of the presented system in the European context cannot be interpreted as an
exhaustive bench-marking of forecasting systems. Since very few studies have attempted
to predict crop yields in Europe at a LAU level, the following discussion is focused on
forecasting at a NUTS-2 level.



Remote Sens. 2022, 14, 1238 18 of 22

The proposed system provides end-of-season winter wheat yield forecasts with a
RRMSE of 8.15%. This outperforms the forecasting model based on the fraction of absorbed
photosynthetically active radiation derived from SPOT VEGETATION, which provided
winter wheat forecasts for Poland with a 10% RRMSE [17]. A common approach that em-
ploys MODIS NDVI seasonal peak was used to forecast the yield of winter wheat in Ukraine
with a RRMSE of 15% [9] and 12% [42]. A very recent work of Paudel et al. (2022) [43]
proposed a complex solution that uses deep learning methodology, and combines satellite-
derived indicators with weather information and outputs of a crop growth model (World
Food Studies Simulation Model, WOFOST). With this approach, RRMSE was 8.64% for
winter wheat in Poland. It was also used for forecasting yields of maize for six European
countries revealing an accuracy (RRMSE) from 12% (Spain) to as much as 29% (Romania),
in comparison to the RRSME of 13% achieved here. Thus, it can be concluded that the
operational system presented here provides crop yield forecasts at a NUTS-2 level with a
similar or higher accuracy than similar approaches used in Europe.

6.2. Cross-Calibration of Satellite Indices

The crop yield forecasting system presented here employs the long-term time series
of crop growth conditions and corresponding crop yield statistics used to train machine
learning models. While agro-meteorological indicators are seamlessly derived from climate
reanalysis, satellite-based indicators have been combined from two satellite sensors. First,
sensors onboard the Sentinel-3 platforms provide data used for operational near-real time
use, however these data have only been available since 2018. Second, data for previous years
(since 2000) have been extracted from the MODIS archive. Data acquired by sensors with
different spectral channels characteristics require cross-calibration and homogenization.
In this study, the calibration was rendered on the product level, i.e., for NDVI and LST.
An alternative approach would be to cross-calibrate radiances measured by the MODIS
and OLCI/SLSTR instruments (at the Level-1 product level), then to perform atmospheric
and Rayleigh scattering corrections in order to derive a homogeneous, cross-calibrated
time series of the NDVI and LST products. This approach would significantly increase
computational demand and complexity of the forecasting system, which is not advisable
for an operational system. Furthermore, within this study, the cross-calibration at the
Level-2 product level was found to significantly improve the homogeneity of data records
(Table 2) and not to introduce significant variability, which would influence the crop yield
forecasting system (see Section 4.1).

6.3. Heterogeneity of Spectral Signatures at the Moderate Spatial Resolution

Satellite-based predictors (i.e., NDVI, LST, VCI, TCI) used in the proposed crop yield
forecasting system are not crop specific due to coarse spatial resolution of pixels (≥300 m)
which may cover several agricultural fields sown with different plants. Nevertheless,
such heterogeneous spectral signatures have been successfully used as a proxy for the
vegetation condition and consequently as a predictor of crop yields (e.g., [11]). Yet, the new
generations of satellite sensors such as Multispectral Instrument (MSI) onboard Sentinel-2
satellite constellation acquire images at both high temporal (∼5 days) and spatial (∼10 m)
resolutions. This is a prerequisite to extract spectral signatures for individual fields and
consequently to obtain a clear spectral signature related to physical characteristics of a
particular crop [44]. Although the Sentinel-2 imagery is available, there are still some
limitations that void its utilization within the crop yield forecasting systems. One of the
limitations is the short Sentinel-2 data record (since 2015) which cannot be easily extended
by means of cross-calibration with an older sensor (such as MODIS in this study) due to the
unavailability of such an instrument featuring comparable spatial and temporal resolutions.
A short time series hinders derivation of long-term anomalies and reduces the quality
of crop yield forecast performed by a machine learning algorithm (Figure 15). Another
limitation to the assimilation of high resolution satellite imagery to crop yield forecasts
at a large/continental scale is the lack of extensive multitemporal reference information
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on crop yields and crop types at an agricultural field level. Nevertheless, these gaps are
being quickly bridged by the expanding Sentinel-2 archive and by reference in-situ data
on crop productivity collected by sensors mounted on novel agricultural equipment (e.g.,
harvesters). Consequently, several studies have already tackled the problem of crop yield
forecasting based on high resolution Sentinel-2 imagery [45,46]. The future extensions of the
proposed system will allow for crop yield predictions at a field level. However, to date it is
not possible due to data availability and quality issues. Thus, the presented system is based
on medium resolution satellite imagery which does not allow monitoring of individual
fields. However, it should be emphasized that the forecasting system has been designed
in such a way that changing the input data from Sentinel-3 to Sentinel-2 and switching
to the clear spectral signature of specific crops requires only adaptation of the data input
module. Then, it would be also possible to assimilate the Copernicus high resolution
vegetation phenology and productivity product [47], which provides information on crop
development and productivity at the 10-m scale.

6.4. Limitation of Agro-Meteorological Indicators

The proposed crop yield forecasting system is based on two groups of data. One group
contains predictors related to the crop growth conditions described by agro-meteorological
indicators. The other group consists of satellite-derived vegetation indices describing the
instantaneous physical state of crops affected by the growing conditions. The fusion of both
groups of predictors improves the quality of crop yield forecasts because they mutually
diminish their deficiencies/limitations. In this respect, the agrometeorological data (either
originating from climatological reanalysis or from interpolation of synoptic observations),
have a resolution of a few kilometers, which may be sufficient to describe air temperature,
insolation, or average precipitation across a flat terrain. However, some extreme weather
events such as hailstorms, heavy rain, strong winds, or frosts will not be captured by a
coarse agro-meteorological data. Therefore, it is necessary to use satellite-based predictors,
which characterize the vegetation state induced by these adverse weather events. At the
same time, satellite vegetation indices have their own limitations. Firstly, in the case of
medium resolution imagery pixels contain a mixture of different crop types. Secondly, the
saturation of NDVI above a certain biomass level [48] can hamper sensitivity to higher crop
yields. Thus, the synergy between agro-meteorological and satellite predictors positively
impacts crop yield modeling.

6.5. Applicability of the Crop Yield Forecasting System to Other Areas

The presented system contains a module for automatic training of yield forecasting
models. It includes the step of removing the correlated features, forward feature selection,
and selection of the best prediction method. It requires only the inclusion of predictors, i.e.,
agro-meteorological and satellite data, and reference statistics on crop yields for adminis-
trative units. Therefore, the model can be easily adapted to other regions featuring similar
crop growth conditions. Otherwise, a problem may occur related to a double growing
season, as computation of the GDD in the current system assumes one main crop per year.

6.6. Perspectives

There are three main directions for the near-future development of the proposed
system. The first involves using a dynamic cropland mask that would better reflect year-to-
year land use changes. The near future will also bring crop type maps [49,50] that, in turn,
will allow crop-specific satellite-based indices from individual fields. Yet, a relatively short
time series of crop type maps (since 2015 in case of Sentinel-derived ones) will limit their
use in crop yield forecasting that relies on training the models on data archive. The second
enhancement of the system would be to use weather forecasts to determine predictors
derived at the moment from climate reanalysis. This should improve the accuracy of in-
season forecasts that completely disregard the forthcoming change in weather conditions,
however are only based on the average course of the weather condition over the season in
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previous years. A last development would be to extend the list of predictors. One group of
these could be constituted of the outputs of crop growth models [43]. However, it must be
emphasized that the models require extensive calibration against field data which are often
not available. The second group of potential new predictors are related to less exploited
satellite-derived data such as sun-induced fluorescence [51].

7. Conclusions

This study presents a fully automated crop yield forecasting system operating at the
administrative-unit scale based on predictors originating from open-access Sentinel-3 satel-
lite data and ERA-5 climate reanalysis. The system gathers satellite and agro-meteorological
products, performs preprocessing, calculates yield predictors, transforms them to thermal
time (as a proxy for crop development stage), predicts crop yields, and generates the final
outputs (tabular, graphical). The prediction module runs an exTreme Gradient Boosting
regressor, which is preceded by the iterative predictor selection procedure. The system
was intensively validated at NUTS-2 and LAU units in Poland for winter wheat, winter
rapeseed, and maize using a leave-one-year-out procedure. The analyzed period covered
2000–2019, however the availability of the reference data differed among administrative
units. The performance (relative RMSE) of the end-of-season forecasts for NUTS-2 was
8.15% for winter wheat, and around 13% for maize as well as for winter rapeseed. The
system was designed in a way that it can be easily applied to other regions, where reference
yields statistics are available, and can also be easily migrated to cloud computing environ-
ments (e.g., DIAS or Amazon AWS), where the Copernicus data sets are directly accessible.
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