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Abstract: A hyperspectral image classification method based on a mixed structure with a 3D multi-
shortcut-link network (MSLN) was proposed for the features of few labeled samples, excess noise,
and heterogeneous homogeneity of features in hyperspectral images. First, the spatial–spectral joint
features of hyperspectral cube data were extracted through 3D convolution operation; then, the deep
network was constructed and the 3D MSLN mixed structure was used to fuse shallow representational
features and deep abstract features, while the hybrid activation function was utilized to ensure the
integrity of nonlinear data. Finally, the global self-adaptive average pooling and L-softmax classifier
were introduced to implement the terrain classification of hyperspectral images. The mixed structure
proposed in this study could extract multi-channel features with a vast receptive field and reduce the
continuous decay of shallow features while improving the utilization of representational features and
enhancing the expressiveness of the deep network. The use of the dropout mechanism and L-softmax
classifier endowed the learned features with a better generalization property and intraclass cohesion
and interclass separation properties. Through experimental comparative analysis of six groups
of datasets, the results showed that this method, compared with the existing deep-learning-based
hyperspectral image classification methods, could satisfactorily address the issues of degeneration
of the deep network and “the same object with distinct spectra, and distinct objects with the same
spectrum.” It could also effectively improve the terrain classification accuracy of hyperspectral images,
as evinced by the overall classification accuracies of all classes of terrain objects in the six groups of
datasets: 97.698%, 98.851%, 99.54%, 97.961%, 97.698%, and 99.138%.

Keywords: hyperspectral image classification; 3D multi-shortcut-link networks; large softmax;
SELU; PReLU

1. Introduction

Hyperspectral images (HSIs) contain rich spatial and spectral information [1,2] and
are widely applied in the fields of precision agriculture [3], urban planning [4], national
defense construction [5], and mineral exploitation [6], among other fields. It has been very
successful in allowing active users to participate in collecting, updating, and sharing the
massive amounts of data that reflect human activities and social attributes [7–10].

The terrain classification of hyperspectral images is a fundamental problem for various
applications, where the classification aims to assign a label with unique class attributes
to each pixel in the image based on the sample features of HSI. However, an HSI is high-
dimensional with few labeled samples, images between wavebands have a high correlation,
and terrain objects with heterogeneous structures that may be homogeneous present the
terrain classification of HSIs with huge challenges.
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To this end, scholars have put forward many terrain classification algorithms for HSIs,
such as support vector machine (SVM) [11–14], sparse representation [15], semi-supervised
classification [16,17], extreme learning machine (ELM) [18], and artificial neural network
(ANN) [19]. Unfortunately, these classification methods cannot fully utilize the spatial
features of HSI data and have poor expressiveness and generalization ability, leading to
relatively low classification accuracy [20–22].

Over the recent years, deep-learning-based image classification has achieved sub-
stantial development. Compared with traditional algorithms, it mainly utilizes a complex
neural network structure to extract deep abstract features, thereby improving the accu-
racy of image classification. Hence, it is widely applied in target detection [23], image
classification [24,25], pattern recognition [26–28], and other fields. In HSI classification,
spatial and spectral information can be extracted and transformed via channel mapping
into one-dimensional vectors for classification by using stack autoencoding (SAE) [29,30],
a deep belief network (DBN) [31], a recurrent neural network (RNN) [32,33], etc. However,
these methods require a large number of parameters for expression at the loss of spatial
2D features and relevance between different wavebands, resulting in low classification
accuracy. As the most representative network model in deep learning, a convolutional
neural network (CNN) can extract spatial and spectral features simultaneously and exhibits
good performance in HSI classification [34–41]. However, with the increase in the number
of network layers, CNN is prone to losing detailed information that is useful for data fitting
during the training process, hence producing the phenomenon of gradient disappearance.

Although many current deep learning network structures have already achieved
satisfactory classification results, it remains very difficult for them to achieve perfect
classification results in the face of issues such as the curse of dimensionality, image noise,
too few labeled samples, and “the same object with distinct spectra, and distinct objects
with the same spectrum” [42–44].

Against the above-mentioned issues, this study fused shallow features and deep
features by constructing a mixed structure with 3D multi-shortcut-link networks, using
hybrid functions to activate neurons; utilized the global self-adaptive average pooling
layer to eliminate noises; and finally implemented the terrain classification of HSI via the
L-softmax loss function. The validity of the algorithm in this study was verified using six
groups of hyperspectral datasets.

2. Related Work
2.1. Shortcut Link

Theories and practices using short links have been studied for a long time [45–47].
In the early stages, training a multi-layer perceptron was mainly achieved by adding
an input linear layer to the output layer of the network [46,47]. To solve the gradients
vanishing/exploding issue, Szegedy [48] and Lee [49] connected some intermediate layers
to auxiliary classifiers directly. Some researchers [50–53] introduced the centralization of
layer responses, gradients, and propagation errors to the shortcut links.

In [54,55], Ioffe and Szegedy composed an inception structure with a shortcut branch
and a few deeper branches. He [56,57] did a series of studies on residuals and shortcuts and
deduced the mathematical formula of residual networks (ResNet) in detail simultaneously.
Then, Szegedy introduced ResNet to an inception structure [58]; through a large amount of
parameter tuning, the training speed and performance were greatly improved.

2.2. ResNet in HSI Classification

To address the issue of model degeneration, Lu et al. [59] introduced the ResNet into
HSI classification methods; the identity mapping of residual modules can be utilized to
effectively address the issues of gradient disappearance and overfitting while increasing the
network depth. Liu et al. [60] adopted the multilevel fusion structure to extract multiscale
spatial–spectral features and introduced ResNet to map shallow features into the space
of deep features, promoting the model’s classification accuracy. Meng et al. [61] made
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hybrid use of the dense network and ResNet to extract deeper features to enhance the
expressiveness of a CNN. Zhong et al. [62] proposed an end-to-end spatial–spectral residual
network to learn the continuous features of HSI data, thereby improving the classification
accuracy. Cao et al. [63] used hybrid dilated convolution in a ResNet to extract deep features
of a vast receptive field without increasing the computational load. Xu et al. [64] used
the anti-noise loss function to improve the model’s robustness and used a single-layer
dual-channel residual network to classify HSIs.

Gao et al. [65] combined multiple filters to obtain a multiscale residual network to
extract multiscale features from HSIs with different receptive fields while reducing the
computational load of the network. Dang et al. [66] combined depth-separable convolution
with a ResNet structure to shorten the model training time while ensuring high classification
accuracy. Paoletti et al. [67] proposed a deep residual network with a pyramid structure,
which consisted of multiple residual modules of pyramid bottlenecks that can extract
more abstract spatial–spectral features with an increase in the number of layers. Wang
et al. [68] introduced the compression incentive mechanism into ResNet and utilized the
attention mechanism to extract strongly discriminative features and inhibit nonessential
features to enhance the classification accuracy. Zhang et al. [69] designed a fractal residual
network to extract spatial–spectral information, enhancing the model’s classification ability.
Xu et al. [70] introduced multiscale feature fusion and dilated convolution into a ResNet,
which could fit in better with the cubic structure of HSI data and make effective use of the
spatial–spectral joint information.

In this study, we constructed 3D multi-shortcut-link networks (MSLNs) on the basis of
a 2D ResNet, analyzed its theoretical support in detail, and aimed to solve the problem of
matter spectrum disorder and deep network model degradation, where the effectiveness of
the MSLN model was demonstrated using experiments.

3. Methods
3.1. Three-Dimensional CNN

A CNN is a feed-forward neural network with a deep structure that includes convo-
lution computation and is one of the most representative algorithms for deep learning.
It usually comprises an input layer, a convolution layer, a pooling layer, a fully connected
layer, and an output layer. Combining the properties of local connection and weight sharing,
it can go through the end-to-end processing procedure, and in 2D images, it can utilize the
deep network structure to solve complex classification problems, exhibiting an outstanding
performance. However, for 3D data of HSIs, not only is the spatial–spectral information
unable to be fully utilized but dimension reduction processing is typically required when
using a 2D CNN for HSI classification. This would even add a large number of parameters,
which dramatically decreases the computational efficiency and training speed, and more
likely causes overfitting for HSIs with fewer labeled samples.

Modified on the basis of a 2D CNN, a 3D CNN [39,70] is mainly applied in video clas-
sification, action recognition, and other fields and can perform simultaneous convolution
operations in three directions—height, width, and depth—for HSIs without undergoing
dimension reduction processing (Figure 1), which can immediately extract spatial–spectral
joint high-order features and make full use of spatial–spectral correlation information.
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Figure 1. The theory of a 3D CNN.

3.2. Residual Networks (ResNets)

With the deepening of network layers, a 3D CNN is prone to gradient dispersion or
gradient explosion. Proper use of regularity initialization and the intermediate regulariza-
tion layer can deepen the network, but the training set accuracy will be saturated or even
decreased. A ResNet [56] alleviates the gradient disappearance problem that occurs in deep
neural networks by skipping a connection in the hidden layer.

A ResNet is a hypothesis raised on the basis of identity mapping: assuming a network
n with K layers is the currently optimal network, then several layers of a built deeper
network should be the identity mapping from the outputs at the Kth layer of the network
n. The deeper network should not underperform relative to the shallower network. If the
input and output dimensions of the network’s nonlinear units are consistent, each unit can
be expressed as a general formula:

y = F(x, {Wi }) + x (1)

Here, x and y are input and output vectors of layers considered, respectively, and
F(·) is a residual function. In Figure 2, there are two layers, i.e., F = W2σ(W1x), in which σ

denotes the ReLU and the biases are omitted for simplifying notations. The process of F + x
is an operation of a shortcut connection and element-wise addition.

The residual learning structure (Figure 2) functions by adding the output(s) from the
previous layer(s) and the output computed at the current layer and inputting the result
of the summation into the activation function as the output of the current layer, which
addresses the degeneration of neural networks satisfactorily. A ResNet converges faster
under the precondition of the same number of layers.
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3.3. Activation Function

Since the gradient of the activation function (Figure 3) of the rectified linear unit
(ReLU) [71] is always 0 when the input is a negative value, the ReLU neurons will not be
activated after parameters are updated, leading to the “death” of some neurons during the
training process.
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The parametric rectified linear unit (PReLU) [72] is used to address the issue of
neuronal death brought about by the ReLU function, where the parameters in it are learned
through backpropagation.

The activation function of the self-exponential linear unit (SELU) [73] demonstrates
high robustness against noise and enables the mean value of activation of neurons to tend
to 0 so that the inputs become fixedly distributed after a certain number of layers.

Therefore, the algorithm in this study used PReLU as the activation function after the
shallow multi-shortcut-link networks convolution operation, and SELU as the activation
function in the deep residual structure of the block, which can make full use of hyperspectral
3D cube data.

3.4. Loss Function

In deep learning, the softmax function (Equation (2)) is usually used as a classifier,
which maps the outputs of multiple neurons into the interval (0, 1). Define the ith input
feature xi with label yi, fj denotes the jth data point (j∈[1, N], N is the number of classes)
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of the vector of class scores f, and M is the number of training data. In Equation (2), f is
the activations of a fully connected layer W; fyi= WT

yi
xi in which Wyi is the yith column of

W. Take a dichotomy as an example, i.e., ||W1|| ||x||cos(θ1) > ||W2|| ||x||cos(θ2),
and thus the correct classification result of x is obtained. However, its learning ability is
relatively weak for strongly discriminative features. This study adopted large-softmax as
the loss function to upgrade the classification accuracy of HSI datasets.

L =
1
M ∑i Li =

1
M ∑i −log

(
e fyi

∑j e f j

)
(2)

Large-softmax [74] is a margin-based softmax loss function, i.e., ||W1||||x||cos(θ1)
≥ ||W1|| ||x||cos(mθ1) ≥||W2|| ||x||cos(θ2). By adding a positive integer variable
m to adjust the required margin, a decision-making margin constraint is added to endow
the learned features with the properties of intraclass compactness and interclass separation,
as well as to effectively avoid overfitting.

The L-softmax loss function can be defined by the following expression:

Li= −log (
e||Wyi

|| ||xi || ϕ(θyi
)

||Wyi
|| ||x i|| ϕ(θ yi

)+∑j 6=yi
e||Wj || ||xi || cos(θ j)

) (3)

where ϕ(θ) can be expressed as:

ϕ(θ) =

{
cos(mθ), 0 ≤ θ ≤ π

m
D(θ), π

m ≤ θ ≤ π
(4)

Experiments demonstrated that the features acquired by L-softmax have more dis-
tinctive distinguishability [74,75] and achieve better results than using softmax in both
classification and verification tasks.

3.5. Multi-Shortcut-Link Networks (MSLNs)
3.5.1. Analysis of a Multi-Shortcut Link

In a ResNet, the author develops an architecture that stacks building blocks of the
same shortcut connecting pattern called “residual units (ResUs).” The original ResU can be
computed using these formulas:

yl = h(xl ) + F(xl , Wl ) (5)

xl+1 = f (yl ) (6)

Here, xl is the input for the lth ResU. Wl = {Wl,k|1≤k≤K} is a set of weights and bias
corresponding to the lth ResU, and K is the number of layers in the ResU. F denotes the
residual function, e.g., a stack of two 3 × 3 convolutional layers in a ResNet. This study
expanded the convolutional dimension to 3 × 3 × 3. Function f is the process after element-
wise addition, then operates the ReLU activation function. Function h is set as the identity
mapping: h(xl) = xl.

This study mainly focused on creating a multi-shortcut-link path for propagating
tensor information, not only within ResU but also through the entire network model.
As mentioned above, we denote s(x0) as a shortcut link of the original ResU, which suggests
y0 = h(x0 ) + F(x0 , W0 ). If f was also used as an identity mapping, that meant xl+1 ≡ yl;
putting s(x0) and Equation (2) into Equation (1), and adding a multi-shortcut link S gave

xl+1 = xl + F(xl , Wl ) + x0 + F(x0, W0 ) (7)

After recursion, we obtained
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xl+2 = xl+1 + F(xl+1 , Wl+1 ) = xl + F(xl , Wl ) + F(xl+1, Wl+1 ) + x0 + F(x0, W0 ) (8)

xL = xl + ∑L−1
i=l F(xl , Wi ) + L(x0 + F(x0 , W0 )) (9)

Equation (9) indicates that for any deeper (L) and shallower (l) unit, the feature xL of L
can be represented as the feature xl of l plus a residual operation, which is between any L
and l presenting as a residual function in an MSLN.

Denoting a loss function as ξ, according to the chain rule of backpropagation, we
obtained

∂ξ

∂xL
=

∂ξ

∂xL

∂xL
∂xl

=
∂ξ

∂xL

(
1 +

∂

∂xl
∑L−1

i=l F(xi , Wi )

)
(10)

Equation (10) exhibits that the gradient ∂ξ
∂xl

can be decomposed into two additive terms:
∂ξ
∂xL

and ∂ξ
∂xL

( ∂
∂xl

∑L−1
i=l F) which propagates information directly without any concerned

weight layers and with weight layers. The additive term of ∂ξ
∂xL

guarantees that information
is propagated back to any shallower unit l directly. In another way, it implies that because
the term ∂

∂xl
∑L−1

i=l F cannot always be −1, the gradient ∂ξ
∂xl

is unlikely to be canceled out for
a mini-bath. This indicates that even when the weights are extremely small, the gradient of
a layer also does not vanish.

This derivation reveals that if we add a shortcut link before a residual block and both
h(xl) and f(yl) are identity mappings, the feature map signal could be propagated both
forward and backward. This indicates that fused shallow features and deep features via
multi-shortcut-link networks can are certain to obtain strongly discriminative features,
which was also shown in the experiments in Section 4.2.

3.5.2. Structure of an MSLN

Based on the network structure of ResNet 18 (Table 1), this study added a convolution
layer preceding each of the 2nd, 6th, 10th, and 14th layers, which is spliced in depth with
the output result of the previous layer and as the input of the next convolution layer.
Meanwhile, the 3D convolution operation of the original HSI cube block (H × W × C)
contains the 1st, 2nd, 7th, 12th, and 17th layers in the MSLN, which implies the input shape
of all these five layers are (batch size, input data, channels of HSI, kernel size, stride), and
the numbers of convolution kernels were set according to Table 1, which were 16, 16, 16, 32,
and 64 (Figure 4), respectively.

In order to make the MSLN more convenient and minimize the conflicts when splicing
channels as much as possible, the number of convolution kernels in the block was set to 16,
32, 64, and 128, respectively. Compared with the number of channels in the ResNet (64, 128,
256, 512), the total size of parameters in the ResNet (130.20 ± 0.65 MB) was substantially
decreased (10.87 ± 0.27 MB) and were greatly improved regarding the convergence speed.

As shown in Figure 5, conv i_1 (i = 1, 2, 3, 4) output were shallow features, and the
feature graph had a higher resolution, which could retain more feature information and
better describe the overall characteristics of the data. As the depth of the network increased,
the deep features became more and more abstract. Fusing shallow features and deep
features via multi-shortcut-link networks could reduce the loss of shallow features and
correlation decay of gradients, boost the use ratio of features, and enhance the network’s
expressiveness.
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Table 1. Convolutional layer of MSLN 22 and ResNet 18.

Layer_Name 18-Layer ResNet
Kernel_Size Kernel_Number Stride Layer_Name 22-Layer MSLN

Kernel_Size Kernel_Number Stride

conv 1 7× 7 64 S2 conv 1 3× 3× 3 16 S1
conv 1_1 3× 3× 3 16 S1

Block1
[

3× 3 64 S1
3× 3 64 S1

]
× 2 Block1

[
3× 3× 3 16 S1
3× 3× 3 16 S1

]
× 2

Block2
[

3× 3 128 S1
3× 3 128 S1

]
× 2

conv 2_1 3× 3× 3 16 S1

Block2
[

3× 3× 3 32 S1
3× 3× 3 32 S1

]
× 2

Block3
[

3× 3 256 S1
3× 3 256 S1

]
× 2

conv 3_1 3× 3× 3 32 S1

Block3
[

3× 3× 3 64 S1
3× 3× 3 64 S1

]
× 2

Block4
[

3× 3 512 S1
3× 3 512 S1

]
× 2

conv 4_1 3× 3× 3 64 S1

Block4
[

3× 3× 3 128 S1
3× 3× 3 128 S1

]
× 2

Average pool 1000-d fc l-softmax Average pool 128-d fc l-softmax
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2
3 3 64 1

S
S

× 
× × 

 Block1 
3 3 3 16 1

2
3 3 3 16 1

S
S

× × 
× × × 

  

Block2 
3 3 128 1

2
3 3 128 1

S
S

× 
× × 

 

conv 2_1 3 3 3 16 1S× ×  

Block2 
3 3 3 32 1

2
3 3 3 32 1

S
S

× × 
× × × 

 

Block3 
3 3 256 1

2
3 3 256 1

S
S

× 
× × 

 

conv 3_1 3 3 3 32 1S× ×  

Block3 
3 3 3 64 1

2
3 3 3 64 1

S
S

× × 
× × × 

 

Block4 conv 4_1 3 3 3 64 1S× ×  

Figure 5. The flowchart of the MSLN 22 HSI classification framework.

Therefore, splicing the shallow feature conv i_1 (i = 1, 2, 3, 4) in depth with the output
of each residual block (conv j_1 (j = 1, 2, 3,4)) to implement the multi-shortcut-link network
fusion of features across different network layers could better alleviate gradient dispersion
(explosion) and even network degeneration.
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Figure 4 displays the overall process of the HSI classification framework of the MSLN.
It can be seen from this figure that the multi-shortcut-link network’s structure is bridged to
four residual blocks (Figure 6) for a total of four times (Figure 7); then, the last output layer
of the third residual block is spliced with conv4_1 as the input tensor for the first layer of the
fourth residual block; after the fourth residual block is processed, the global self-adaptive
average pooling downsampling is used to expand the output tensor into one-dimensional
vectors via the fully connected layer to map the learned distributed features into the space
of sample labels; finally, the large-softmax loss function is used for classification.
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In this study, all the convolution kernels adopted the uniform size 3 × 3 × 3, which
could both reduce the computational load and enlarge the receptive field of convolution
operation [56].

Figure 8 shows the visualization of the MSLN structure and training process using the
Botswana dataset, which covers 145 wavebands. The gray elements in the graph indicate
the node is a backward operation, and the light blue elements indicate the node is a tensor
that is input/output.

At the top of Figure 8, there is a tensor whose shape is (64, 1145, 3, 3), which means the
batch size processed in the model was 64 and the input 3D tensor of the MSLN model was
(145, 3, 3). There were five sets of bias matrices and weight matrices whose background
color is light blue in the second row, corresponding to the first convolutional layer and four
shortcut link convolutional layers, and the names of the rectangles are arranged in order
conv1, add 1.0, add 2.0, add 3.0, and add 4.0. There are four residual blocks in the MSLN
structure referred to as layerx (x = 2, 3, 4) and each layer contains four convolution layers,
which were named layerx.0.conv1, layerx.0.conv2, layerx.1.conv1, and layerx.1.conv2 (x = 1,
2, 3, 4), and the downsampling operation was mainly done to manage the problem of an
inconsistent number of convolution kernel channels. At the bottom of this figure, there is a
green element, which is the final output of the results of the HSI classification.
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Deep features are abstract and associated with a small receptive field. When the
shallow features of a vast receptive field are mapped into the space of abstract features of a
small receptive field, the number of parameters will grow with the increase in the number
of layers, which will lead to an increased computational load, as well as a large loss of
shallow representation information. The multi shortcut link networks structure proposed
in this study, combined with the ResNet, can make up for the information loss of the deep
network’s shallow features very well and better address the difficulty in learning deep
abstract features.
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Figure 8. Network structure/training process visualization.
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4. Datasets Results and Analysis

The MSLN proposed in this study was based on the Python language and PyTorch
deep learning framework, with the test environment being a Windows 10 OS with 32 GB
RAM, an Intel i7-8700 CPU, and an NVIDIA Quadro P1000 4 GB GPU.

4.1. Hyperspectral Test Datasets

To validate the robustness and generalization property of the proposed algorithm,
six groups of opensource datasets collected by M Graña et al. were used [76] to learn all
types of labeled terrain objects without undergoing any human screening, and the ratio of
training sets to validation sets to test sets was 0.09:0.01:0.9 (Tables 2–7 for details).

Table 2. The information of samples in the Indian Pines dataset.

Sample No. Class Train Validation Test

1 Alfalfa 4 1 41
2 Corn-notill 129 14 1285
3 Corn-mintill 75 8 747
4 Corn 22 2 213
5 Grass-pasture 43 5 435
6 Grass-trees 43 7 680
7 Grass-pasture-mowed 3 1 24
8 Hay-windrowed 43 5 430
9 Oats 3 1 16
10 Soybean-notill 87 10 875
11 Soybean-mintill 220 25 2210
12 Soybean-clean 53 6 534
13 Wheat 18 2 185
14 Woods 113 13 1139
15 Buildings-grass-trees-drives 35 4 347
16 Stone-steel-towers 8 1 84

Total 899 105 9245

Table 3. The information of samples in the Salinas dataset.

Sample No. Class Train Validation Test

1 Brocoli_green_weeds_1 181 20 1808
2 Brocoli_green_weeds_2 355 37 3334
3 Fallow 177 20 1779
4 Fallow_rough_plow 125 14 1255
5 Fallow_smooth 241 27 2410
6 Stubble 357 39 3563
7 Celery 322 36 3221
8 Grapes_untrained 1014 113 10,144
9 Soil_vinyard_develop 558 62 5583
10 Corn_senesced_green_weeds 292 33 2953
11 Lettuce_romaine_4wk 96 11 961
12 Lettuce_romaine_5wk 171 19 1737
13 Lettuce_romaine_6wk 81 9 826
14 Lettuce_romaine_7wk 96 11 963
15 Vineyard_untrained 646 71 6551
16 Vineyard_vertical_trellis 157 17 1633

Total 4869 539 48,721
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Table 4. The information of samples in the Pavia Centre dataset.

Sample No. Class Train Validation Test

1 Water 5925 657 59,251
2 Trees 684 76 6838
3 Asphalt 277 31 2736
4 Self-blocking bricks 241 27 2417
5 Bitumen 592 66 5924
6 Tiles 833 92 8317
7 Shadows 656 73 6558
8 Meadows 3842 425 38,415
9 Bare soil 257 29 2577

Total 13,307 1476 133,033

Table 5. The information of samples in the Pavia University dataset.

Sample No. Class Train Validation Test

1 Asphalt 593 65 5973
2 Meadows 1674 186 16,789
3 Gravel 188 21 1890
4 Trees 275 31 2758
5 Painted metal sheets 121 13 1211
6 Bare Soil 453 50 4526
7 Bitumen 120 13 1197
8 Self-blocking bricks 331 37 3314
9 Shadows 85 10 852

Total 3840 426 38,510

Table 6. The information of samples in the Kennedy Space Center dataset.

Sample No. Class Train Validation Test

1 Scrub 68 8 685
2 Willow-swamp 22 2 219
3 Cabbage palm hammock 23 3 230
4 Cabbage palm/oak hammock 22 3 227
5 Slash pine 14 2 145
6 Oak/broadleaf hammock 21 2 206
7 Hardwood swamp 10 1 94
8 Graminoid marsh 39 4 388
9 Spartina marsh 47 5 468
10 Cattail marsh 36 4 364
11 Salt marsh 38 4 377
12 Mud flats 45 5 453
13 Wate 83 10 834

Total 468 53 4690
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Table 7. The information of samples in the Botswana dataset.

Sample No. Class Train Validation Test

1 Water 24 3 243
2 Hippo grass 9 1 91
3 Floodplain grasses 1 23 2 226
4 Floodplain grasses 2 19 2 194
5 Reeds 24 3 242
6 Riparian 24 3 242
7 Firescar 23 3 233
8 Island interior 18 2 183
9 Acacia woodlands 28 3 283
10 Acacia shrublands 23 2 233
11 Acacia grasslands 27 3 275
12 Short mopane 16 2 163
13 Mixed mopane 24 3 241
14 Exposed soils 9 1 85

Total 291 33 2934

(1) Indian Pines (IP) Dataset

The IP dataset was acquired using AVIRIS sensors on the test site in Indiana in 1996
with an image resolution of 145 × 145 pixels, a spectral range of 0.4–2.45 µm, and a spatial
resolution of 20 m. There remained 200 effective wavebands for classification after the
wavebands affected by noises and suffering severe water vapor absorption were eliminated,
and a total of 16 crops were labeled. This dataset was shot in June, when some crops, such
as corn and soybean, were in the early growth stage. The coverage rate of less than 5% was
prone to pixel mixture, leading to a significant increase in the difficulty of vegetative terrain
classification.

(2) Salinas (S) Dataset

The S dataset was shot in Salinas Valley, California, using AVIRIS sensors with an
image resolution of 512 × 217 pixels, a spectral range of 0.43–0.86 µm, and a spatial
resolution of 3.7 m. There remained 204 effective wavebands for classification after the
wavebands affected by noises and suffering severe water vapor absorption were eliminated,
and a total of 16 crops were labeled, covering vegetables, bare soils, vineyards, etc.

(3) Pavia Centre (PC) and Pavia University (PU) Datasets

The PC and PU datasets stemmed from two scenes were captured using ROSIS sensors
during a flight over Pavia in northern Italy, with 102 and 103 wavebands remaining, respec-
tively, after the noise-affected wavebands and information-free regions were eliminated;
with image resolutions of 1096× 715 pixels and 610× 340 pixels, respectively; and a spatial
resolution of 1.3 m; both images have nine classes of labeled terrain objects, though the
categories are not fully congruent.

(4) Kennedy Space Center (KSC) Dataset

The KSC dataset was shot using AVIRIS sensors at Kennedy Space Center, Florida, on
March 23, 1996, with an image resolution of 512 × 614 pixels, a spectral range of 0.4–2.5 µm,
and a spatial resolution of 18 m. There remained a total of 176 wavebands for analysis after
the wavebands suffering water vapor and noises were eliminated, and a total of 13 classes
of terrain objects. The extremely low spatial resolution plus the similarity in the spectral
signatures of some vegetation types provide considerably increased difficulty regarding
terrain classification.
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(5) Botswana (B) Dataset

The B dataset was shot using Hyperion sensors at Okavango Delta in Botswana with
an image resolution of 1476 × 256 pixels, a spectral range of 0.4–2.5 µm, and a spatial
resolution of 30 m, covering 242 wavebands in total. The UT Space Research Center elimi-
nated the uncalibrated and noise-affected wavebands covered with moisture absorption
features, leaving a total of 145 wavebands for classification, including 14 observation data
whose categories were determined, and these categories include the seasonal and sporadic
swamps, dry forests, and other land cover types in the delta.

The IP dataset and S dataset both contain 6 major categories and 16 sub-categories;
it is necessary to improve the discrimination between classes to improve the classification
accuracy. However, the IP dataset has a lower resolution; if the training data is selected
according to the above ratio, four terrain objects have no training data (alfalfa, grass-
pasture-mowed, oats, and stone-steel-towers). The same situation is also reflected in the
KSC dataset (hardwood swamp) and B dataset (hippo grass and exposed soils), mainly due
to too few labeled samples. To reduce the validation error and test error, one sample was
randomly selected among the training samples for validation.

The PC dataset and PU dataset have fewer categories, with a higher resolution and
richer labeled samples, but have the issue of “distinct objects with the same spectrum.”
There are 7 swamp types out of the 13 classes of terrain objects in the KSC dataset, which
has the issue of “the same object with distinct spectra” and considerably increased difficulty
regarding terrain classification.

In this study, the MSLN structure in the ResNet and some hyperparameter settings
could resolve the above problems and improve the classification accuracy of the six groups
of the datasets.

4.2. Results and Analysis

To validate the effectiveness and classification results of the MSLN 22 network struc-
ture, an ordinary 3D CNN [37] was selected as a baseline network for comparative analysis
with an RNN [32], a multiscale 3D CNN (MC 3D CNN) [44], a 3D CNN residual (3D CNN
Res) [41], and a 3D ResNet. The settings of the hyperparameters were as follows: batch
size was set to 64, which not only mitigated gradient oscillation but also allowed for better
performance of the GPU; the initial learning rate was set to 0.01 and the learning rate
dropped to 0.001 after the loss function was stabilized; the maximum count of iterations
epoch was set to 600; the cross-entropy was selected as the loss function in the comparison
algorithm, whereas L-softmax was adopted as the loss function in the network produced in
this study; the dropout was set to 0.5 after the global self-adaptive average pooling and
before the fully connected layer; and 50% of the neurons were discarded at random to
address the overfitting issue and enhance the model’s generalization property.

Tables 8–13 present the classification results corresponding to the six datasets. The
multi-shortcut-link networks structure of the MSLN proposed in this study could extract
spatial–spectral joint features and fuse shallow and deep features, and the evaluation
criterion kappa coefficient, average accuracy (AA), and overall accuracy (OA) were all the
highest among the networks tested. Figures 9–14 each represent the comparison of the HSI
classification results among all network structures.

Tables 8–10 and Figures 9–11 indicate that the MSLN, which had 22 convolution
layers, could extract rich deep features, and the multi-shortcut-link network’s structure
also fused the shallow features of a vast receptive field and mitigated the effect of noises
via the global self-adaptive average pooling layer, achieving a significant improvement
and exhibiting good robustness in the classification results, with the average accuracy of
classification across all terrain objects reaching 98.1% (IP dataset), 99.4% (S dataset), and
99.3% (B dataset), including the terrain objects that share similar attributes (untrained
grapes, untrained vineyard, and vineyard vertical trellis) and relatively few samples in the
IP dataset (alfalfa, grass-pasture-mowed, oats, and stone-steel-towers) and the B dataset
(hippo grass and exposed soils).
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Table 8. The classification results from using different methods on the Indian Pines dataset.

Indian Pines 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.656 0.436 0.543 0.000 0.086 0.978
2 0.563 0.646 0.815 0.454 0.491 0.982
3 0.626 0.424 0.591 0.555 0.313 0.961
4 0.543 0.362 0.825 0.416 0.269 0.947
5 0.710 0.821 0.868 0.361 0.664 0.996
6 0.916 0.894 0.969 0.857 0.878 0.995
7 0.864 0.323 0.700 0.343 0.077 1.000
8 0.907 0.939 0.968 0.939 0.912 0.996
9 0.000 0.538 0.944 0.000 0.329 1.000

10 0.586 0.566 0.762 0.640 0.068 0.979
11 0.433 0.670 0.808 0.709 0.175 0.986
12 0.535 0.599 0.731 0.339 0.500 0.981
13 0.952 0.956 1.000 0.921 0.930 1.000
14 0.924 0.928 0.952 0.843 0.847 0.987
15 0.582 0.575 0.665 0.532 0.429 0.912
16 0.794 0.852 0.903 0.839 0.880 0.989

Kappa 0.601 0.655 0.789 0.610 0.449 0.974
AA 0.662 0.658 0.815 0.547 0.491 0.981

OA (%) 64.466 69.908 81.615 66.016 50.331 97.698

Table 9. The classification results from using different methods on the Salinas dataset.

Salinas 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.983 0.997 0.976 0.995 0.991 0.993
2 1.000 0.998 0.999 0.995 1.000 1.000
3 0.997 0.983 0.988 0.985 0.995 1.000
4 0.997 0.988 0.992 0.996 0.996 0.999
5 0.996 0.981 0.996 0.989 0.994 1.000
6 0.996 0.999 0.992 0.999 1.000 1.000
7 0.993 0.998 0.993 0.996 0.998 1.000
8 0.920 0.778 0.905 0.878 0.911 0.985
9 0.997 0.987 0.996 0.997 0.998 1.000

10 0.977 0.963 0.955 0.955 0.973 0.995
11 0.972 0.975 0.957 0.946 0.978 0.998
12 0.985 0.985 0.978 0.991 0.987 0.997
13 0.987 0.976 0.988 0.977 0.992 0.998
14 0.971 0.948 0.977 0.965 0.987 0.994
15 0.875 0.239 0.826 0.798 0.869 0.975
16 0.940 0.994 0.913 0.986 0.964 0.972

Kappa 0.947 0.858 0.929 0.933 0.950 0.987
AA 0.974 0.924 0.964 0.966 0.977 0.994

OA (%) 95.225 87.401 93.643 94.012 95.503 98.851
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Table 10. The classification results from using different methods on the Botswana dataset.

Botswana 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.998 1.000 1.000 1.000 1.000 1.000
2 0.989 0.978 0.984 0.906 0.984 1.000
3 0.998 0.971 0.980 0.915 0.736 1.000
4 0.956 0.904 0.950 0.754 0.831 1.000
5 0.852 0.836 0.876 0.719 0.786 0.985
6 0.808 0.760 0.795 0.610 0.844 0.974
7 0.994 0.991 0.996 0.987 0.969 1.000
8 0.986 0.958 0.984 0.893 0.894 1.000
9 0.896 0.760 0.898 0.765 0.906 0.987

10 0.796 0.942 0.984 0.866 0.332 0.972
11 0.862 0.955 0.995 0.965 0.975 0.980
12 0.905 1.000 0.991 0.981 0.832 1.000
13 0.897 0.998 0.994 0.919 0.673 1.000
14 0.988 0.951 0.944 0.982 0.944 1.000

Kappa 0.907 0.914 0.948 0.855 0.822 0.991
AA 0.923 0.929 0.955 0.876 0.836 0.993

OA (%) 91.382 92.100 95.212 86.662 83.550 99.138

Table 11. The classification results from using different methods on the Pavia Centre dataset.

Pavia Centre 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.999 0.996 0.994 0.999 0.997 0.998
2 0.961 0.985 0.972 0.980 0.990 0.996
3 0.893 0.950 0.911 0.941 0.961 0.979
4 0.834 0.980 0.965 0.950 0.977 0.999
5 0.949 0.993 0.991 0.985 0.990 0.999
6 0.961 0.988 0.985 0.982 0.988 0.997
7 0.945 0.988 0.979 0.978 0.988 0.999
8 0.996 0.996 0.994 0.999 0.998 0.998
9 0.990 0.998 0.998 1.000 1.000 1.000

Kappa 0.976 0.985 0.977 0.989 0.990 0.993
AA 0.948 0.986 0.977 0.979 0.988 0.996

OA (%) 98.285 98.944 98.376 99.250 99.259 99.540

Table 12. The classification results from using different methods on the Pavia University dataset.

Pavia University 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.900 0.974 0.972 0.969 0.983 0.992
2 0.952 0.968 0.956 0.975 0.976 0.982
3 0.678 0.940 0.948 0.938 0.943 0.983
4 0.938 0.983 0.981 0.936 0.981 0.994
5 0.999 0.995 0.999 1.000 0.999 0.999
6 0.880 0.991 0.987 0.962 0.985 0.998
7 0.728 0.961 0.964 0.911 0.964 0.992
8 0.771 0.961 0.978 0.948 0.964 0.991
9 0.994 0.995 0.995 0.995 0.999 1.000

Kappa 0.865 0.945 0.933 0.949 0.958 0.973
AA 0.871 0.974 0.976 0.959 0.977 0.992

OA (%) 89.839 95.784 94.852 96.151 96.803 97.961
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Figure 9. Classification maps and overall accuracy from using different methods on the Indian Pines
dataset.
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Table 13. The classification results from using different methods on the KSC dataset.

KSC 3D CNN RNN MC 3D CNN 3D CNN Res 3D ResNet MSLN

1 0.065 0.536 0.935 0.917 0.894 0.988
2 0.000 0.000 0.885 0.636 0.822 0.980
3 0.526 0.000 0.779 0.539 0.947 0.976
4 0.000 0.009 0.504 0.277 0.562 0.886
5 0.000 0.000 0.671 0.400 0.460 0.928
6 0.000 0.000 0.694 0.567 0.503 0.894
7 0.000 0.000 0.842 0.000 0.662 0.960
8 0.000 0.224 0.868 0.833 0.889 0.979
9 0.000 0.000 0.935 0.922 0.966 0.998

10 0.275 0.187 0.853 0.785 0.848 0.988
11 0.000 0.582 0.971 0.901 0.924 1.000
12 0.588 0.361 0.829 0.740 0.770 0.978
13 0.409 0.743 0.965 0.931 0.954 0.999

Kappa 0.200 0.360 0.852 0.759 0.827 0.974
AA 0.143 0.203 0.825 0.650 0.785 0.966

OA (%) 31.748 44.542 86.652 78.401 84.478 97.698Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 29 
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Figure 11. Classification maps and overall accuracy from using different methods on the Botswana
dataset.

The PC and PU datasets each have nine disjoint classes of terrain objects with excellent
connectivity and whose attributes are simplex, while the connectivity is slightly inferior for
the terrain objects asphalt, shadows, gravel, and bare soil, which are exposed to more noise,
highlighting the issue of “distinct objects with the same spectrum” and even resulting in as
low as a 67.8% classification accuracy for some algorithms. Through the double constraints
of shallow and deep features, the algorithm produced in this study could improve the
classification results so that the classification accuracies for the above terrain objects were
97.9%, 99.9%, 98.3%, and 99.8%, respectively, and that the object–spectrum confounding
issue was addressed effectively.
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Figure 14. Classification maps and overall accuracy from using different methods on the KSC da-
taset. 
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Figure 14. Classification maps and overall accuracy from using different methods on the KSC dataset.

The KSC dataset has 7 swamp types out of the 13 classes of terrain objects, which
presented increased considerable difficulty regarding terrain classification, leading to all
comparison algorithms being unable to effectively distinguish the discriminative features
of different types of swamps during learning, mainly because of the “the same object with
distinct spectra” circumstance being very obvious for swamps; therefore, the validation ac-
curacies of all comparison algorithms shown in Figure 15e were highly unstable. According
to the classification results, the fused features extracted via multi-shortcut-link networks
by the algorithm produced in this study could express the abstract attributes of “the same
object with distinct spectra” very well. The accuracy of classification results was 96% at
minimum for the swamp type of terrain objects, and the classification results for salt marsh
were all correct. However, the classification results remained not very high for cabbage
palm and oak hammock, as well as oak and broadleaf hammock, which have extremely
similar spectral signatures, mainly because these two pairs of terrain objects have quite
similar shallow features and inferior connectivity, in addition to more noise in the datasets
such that the classification accuracies were only 88.6% and 89.4%, respectively.
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Figure 15. (a–f) Comparison of epoch validation accuracy and overall accuracy for different da-
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while diminishing overfitting. Therefore, the algorithm proposed in this study took a 
shorter training time to achieve the highest accuracy compared with other models. 

Figure 15. (a–f) Comparison of epoch validation accuracy and overall accuracy for different datasets.

To better indicate the parameter size of each network structure, the upper limit of
the vertical coordinate in Figure 16 was set to 25 MB, mainly because of the great number
of channels in the 3D ResNet algorithm and the large parameter size (130.20 ± 0.65 MB)
when the six datasets were learned, which also coincided with the longest training time.
It can be seen from Figure 16 that the parameter size of the MSLN network structure was
10.87 ± 0.27 MB, while Figure 17 indicates that the learning time of the algorithm proposed
in this study failed to increase with the increase in parameter size. This fully illustrated
that the multi-shortcut-link network structure proposed in this study not only improved
the overall classification accuracy but also shortened the model’s training and learning
times while diminishing overfitting. Therefore, the algorithm proposed in this study took a
shorter training time to achieve the highest accuracy compared with other models.
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5. Conclusions

In view of the characteristics of hyperspectral images, such as few labeled samples,
excess noise, and homogeneity with heterostructures, this study built a multi-shortcut-link
network structure to extract the 3D spatial–spectral information of HSIs based on the
properties of a 3D CNN and the shortcut link characteristics in a ResNet and tested six
groups of HSI datasets by making full use of the shallow representational features and
deep abstract features of HSIs. The results showed the following: (i) The MSLN could
directly input the cube data of the HSIs and could then effectively extract the spatial–
spectral information. The hybrid use of activation functions ensured the integrity of the
nonlinear features of input data, which not only improved the use ratio of neurons but
also increased the model’s rate of convergence. (ii) The multi-shortcut-link network’s
structure fused shallow features and deep features, which reduced the gradient loss of
deep features, solved the degeneration of the deep network satisfactorily, and enhanced
the network’s generalization ability. The L-softmax loss function endowed the learned
features with stronger discriminatory power, effectively addressing the issue of “the same
object with distinct spectra, and distinct objects with the same spectrum” and achieving
more significant classification results. Therefore, the MSLN proposed in this study could
effectively improve the overall classification result.

Although the multi-shortcut-link network’s structure proposed in this study demon-
strated extraordinary superiority regarding performance and classification accuracy, no
discussion has ever covered the issues of information interaction and weight allocation
between different channels. In future work, the attention mechanism will be introduced
while the network is deepened, and the relevance between space and channels will be
utilized to enhance the discriminatory power of the features of terrain objects with inferior
classification accuracy to achieve higher classification accuracy.



Remote Sens. 2022, 14, 1230 25 of 28

Author Contributions: Conceptualization, M.S.; methodology, H.Z.; software, H.Z.; validation, Y.C.,
G.G. and X.G.; formal analysis, Y.J.; investigation, J.M.; resources, Y.C.; data curation, Y.C.; writing—
original draft preparation, H.Z.; writing—review and editing, Y.J.; visualization, H.Z.; supervision,
M.S.; project administration, M.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

List of Acronyms:

HSI Hyperspectral image
SVM Support vector machine
ELM Extreme learning machine
ANN Artificial neural network
SAE Stack autoencoding
DBN Deep belief network
RNN Recurrent neural network
CNN Convolutional neural network
ResNet Residual network
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