
����������
�������

Citation: Zhang, Y.; Zhang, S.; Gao,

Y.; Li, S.; Jia, Y.; Li, M. Adaptive

Square-Root Unscented Kalman

Filter Phase Unwrapping with

Modified Phase Gradient Estimation.

Remote Sens. 2022, 14, 1229. https://

doi.org/10.3390/rs14051229

Academic Editors: Zhong Lu,

Lei Zhang and Deodato Tapete

Received: 29 November 2021

Accepted: 28 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Adaptive Square-Root Unscented Kalman Filter Phase
Unwrapping with Modified Phase Gradient Estimation
Yansuo Zhang 1,2 , Shubi Zhang 1,2,*, Yandong Gao 1,2 , Shijin Li 1,2 , Yikun Jia 1,2 and Minggeng Li 1,2

1 Key Laboratory of Land Environment and Disaster Monitoring, MNR, China University of Mining and
Technology, Xuzhou 221116, China; yszhang@cumt.edu.cn (Y.Z.); ydgao@cumt.edu.cn (Y.G.);
shijin_li@cumt.edu.cn (S.L.); ykjia@cumt.edu.cn (Y.J.); prom_lee@cumt.edu.cn (M.L.)

2 School of Environment Science and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China

* Correspondence: zhangsbi@cumt.edu.cn; Tel.: +86-135-0521-9021

Abstract: Phase unwrapping (PU) is a key program in data processing in the interferometric synthetic
aperture radar (InSAR) technique, and its accuracy directly affects the quality of final SAR data
products. However, PU in regions with large gradient changes and high noise has always been a
difficult problem. To overcome the limitation, this article proposes an adaptive square-root unscented
Kalman filter PU method. Specifically, a modified phase gradient estimation (PGE) algorithm
is proposed, in which a Butterworth low-pass filter is embedded, and the PGE window can be
adaptively adjusted according to phase root-mean-square errors of pixels. Furthermore, the outliers
of the PGE results are detected and revised to obtain high-precision vertical and horizontal phase
gradients. Finally, the unwrapped phase is calculated by the adaptive square-root unscented Kalman
filter method. To the best of our knowledge, this article is the first to combine the modified PGE
with an adaptive square-root unscented Kalman filter for PU. Two sets of simulated data and a
set of TerraSAR-X/TanDEM-X real data were used for experimental verification. The experimental
results demonstrated that the various improvement measures proposed in this article were effective.
Additionally, compared with the minimum-cost flow algorithm (MCF), statistical-cost network-flow
algorithm (SNAPHU) and unscented Kalman filter PU (UKFPU), the proposed method had better
accuracy and model robustness.

Keywords: phase unwrapping (PU); interferometric synthetic aperture radar (InSAR); adaptive
square-root unscented Kalman filter; phase gradient estimation (PGE)

1. Introduction

Interferometric synthetic aperture radar (InSAR) has been widely used in detecting
crustal deformation [1–3], creating digital elevation models (DEMs) [4,5], etc. Phase un-
wrapping (PU) is an imperative step in data processing in the InSAR technique. To date,
dozens of PU methods have been proposed [6]. However, the error in PU results is relatively
great in regions with large gradient changes, and the robustness of PU methods is usually
poor in high-noise regions, both of which are the research focus of the PU technique. Classi-
cal PU methods are limited by the phase continuity assumption [6], which makes it difficult
to obtain ideal results in regions with large gradient changes. Although multi-baseline PU
methods [7] can eliminate the limitations of the phase continuity assumption, there are still
some difficulties in the baseline ratio and the acquisition of multi-baseline data. Therefore,
it is important to develop a PU method that can obtain better PU results in regions with
large gradient changes and high noise.

The minimum-cost flow algorithm (MCF) [8] and statistical-cost network-flow algo-
rithm (SNAPHU) [9] are currently the most commonly used PU methods in engineering
applications. These two methods can be classified into minimum-norm PU methods.
Such algorithms are also represented by the least-squares method [10] and the LP-norm
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method [11], which essentially transform the PU into an optimization-based problem.
Other classical PU methods are based on path-following, which are represented by branch-
cut [12], region-growing [13] and minimum discontinuities [14]. Hence, some researchers
have proposed many improvement measures based on the above methods [15–17] and even
devised more innovative PU methods, such as PU methods based on the traveling salesman
problem [18] and on the ant colony algorithm [19]. Lately, Yu et al. [20] proposed a novel
minimum-infinity-norm-based PU method that could not only keep the fringe-congruency
in the high-quality regions, but also filter the input phase fringes in the noisy regions. Tlili
et al. [21] proposed a PU method based on energy minimization from contextual modeling,
which considered both local and global constraints of the interferogram. Gao et al. [22]
proposed a phase-slicing 2-D PU method using the L1-norm, which could effectively reduce
the phase gradient interval. Accordingly, these novel methods have greatly broadened the
research direction of PU.

The general PU methods need prefiltering, as incomplete filtering will cause the
appearance of a large number of noise residuals, and excessive filtering will cause a loss
of necessary phase information. Thus, PU methods based on Kalman filters have been
extensively studied. The advantage of these methods is that filtering and unwrapping
programs are run at the same time. Xie et al. [23,24] proposed an unscented Kalman
filter (UKF) phase unwrapping (UKFPU) method and combined the maximum-likelihood
phase gradient estimation (PGE) method and path-following strategy, which obtained
ideal unwrapped results. In addition, Xie et al. [25] introduced the unscented information-
filtering (UIF) model to the PU and combined the PGE method based on local frequency
estimation and the heapsort algorithm, to further improve the efficiency of the unwrapping
model and the accuracy of the unwrapped results. Similarly, Gao et al. [26] proposed an
adaptive UKFPU method combined with median filtering that was more robust and could
obtain relatively ideal unwrapped results in high-noise and low-coherence regions. Liu
et al. [27] proposed a simplified cubature Kalman filter phase unwrapping (CKFPU) method.
Compared to the UKFPU method, the CKFPU method does not need to set parameters
when generating the sampling points. However, the operation of the programs may be
easily blocked due to inappropriate selection of some parameters. For the particularity of
the PU problem, the robustness and accuracy of the PU methods based on Kalman filtering
still need to be further improved, especially in regions with large gradient changes and
high noise.

One of the main factors for the vast majority of PU methods in obtaining high-precision
results is whether accurate PGE results in the horizontal and vertical directions can be
acquired. Particularly in regions with high noise and dense interferometric fringes, it is
challenging to obtain extraordinarily effective PGE results. The multi-baseline PU methods,
which eliminate the limitation of the phase continuity assumption due to expansion of
the range of phase gradient ambiguity numbers, still rely on high-precision PGE results.
In short, PGE has an extremely important impact on PU. The phase gradient information
can be obtained by analyzing the interferometric fringe frequency of the interferogram.
The classical fringe frequency estimation methods are mainly based on the phase differ-
ence [28,29], maximum likelihood (ML) [28,30], modified multiple-signal classification
(MUSIC) [31,32], etc. The methods based on phase difference require the process of local
PU. In regions with large gradient changes and high noise, the conventional PU meth-
ods cannot obtain the absolute phase of the local region correctly due to factors such as
phase under-sampling, which causes inaccurate results of local fringe frequency estima-
tion [28,33]. The ML and MUSIC-based methods assume that there is only one frequency
in the estimation window, i.e., high-order frequencies are ignored. In addition, the size and
shape of the estimation window will affect the accuracy of fringe frequency estimation [29].
Among the many PGE methods, ML-based local frequency estimation methods, such as the
Amended Matrix Pencil Model (AMPM) [34], which consider both accuracy and efficiency,
have been applied to many PU methods.
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In view of the great errors in unwrapped results in regions with large gradient changes
and high noise, this article proposes an adaptive square-root unscented Kalman filter
phase unwrapping method, which is jointly abbreviated as the ASRUKFPU method. The
ASRUKFPU method combines the modified PGE algorithm and the adaptive square-root
unscented Kalman filter. To begin with, we have modified the PGE method based on
local frequency estimation. On the one hand, we integrate the Butterworth low-pass filter
into the PGE method; on the other hand, the PGE window can be adaptively selected
on the basis of phase root-mean-square errors of interferogram pixels. Furthermore, in
light of the frequency estimation results, we use a simple method to detect and revise the
outliers. Finally, we employ an adaptive technique and square-root filtering to ameliorate
the UKFPU method, i.e., the ASRUKFPU method. The processing results of the simulation
data and real data show that the ASRUKFPU method has better unwrapped results and
better model robustness in regions with large gradient changes and high noise than MCF,
SNAPHU and UKFPU.

The rest of this article is organized as follows. In Section 2, the basic theories of PU
and UKFPU are described. The modified PGE algorithm is presented in Section 3. Then,
Section 4 provides a detailed implementation of the ASRUKFPU method. Section 5 analyzes
the experimental results compared to those acquired with MCF, SNAPHU and UKFPU
using simulated and TerraSAR-X/TanDEM-X real data, respectively. In Section 6, the
advantages and limits of the proposed method are further discussed. Finally, conclusions
are outlined in Section 7.

2. Phase Unwrapping Theory
2.1. Basic Theory of Phase Unwrapping

In general, the absolute phase is always wrapped in the interval (−π, π] in a nonlinear
way. The wrapping function [6] is shown below:

ϕ(k) = ψ(k)− 2n(k)π, (1)

where k represents the coordinate of the pixel, ϕ(k) and ψ(k) are the wrapped phase and
absolute phase, respectively. n(k) represents the ambiguity number. To extract more reliable
information from the phase of the signal, an appropriate integer multiple of 2π must be
allocated to the wrapped phase. For single-baseline PU methods, the phase gradient is
limited by the phase continuity assumption:

∆ψ(k) = [ϕ(k)− ϕ(k− 1)]|2π , (2)

where ∆ψ(k) represents the PGE result of the absolute phase from pixel k to pixel k− 1
obtained from the modulo 2π mapped wrapped phase-difference. Therefore, the change in
phase gradient is limited to (−π, π] When the phase is without noise, the PGE result of the
absolute phase is equal to the PGE result of the wrapped phase. Consequently, the absolute
phase of adjacent pixels can be calculated as:

ψ(k) = ψ(k− 1) + ∆ψ(k) = ψ(k− 1) + ∆ϕ(k), (3)

where ∆ϕ(k) is the PGE result of the wrapped phase from pixel k to pixel k− 1. Ideally, the
PGE results of the absolute phase can be obtained from the wrapped phase. Unfortunately,
noise in the phase is so inevitable that PU cannot, in fact, be performed by estimating the
phase gradients using Equation (2). Particularly in regions with large gradient changes and
high noise, PGE becomes a difficult task. To address this issue, in this study, a modified
PGE algorithm is proposed to obtain high-precision vertical and horizontal PGE results.

2.2. Unscented Kalman Filter Phase Unwrapping

Since the novel PU method proposed in this study is based on UKFPU, it is necessary
to briefly introduce the UKFPU method here. The state and observation equations of
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the UKFPU mathematical model are shown in Equation (4). To facilitate the expression,
we transform the two-dimensional UKFPU into a one-dimensional program to describe,
and the one-dimensional coordinate k is used instead of the two-dimensional coordinate
(m, n) of the pixel in the interferogram. Combined with the previous PU theory, from the
relationship between the adjacent pixels in the interferogram and the characteristics of the
interference complex signal, it can be obtained that:

ψ(k) = ψ(k− 1) + µ(k− 1) + ω(k− 1) = F[ψ(k− 1), k− 1] + ω(k− 1)

ϕ(k) =
[

sin(ψ(k))
cos(ψ(k))

]
+

[
υ1(k)
υ2(k)

]
= H[ψ(k)] + υ(k)

, (4)

where µ(k− 1) is the real PGE result at pixel k− 1, ω(k− 1) is the estimation error of the
phase gradient at pixel k− 1, and F[·] represents the coefficient of the state equation. υ1(k)
and υ2(k) are the variances of the observations, and H[·] represents the coefficient of the
observation equation.

Assume that ψ(k− 1) is the state estimation value at pixel k − 1, and P(k − 1) is
the estimation error covariance of the state variable ψ(k− 1). UKFPU approximates the
distribution of the predicted values after the nonlinear transformation by selecting sigma
points. For the state estimation value, the sigma points can be expressed as:

σi = ψ(k− 1) i = 0

σi = ψ

(
k− 1) +

{√
(N + η)P(k− 1)

}
i

i = 1, . . . , N

σi+N = ψ

(
k− 1)−

{√
(N + η)P(k− 1)

}
i

i = 1, . . . , N

, (5)

where {·}i represents the i-th vector of the matrix in parentheses. N represents the dimen-
sion of the state variable (here N = 1), and η = τ2(N + α)− N is the scale function, in
which parameters τ and α are used to adjust the sigma points. τ determines the dispersion
degree of the sigma points near the mean, and α is redundant. In this paper, we have set
τ = 0.01 and α = 0 according to the previous reference [23]. Furthermore, the adjustment
method can be found in [35]. The corresponding weight coefficients are:

wp
i = η/(N + η) i = 0

wq
i = η/(N + η)+(1 − τ2 + ζ) i = 0

wp
i = wq

i = 1/2(N + η) i = 1, 2, . . . , 2N
, (6)

where wp
i is the weight of the sigma point and the sigma point for predicted measure-

ments, wq
i is the weight used to calculate the prediction-value-error covariance matrix

and predicted-measurements-error covariance matrix, and ζ is the parameter of nonlinear
high-order information. For a Gaussian distribution, ζ = 2 is the best situation. Then, the
sigma points will be passed through the function F[·], and the state estimation value of the
predicted value and its estimation error covariance are calculated as:

χ−i (k) = F[σi(k− 1), k− 1] i = 0, 1, . . . , 2N
→
ψ
−
(k) =

2N
∑

i=0
wp

i · χ
−
i (k)

, (7)

P−ψψ(k) =
2N

∑
i=0

wq
i ·
[

χ−i (k)−
→
ψ
−
(k)
]
·
[

χ−i (k)−
→
ψ
−
(k)
]T

+ Q(k− 1), (8)

where χ−i (k) represents the predicted value of the sigma point of pixel k in the interferogram,

and
→
ψ
−
(k) is the state variable of pixel k. P−ψψ(k) is the covariance of the state prediction

error of pixel k, and Q(k− 1) represents the PGE error variance at pixel k− 1. Subsequently,
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the mean, covariance and cross-covariance of the sigma points are calculated by a nonlinear
measurement function H[·]: 

ϕ−i (k) = H
[
χ−i (k)

]
→
ϕ
−
(k) =

2N
∑

i=0
wp

i · ϕ
−
i (k)

, (9)

P−ϕϕ(k) =
2N

∑
i=0

wq
i ·
[

ϕ−i (k)−
→
ϕ
−
(k)
]
·
[

ϕ−i (k)−
→
ϕ
−
(k)
]T

+ R(k), (10)

P−ψϕ(k) =
2N

∑
i=0

wq
i ·
[

χ−i (k)−
→
ψ
−
(k)
]
·
[

ϕ−i (k)−
→
ϕ
−
(k)
]T

, (11)

where ϕ−i (k) represents the predicted observation,
→
ϕ
−
(k) is the measurement prediction

value of pixel k, P−ϕϕ(k) is the covariance of the measurement prediction, and P−ψϕ(k)
represents the covariance between the state variable and the measurement prediction. R(k)
is the variance of the measurement error of pixel k. Eventually, it is necessary to calculate
the Kalman gain matrix and update the state estimation value and its covariance:

gk = P−ψϕ(k)/P−ϕϕ(k), (12)

→
ψ
+
(k) =

→
ψ
−
(k) + gk ·

[
ϕ(k)−→ϕ

−
(k)
]
, (13)

P+
ψψ(k) = P−ψψ(k)− gk · P−ψϕ(k) · gk

T , (14)

where gk represents the Kalman gain matrix of pixel k,
→
ψ
+
(k) represents the state estimation

value of pixel k, and P+
ψψ(k) represents the covariance of the pixel-state estimation value of

pixel k. The state estimation value ψ and error covariance P in Equation (5) are replaced

by the state estimation
→
ψ
+

in Equation (13) and error covariance P+
ψψ in Equation (14),

respectively; then, Equation (5) to Equation (14) are iteratively calculated until the state
estimations of all the pixels of the interferogram are calculated.

3. Modified Phase Gradient Estimation Algorithm

Whether the PGE results of the interferogram can be accurately estimated is directly
related to the accuracy of the PU results. The local frequency estimation method based on
AMPM is a frequency estimation algorithm with good performance among the many PGE
methods. AMPM assumes that the eigenvectors corresponding to the large eigenvalues are
the useful phase signals, while the eigenvectors corresponding to the small eigenvalues
are the non-signal components, i.e., noise. However, this assumption is not strict enough,
because the boundary between large eigenvalues and small eigenvalues may not be clear.
In addition, we find that there is an overcorrection phenomenon in AMPM, which leads to
the loss of some useful phase information.

To explain the issue in more detail, we randomly deal with some pixels of certain
simulated data by singular value decomposition (SVD) after implementing noise-free and
noise-added conditions, respectively. Figure 1 shows the eigenvalue distribution of the
signal matrix by SVD, in which the black curve represents the eigenvalue distribution in the
presence of noise, and the blue curve is the eigenvalue distribution in the absence of noise.
The AMPM algorithm directly subtracts the average of the remaining eigenvalues from the
first eigenvalue of the black curve and then uses this value for a reconstruction calculation;
it can be clearly seen that the value obtained is less than the first value of the blue curve,
and the useful phase information represented by other eigenvalues on the blue curve is
also discarded. This phenomenon normally exists when using the AMPM algorithm to
estimate the phase gradient of pixels.
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3.1. Modified PGE Based on Local Frequency Estimation

When the pixels are in an ideal state, i.e., the interferometric phase of the pixels does
not contain noise, the large eigenvalues and small eigenvalues decrease markedly and the
eigenvalues are considered to be well distributed. However, the interferometric phase of the
actual pixels contains noise and the eigenvalues decrease evenly after SVD, which causes
problems for eigenvalue processing. To suppress the influence of high-frequency noise
on the PU while preserving the phase information as completely as possible, we propose
the modified PGE algorithm based on local frequency estimation by using a low-pass
filter (i.e., different weights are given to each eigenvalue) to solve the shortcomings of the
AMPM algorithm.

There are many kinds of low-pass filters, and the effects of low-pass filters applied to
local frequency estimation are different. The Butterworth filter, also known as the maximum
flat filter, is characterized by a frequency response curve that is as flat as possible in the
pass band without ripple, while it gradually decreases to zero in the stop band. Compared
to other low-pass filters (e.g., Chebyshev low-pass filter), the Butterworth filter can assign
more appropriate weights to large singularities and smaller weights to small singularities,
which reduces high-frequency noise while retaining as much useful phase information as
possible [36]. Therefore, a first-order Butterworth filter is used in this study to weight the
singular values of the eigenvalue matrix. The specific implementation process is described
as follows.

Based on the additive phase noise model, the complex interference signal Zt of pixel t
can be expressed as:

Zt = exp
[

j · (ϕt + ϕnoise
t )

]
, (15)

where ϕt represents the wrapped phase of pixel t, and ϕnoise
t is generally an independent

random variable with the mean value of 0 and the standard deviation of ευ. The interference
complex signal is composed of multiple sine waves, and it is difficult to directly estimate
all the frequency components. A local window can be used to calculate the main frequency,
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and assume that the frequency of the interference complex signal in the window is the
same. Equation (15) can be expressed as:

Zt = exp
[

j · 2π( f y
t r + f x

t s)
]
= exp

[
j · (∆yr + ∆xs)

]
, (16)

where f y
t and f x

t represent the local frequency estimation results of the pixel in the azimuth
and range in the window, with pixel t as the center. r and s represent the number of
rows and lines of pixel t in the interferogram, respectively. ∆y and ∆x represent the phase
gradient of azimuth and range in the local window, respectively.

Referring to Equation (16), when the frequency estimation results do not contain the
noise frequency and the useful signal information is retained as much as possible, the
estimation results of the phase gradient will be closer to the real PGE results. The modified
PGE algorithm is as follows:

Assume that It is the interferometric phase sample centered on pixel t, and the size
of the window is L× L. First, the complex interference signal matrix It is decomposed
by SVD:

It = UDVH , (17)

where U and V represent the L-order orthogonal unitary matrix, D is the corresponding
eigenvalue matrix, and D = diag(λ1, . . . , λL), λ1 ≥ . . . ≥ λL ≥ 0. The weight Wh of the
singular value is represented by the first-order Butterworth filter:

Wh =
1{

1 +
[
(∑h

a=1 λa)
(h·λh)

]2
} h = 1, 2, . . . , L. (18)

The interferometric phase sample matrix It is processed as:

It = U(W ·D)VH , (19)

Then the parent Hankel matrix and two sub-Hankel matrices [24] are constructed
according to the processed interferometric phase sample matrix It, as follows:

Ĩ
0
t = It(1 : L− 1, 1 : L− 1)

Ĩ
1
t = It(2 : L, 1 : L− 1)

Ĩ
2
t = It(1 : L− 1, 2 : L)

, (20)

where, Ĩ
0
t , Ĩ

1
t and Ĩ

2
t are the parent Hankel matrix and two sub-Hankel matrices, respectively.

The parent Hankel matrix Ĩ
0
t is decomposed by SVD again:

Ĩ
0
t = Ũ0D̃0Ṽ0

T , (21)

where Ũ0, D̃0 and Ṽ0 only have information corresponding to the main eigenvalues related
to the useful phase. The phase signal after dimensionality reduction can be obtained by
SVD combined with Equation (20), as shown in Equation (22). Because the phase data
matrix has a low rank structure, the noise can be suppressed after dimensionality reduction:

→
I

0

t = Ũ
T
0 Ĩ

0
t Ṽ0

→
I

1

t = Ũ
T
0 Ĩ

1
t Ṽ0

→
I

2

t = Ũ
T
0 Ĩ

2
t Ṽ0

, (22)
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where
→
I

0

t ,
→
I

1

t and
→
I

2

t are signal matrices reconstructed by the parent Hankel matrix and
two sub-Hankel matrices. The local frequency estimation results of the range and azimuth
of the sample in the window with pixel t as the center are as follows: f x

t = Arg(conj(
→
I

1+

t
→
I

0

t ))
2π

f y
t = Arg(conj(

→
I

2+

t
→
I

0

t ))
2π

, (23)

where,
→
I

1+

t and
→
I

2+

t are pseudoinverse matrices [34] of Ĩ
1
t and Ĩ

2
t , respectively, and conj(·)

is the conjugate multiplication factor of the matrix.

3.2. Adaptive Window of PGE

The window selection of local frequency estimation is also the main content of PGE.
The window of the frequency estimation is directly related to the results of the phase
gradient, and then affects the accuracy of the PU results. The presupposition of the
local frequency estimation method is that the interference fringes in the local regions are
stationary. Therefore, in the process of local frequency estimation, the window of the
frequency estimation must be considered to meet the presupposition. The slope of the
terrain can reflect the fluctuation of the terrain. The interference fringes in the regions with
large slopes are relatively dense, so we can set a small window to avoid destroying the
assumption that the local fringes are stable, while the fringes in the regions with small
slopes are relatively sparse, and a large window can be set up; this not only satisfies the
assumption of local fringe stability, but also increases the number of sample pixels, which
can improve the accuracy of the frequency estimation results. The root-mean-square error of
the interferometric phase of the pixels can reflect the density of the fringes. If the fringes are
dense, the root-mean-square error is large; otherwise, the root-mean-square error is small.
Hence, the interferometric phase root-mean-square error can be used to adaptively select
the window of the frequency estimation. The equation for calculating the root-mean-square
error of the interferometric phase is:

ξ = sqrt

[
l×l

∑
a=1

(Aa − A)
2/(l × l)

]
, (24)

where l × l is a small window size to judge the density of fringes. Aa represents the
amplitude of the interferometric phase of the a-th pixel in the local window, A is the
average of all Aa in the local window, and ξ represents the interferometric phase root-mean-
square error of the center pixel in the local window. In this study, we set up l = 5. It is worth
noting that for different interferograms, the ranges of the calculated root-mean-square error
of the interferometric phase are different, but we can normalize them to approximately
between 0 and 1 in a simple way. In this study, the size L × L of the local frequency
estimation window is set as follows:

L× L =



19× 19 0 ≤ ξ < 0.5
17× 17 0.5 ≤ ξ < 0.6
13× 13 0.6 ≤ ξ < 0.8
9× 9 0.8 ≤ ξ < 0.9
7× 7 ξ ≥ 0.9

. (25)

3.3. Detection and Revision of PGE Outliers

In regions with large gradient changes and high noise, the frequency estimation
results are prone to errors. To improve the accuracy of the frequency estimation results,
in this study, we propose a method to detect and revise the outliers of the frequency
estimation results. In a small window, the frequency change of the local interference fringes
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is relatively small, and there will be no large jumps, so the frequency estimation results
should be relatively continuous or even smooth. In fact, due to the factors such as large
phase gradient changes, dense fringes and poor interferometric phase quality, there is
an obvious discontinuity in the frequency estimation results in some local small regions.
If the frequencies of these misestimated pixels are revised accurately, it can further help
to improve the accuracy of the PU results. To begin with, it is necessary to identify the
pixels whose frequency estimation results are abnormal. The continuity of the frequency
estimates of the adjacent pixels in the range and azimuth can be determined by a sliding
window, which aims to identify the pixels with abnormal frequency estimation results. We
have specially developed an evaluation formula for this identification which discriminates
outliers based on whether the local frequencies are consistent, as shown in Equation (26):

Cf x
= sqrt(

M
∑

u=−M

M
∑

v=−M

∣∣∣ f x
(t+u,t+v) − f x

t

∣∣∣)
Cf y

= sqrt(
M
∑

u=−M

M
∑

v=−M

∣∣∣ f y
(t+u,t+v) − f y

t

∣∣∣) , (26)

where M is a parameter related to the window and is used for calculating continuity. In this
study, we set up M = 3, i.e., the size of the window is (2M+ 1)× (2M+ 1) = 7× 7. u and v
represent the degree of deviation from the central pixel t. C fx and C fy represent the credible
values of the frequency estimation results of pixel t in the range and azimuth, respectively.
When the amount of noise in the interferogram is relatively small, the interference fringes
in the local region are approximately stable, and the fringe frequency of the adjacent pixels
remains unchanged; thus the values of C fx and C fy are small. In contrast, when the amount
of noise in the interferogram is relatively large, the non-stationarity of the local interference
fringes is enhanced, and the values of C fx and Cfy are relatively large. When C fx and Cfy are
greater than the set threshold, the frequency estimation results of the pixel are unauthentic
and need to be revised. It is not worth noting, but must be noted that the thresholds are set
to C fxmax/2 and C fymax/2, where C fxmax and C fymax represent the maximum values of C fx

and C fy , respectively. When the credibility value exceeds the set threshold, the frequency
estimation results of the pixel are replaced with the average frequency of all pixels in a
window centered on pixel t as:

f̂ x
t = 1

(2M+1)×(2M+1)

M
∑

u=−M

M
∑

v=−M
f x
(t+u,t+v)

f̂ y
t = 1

(2M+1)×(2M+1)

M
∑

u=−M

M
∑

v=−M
f y
(t+u,t+v)

, (27)

where f̂ x
t and f̂ y

t represent the frequency estimation results of the revised pixels in the
range and azimuth, respectively. Based on the revised local frequency estimation results,
the high-precision PGE results of pixel t in range and azimuth can be obtained as:

∆x
t = 2π f̂ x

t and ∆y
t = 2π f̂ y

t , (28)

where ∆x
t and ∆y

t are the final PGE results of the range and azimuth of pixel t, respectively.

4. Adaptive Square-Root Unscented Kalman filter PU Method
4.1. Square-Root Unscented Kalman Filter PU Method

Compared with the UKF algorithm, the square-root unscented Kalman filter (SRUKF)
algorithm only needs the square root of the error covariance matrix for recursive calculation
instead of a complete covariance matrix, which ensures the non-negative definiteness of
the error covariance matrix, as reported in References [37,38]. Not only does it improve
the numerical stability of the algorithm, but it also merely needs to calculate and save the
square-root factor in the iterative calculation, which reduces the burden of computation.
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Hence, in this study, we introduce SRUKF to ameliorate the UKFPU technique. The
square-root unscented Kalman filter PU (SRUKFPU) process is as follows:

Similar to the UKFPU method, assume that ψ(k− 1) is the state estimation value at
pixel k− 1, and Sψψ(k− 1) is the square root of the error covariance of the state estimation
value at pixel k− 1. For the state estimation value, the sigma points shown in Equation (5)
will be changed to:

σi = ψ(k− 1) i = 0
σi = ψ

(
k− 1) +

{√
N + ηSψψ(k− 1)

}
i i = 1, . . . , N

σi+N = ψ
(
k− 1)−

{√
N + ηSψψ(k− 1)

}
i i = 1, . . . , N

(29)

The corresponding weight coefficients are still calculated according to Equation (6).
Then, the sigma points will be passed through the function F[·], and the state estimation
value will still be calculated as Equation (7). However, the square root of state estimation
error covariances will be calculated as:

Sψψ(k) = qr
{√

wq
i ·
(

χ−i (k)−
→
ψ
−
(k)
)

,
√

Q(k− 1)
}

S−ψψ(k) = cholupdate
{

Sψψ(k), χ−0 (k)−
→
ψ
−
(k), wp

0

} , (30)

where S−ψψ(k) represents the square root of the covariance of the state prediction error of
pixel k. qr{·} and cholupdate{·} represent the QR decomposition operation and Cholesky
divisor first-order update operation. Subsequently, the measurement prediction of pixel k
is still calculated as Equation (9). The square root of the covariance of the measurement
prediction is calculated as follows:

Sϕϕ(k) = qr
{√

wq
i ·
(

ϕ−i (k)−
→
ϕ
−
(k)
)

,
√

R(k)
}

S−ϕϕ(k) = cholupdate
{

Sϕϕ(k), ϕ−0 (k)−
→
ϕ
−
(k), wp

0

} , (31)

where S−ϕϕ(k) represents the square root of the covariance of the measurement prediction
at pixel k. The covariance between the state variable and the measurement prediction is
also calculated as Equation (11). Finally, it is indispensable to calculate the Kalman gain
matrix and update the state estimation value and the square root of its covariance.

gk = P−ψϕ(k)/
[
S−ϕϕ(k)

′/S−ϕϕ(k)
]
, (32)

→
ψ
+
(k) =

→
ψ
−
(k) + gk ·

[
ϕ(k)−→ϕ

−
(k)
]
, (33)

S+
ψψ(k) = cholupdate

{
S−ψψ, gk · S−ϕϕ,−1

}
, (34)

where S+
ψψ(k) represents the square root of covariance of the state estimation value at

pixel k. The state estimation value ψ and the square root of the error covariance of the

state estimation value Sψψ in Equation (29) are replaced by the state estimation
→
ψ
+

in
Equation (33) and the square root of error covariance S+

ψψ in Equation (34), respectively.
Then, the above calculation program is repeated until the state estimations of all the pixels
of the interferogram are calculated.

4.2. Adaptive Method

In the SRUKFPU method, the state and observation equations are relatively stationary,
which might lead to the instability of the model because of high noise in practical appli-
cations. To address this issue and ensure the reliability of the observation information,
in this section, we give the improvement measure of SRUKFPU. Needless to say, there
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are many adaptive techniques to refine Kalman filtering. For example, reference [39] lists
four methods to determine the adaptive factors for balancing the contribution of kinematic
model information and measurements. We hope that the measurement noise covariance
can be adjusted adaptively, which is realized by judging the difference between the ac-

tual wrapped phase ϕ(k) and the predicted wrapped phase
→
ϕ
−
(k). In other words, on

the basis of SRUKFPU, we adopt the square root of the measurement-noise equivalent
covariance matrix principle to make effective use of the observation information, following
references [40,41].

Primarily, the predictive residual information is calculated as:

Vk = ϕ(k)−→ϕ
−
(k), (35)

where Vk is the predictive residual information of the pixel to be unwrapped. The diagonal
elements of the equivalent covariance matrix for measurement noise covariance can be
expressed in the form of IGIII:

Ri(k) =


Ri(k) |vi| ≤ U0

Ri(k) · |vi |
U0
·
[

U1−U0
U1−|vi |

]2
U0 < |vi| ≤ U1

Ri(k) · 1010 |vi| > U1

, (36)

where Ri(k) represents the i-th diagonal element of the measurement noise covariance ma-
trix R(k), and Ri(k) represents the i-th diagonal element of the equivalent covariance matrix
R(k) of the measurement noise covariance matrix. U0 and U1 are constant thresholds of
decimal values, which can be set as needed. Routinely, 1.0 ≤ U0 ≤ 2.0 and 3.0 ≤ U1 ≤ 8.5.
vi is a standardized prediction residual, which can be acquired based on the variance
divisor calculated by the median operation, as shown below: vi = Vk/

(
σk ·

√
(S−ϕϕ · S−ϕϕ

′)i

)
σk = 1.483median

(∣∣Vk
∣∣/√(S−ϕϕ · S−ϕϕ

′)i

) , (37)

where S−ϕϕ is the square-root matrix of the covariance of the measurement prediction
obtained by Equation (31). (S−ϕϕ · S−ϕϕ

′)
i

represents the i-th diagonal element of the co-
variance matrix of the measurement prediction. median(·) is the median operator. The
R(k) in Equation (31) will be replaced by the equivalent covariance matrix R(k) of the
measurement noise covariance calculated by Equation (36), which will then participate in
the iterative calculation of the SRUKFPU algorithms. As a result, outlier separation and
revision of the square root of the measurement noise covariance may be realized; this has
the ability to perfect the SRUKFPU, i.e., ASRUKFPU method. A schematic representation of
the proposed ASRUKFPU method is shown in Figure 2. The main steps of the ASRUKFPU
method are as follows:

Step 1. Phase gradient estimation: Use the modified PGE algorithm with the adaptive
window to estimate the phase frequency of each pixel of the interferogram.

Step 2. Calculate the continuity of the phase frequency estimation results in Step 1,
detect and revise the outliers, and use the revised results as the final PGE results.

Step 3. Phase unwrapping: The ASRUKFPU method is used to calculate the state
estimation value of the waiting pixel and its square root of the corresponding covari-
ance. If there are pixels waiting to be unwrapped, execute the ASRUKFPU method again;
otherwise, end.



Remote Sens. 2022, 14, 1229 12 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 23 
 

 

where ( )iR k  represents the i-th diagonal element of the measurement noise covariance 
matrix ( )R k , and ( )iR k  represents the i-th diagonal element of the equivalent covari-
ance matrix ( )R k  of the measurement noise covariance matrix. 0U  and 1U  are con-
stant thresholds of decimal values, which can be set as needed. Routinely, 01.0 U 2.0≤ ≤  
and 13.0 U 8.5≤ ≤ . iv  is a standardized prediction residual, which can be acquired 
based on the variance divisor calculated by the median operation, as shown below: 

( )
( )

'

'

( )

1.483 ( )

ki k φφ φφ i

kk φφ φφ i

v V σ S S

σ median V S S

− −

− −

 = ⋅ ⋅


= ⋅


, (37) 

where φφS −  is the square-root matrix of the covariance of the measurement prediction 

obtained by Equation (31). '( )φφ φφ iS S− −⋅  represents the i -th diagonal element of the co-

variance matrix of the measurement prediction. ( )median ⋅  is the median operator. The 

( )R k  in Equation (31) will be replaced by the equivalent covariance matrix ( )R k  of the 
measurement noise covariance calculated by Equation (36), which will then participate in 
the iterative calculation of the SRUKFPU algorithms. As a result, outlier separation and 
revision of the square root of the measurement noise covariance may be realized; this has 
the ability to perfect the SRUKFPU, i.e., ASRUKFPU method. A schematic representation 
of the proposed ASRUKFPU method is shown in Figure 2. The main steps of the 
ASRUKFPU method are as follows: 

Step 1. Phase gradient estimation: Use the modified PGE algorithm with the adaptive 
window to estimate the phase frequency of each pixel of the interferogram. 

Step 2. Calculate the continuity of the phase frequency estimation results in Step 1, 
detect and revise the outliers, and use the revised results as the final PGE results. 

Step 3. Phase unwrapping: The ASRUKFPU method is used to calculate the state es-
timation value of the waiting pixel and its square root of the corresponding covariance. If 
there are pixels waiting to be unwrapped, execute the ASRUKFPU method again; other-
wise, end. 

 
Figure 2. Schematic representation of the proposed adaptive square-root unscented Kalman filter 
phase unwrapping (ASRUKFPU) with modified phase gradient estimation method. 

  

Figure 2. Schematic representation of the proposed adaptive square-root unscented Kalman filter
phase unwrapping (ASRUKFPU) with modified phase gradient estimation method.

5. Experimental Results
5.1. Simulated Data Results

To evaluate the accuracy of the ASRUKFPU method, we used the simulated data
as shown in Figure 3. The size of the simulated data was 256 × 256 pixels. We added
0.65 rad noise to the simulated wrapped phase, then the simulated noisy interferogram was
processed by MCF, SNAPHU, UKFPU and ASRUKFPU. Since the added noise was random,
we generated multiple noisy interferograms at the same noise level and unwrapped them
by MCF. Then the interferograms with the best PU results of MCF were unwrapped by
SNAPHU, UKFPU and ASRUKFPU methods. Figure 3a shows the three-dimensional
display of the simulated topographic phase, Figure 3b is the corresponding unwrapped
phase, Figure 3c is the simulated wrapped phase, and Figure 3d shows the simulated
wrapped phase with noise that is to be unwrapped. The average coherence of the simulated
interferogram after adding noise is 0.7180. To quantitatively evaluate the accuracy of the
PU results, we calculated the mean absolute error (MAE) between the actual unwrapped
phase and the simulated unwrapped phase:

MAE =
1

I × J

I

∑
m=1

J

∑
n=1

∣∣ψ̂m,n − ψm,n
∣∣, (38)

where ψ̂m,n represents the unwrapped phase at pixel (m, n), and ψm, n is the reference
unwrapped phase. I and J are the number of rows and lines of the interferogram.
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ASRUKFPU, and the accuracy of ASRUKFPU is significantly higher than that of UKFPU. 
In CPU time consumption, the SNAPHU used in the experiment is in the Doris software, 
which is not in the same computer system as the other three methods; therefore, the un-
wrapping time of the SNAPHU is not counted. That the machine used was an Intel(R) 
with a speed of 3.6 GHz, 8GB RAM, on which the algorithms other than SNAPHU in this 
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However, the unwrapping time of ASRUKFPU is slightly longer than that of UKFPU, 
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Figure 3. Simulated data for PU accuracy verification (unit is rad): (a) three-dimensional display of
the simulated terrain phase; (b) the simulated unwrapped phase; (c) the corresponding wrapped
phase; (d) the interferogram calculated by adding noise into (c). The noise is 0.65 rad.

The unwrapped results of the four PU methods are shown in Figure 4, from which it
can be seen that the PU results obtained by MCF and SNAPHU are not as smooth as those
obtained by UKFPU and ASRUKFPU. In other words, the noise residuals of UKFPU and
ASRUKFPU are significantly reduced after PU processing. From Figure 4c,f,i,l, we are able
to see the estimation error distribution histograms of the unwrapped results of the four
methods, in which we can see that the ASRUKFPU is significantly better than the other
three PU methods; this is demonstrated by the fact that the error range of the ASRUKFPU
is narrow, the errors are concentrated near 0 and have no large deviation, and the number
of errors near 0 is maximum. Table 1 shows that the accuracies of MCF and SNAPHU are
similar, but that their accuracies are obviously lower than those of UKFPU and ASRUKFPU,
and the accuracy of ASRUKFPU is significantly higher than that of UKFPU. In CPU time
consumption, the SNAPHU used in the experiment is in the Doris software, which is not
in the same computer system as the other three methods; therefore, the unwrapping time
of the SNAPHU is not counted. That the machine used was an Intel(R) with a speed of
3.6 GHz, 8GB RAM, on which the algorithms other than SNAPHU in this paper were
conducted using MATLAB R2019b software. It can also be found from Table 1 that the
unwrapping time of the UKFPU is the lowest and that of MCF is the longest. However, the
unwrapping time of ASRUKFPU is slightly longer than that of UKFPU, which may be due
to the addition of adaptive processing. Furthermore, the unwrapping time of ASRUKFPU
is still in the same order of magnitude as that of the UKFPU method. From this experiment,
it can be demonstrated that ASRUKFPU can obtain better unwrapped results, even in
regions with large gradient changes and high noise.

In addition, based on the simulated dataset, we analyzed the improved parts of the
ASRUKFPU. We combined the modified PGE with the adaptive window into the UKFPU
but did not detect the continuity of the phase frequency estimation results, and revised
the outliers. Using this method to unwrap the simulated noisy interferogram, the MAE
of the unwrapped results is 0.1693 rad. In Table 1, the MAE of the unwrapped results of
the UKFPU, combined with the local frequency estimation method based on AMPM, are
0.2674 rad; this indicates that the frequency estimation results of the modified PGE are
more accurate than AMPM. Meanwhile, in Table 1, the MAE of the unwrapped results
of ASRUKFPU, whose accuracy is higher than that of 0.1693 rad, are 0.1502 rad; this
also indicates that the detection and revision of PGE outliers and adaptive square-root
filtering are extraordinarily effective. Figure 5a,d are the PGE results of the simulated
noise-free interferogram in the horizontal and vertical directions, respectively, which are
also extremely close to the most ideal PGE results. Figure 5b,e are the PGE results of
the simulated noisy interferogram in the horizontal and vertical directions, respectively,
obtained by using the modified PGE algorithm; however, the frequency continuity detection
and the revision of outliers were not carried out. The discontinuity of the phase gradient
can be clearly seen from the red boxes. When the PGE results of Figure 5b,e were revised by
the algorithm proposed in Section 3.3, they were more continuous and smoother, as shown
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in Figure 5c,f, whose results are also closer to the PGE results of Figure 5a,d than those of
Figure 5b,e. These further prove that each improved part of the ASRUKFPU is effective.
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Table 1. The evaluation results of different methods on simulated data.

Methods Time (s) Error Range (rad) MAE (rad)

MCF 8.37 [−6.1326, 7.2449] 0.5995
SNAPHU - [−4.0745, 4.3385] 0.5941
UKFPU 1.07 [−1.7752, 1.9319] 0.2674

ASRUKFPU 3.03 [−2.0349, 1.3972] 0.1502
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Figure 5. PGE results (unit is rad). (a) PGE results of the simulated noise-free interferogram in the
horizontal direction. (b) PGE results of the simulated noisy interferogram in the horizontal direction
by using the modified PGE method, but the continuity detection and the revision of outliers are not
carried out. (c) PGE results after revision for outliers in the horizontal direction. (d) PGE results of the
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5.2. Robustness Analysis

The robustness analysis of PU models is also one of the main research tasks of the PU
technique. To demonstrate the robustness of the ASRUKFPU method, we added different
noises to another simulated dataset, as shown in Figure 6. It is worth noting that the
noise was generated by the coherence of different mean values and obeyed hypergeometric
distribution, which was closer to the actual noise than the white Gaussian noise [42]. Due
to the addition of noise to the simulated interferogram, a small reduction in coherence
occurred. Figure 6a is the three-dimensional display of the simulated terrain phase, and
Figure 6b is the corresponding simulated unwrapped phase, in the middle of which we see
an apparent topographic gradient change. Different amounts of noise were added to the
simulated wrapped phase, and the phase coherence was set at 0.90, 0.88, 0.86, 0.84, 0.82,
0.80, 0.78, 0.76, 0.74, 0.72, 0.70, and 0.65, as shown in Figure 6c. Similarly, MCF, SNAPHU,
UKFPU and ASRUKFPU were also used to process the series of noisy interferograms.

Accordingly, Figure 7 is a line chart for robustness analysis based on the unwrapped
results of different PU methods. When the coherence of the simulated interferogram
decreases, that is, the amount of noise increases, the unwrapping errors of the four PU
methods all show a gradual increasing trend, while the increasing trends of MCF and
SNAPHU are more prominent, and the increasing trends of UKFPU and ASRUKFPU are
relatively gentle. Regarding the accuracy of the PU results, the MAE of ASRUKFPU is



Remote Sens. 2022, 14, 1229 16 of 23

always the lowest with decreasing coherence. When the amount of noise is quite large,
the MAE of ASRUKFPU is much lower than that of MCF and SNAPHU, and further, the
MAE of ASRUKFPU is obviously lower than that of UKFPU. Consequently, this experiment
demonstrates that ASRUKFPU is more robust than other pervasive methods and is more
suitable for PU in regions with large gradient changes and high noise.
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5.3. TerraSAR-X/TanDEM-X Data Results

To further demonstrate the effectiveness of the ASRUKFPU method, we selected the
TerraSAR-X/TanDEM-X satellite images for experiments. The geographic location of the
study area was at the junction of Qingyang City, Gansu Province, China; and Binzhou City,
Shaanxi Province, China, as shown in Figure 8. The topography of the study area was the
gully of the Loess Plateau. The difference between the minimum and maximum elevations
of the study areas was about 300 m when the topography changed from loess flatlands to
mountainous areas, which can reflect the topographic gradient changes to a certain extent.
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Figure 8. Geographic location of the study area.

The size of the experimental data in the satellite image was 4000 × 4000 pixels. Before
PU processing, we performed 4 × 4 multi-looks on the real data and obtained the interfero-
metric phase image after registration, removing the flat phase and other processing steps as
shown in Figure 9a. The size of the interferogram after multi-looks was 1000 × 1000 pixels.
From the interferogram, we can see that the interferometric fringes in the mountain areas
are relatively dense and that there is a large number of noise residuals in these regions. On
the one hand, the topographic slope change is relatively large and uneven in the mountain
regions; on the other hand, the topographic slope changes sharply from the loess flatlands
to the mountains, which provides advantageous conditions for us to certify the effectiveness
of the ASRUKFPU method. Figure 9b is the reference unwrapped phase, generated by the
Shuttle Radar Topography Mission (SRTM) DEM, which is used to evaluate the accuracy of
diverse PU results. Assuming that the terrain inclination in a local small region is consistent,
the phase estimation of the terrain slope can be calculated according to reference [29], as
shown in Figure 9c.
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Similarly, the interferogram was processed by MCF, SNAPHU, UKFPU and AS-
RUKFPU. Figure 10 is the 3D display of the results of different PU methods for TerraSAR-
X/TanDEM-X data. The evaluation results of different methods on real data are shown in
Table 2. It can be seen that all kinds of PU methods are affected by noise residual. However,
the noise residuals after PU processing by UKFPU and ASRUKFPU are less than those
by MCF and SNAPHU. Obviously, the noise residuals of ASRUKFPU are less than those
of UKFPU, which shows that ASRUKFPU performs better in noise residual elimination.
Thanks to the superior filtering performance of ASRUKF, it is the method with the fewest
residuals among the four PU methods. Nevertheless, it is not sufficient to evaluate the
effectiveness of the ASRUKFPU method only by comparing the number of noise residuals,
because large gradient changes will also lead to noise residuals. To evaluate the accuracy
of ASRUKFPU more effectively, we used Equation (38) to calculate the MAE between the
unwrapped results of different PU methods and the reference unwrapped phase obtained
from SRTM DEM.
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Table 2. The evaluation results of different methods on TerraSAR-X/TanDEM-X data.

Methods Residuals Error range (rad) MAE (rad)

MCF 20,255 [−15.7956, 14.6263] 0.8411
SNAPHU 20,255 [−20.3866, 15.5055] 0.7822
UKFPU 2624 [−14.4530, 16.3758] 0.6981

ASRUKFPU 2253 [−11.5615, 11.7899] 0.5948

Intuitively, Figure 10c differs slightly from Figure 10d. Therefore, we specifically
created Figure 11 to analyze the error distribution of unwrapped results of different PU
methods more directly, which was generated by adjusting the viewing angle of the 3D
error map to (−45, 0). It is not worth noting but must be noted that the PU result is reliable
when the error is concentrated around zero. From Figure 11, we can see that the error
is mainly concentrated in the mountainous regions, and there are still many glitches in
these areas after PU by MCF and SNAPHU. Although there are certain glitches in the PU
results of UKFPU and ASRUKFPU, the error is significantly smaller than that of MCF and
SNAPHU. It is also worth noting that the maximum and minimum unwrapping errors
of MCF, SNAPHU and UKFPU are higher than those of the ASRUKFPU method, which
seems to indicate that the revision of PGE outliers and the adaptive method are meaningful,
ensuring that the unwrapping error will not deviate greatly. From Table 2, it can be seen
that the PU accuracies of MCF and SNAPHU are similar, while the latter two PU methods
obviously have higher accuracy, and the accuracy of ASRUKFPU is the highest among the
four PU methods.
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To demonstrate the advantages of the ASRUKFPU more intuitively, we extracted the
PU results of a line of pixels in the interferogram as shown in Figure 12. Notably, the
phase gradient of the line in the interferogram changes markedly, and the four PU methods
can obtain the absolute phase as a whole. Furthermore, we intentionally marked two
positions with black and red arrows in Figure 12, where we can clearly see the difference
between the results of the PU methods. At the positions shown by the red arrows, it
can be clearly seen that both MCF and SNAPHU have large PU errors, while UKFPU
and ASRUKFPU can accurately calculate the absolute phase at the same position. In the
positions shown by the black arrows, it is also obvious that MCF and SNAPHU have a large
unwrapping error. Although UKFPU and ASRUKFPU also have a certain unwrapping
error at this position, the unwrapped results of ASRUKFPU are closest to the ideal results
by comparison. In addition, it can be seen from the values that the unwrapped results of
ASRUKFPU at the positions indicated by the numerical values are closer to the ideal results
than the unwrapped results of UKFPU. In conclusion, the unwrapped results of UKFPU
and ASRUKFPU are better than those of MCF and SNAPHU. Hence, the unwrapped
results of ASRUKFPU are better than those of UKFPU, to a large extent. The experiment
further indicates that ASRUKFPU has a higher level of unwrapping accuracy and has better
unwrapped results in regions with large gradient changes and high noise.
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6. Discussion

The ASRUKFPU method proposed in this study is essentially a single-baseline PU
method based on path-following. Therefore, the method will still not eliminate the lim-
itation of the phase continuity assumption. However, there is no denying the fact that
the various improvements proposed in this study are effective and meaningful. It is well
known that one of the key steps in PU lies in the accurate estimation of the phase gradient.
So long as the PGE results are sufficiently accurate, it seems possible to obtain satisfactory
PU results according to the correct integral path. Hence, the modified PGE algorithm
proposed in Section 3 aims to improve the accuracy of the PGE results, and the first set
of simulation experiments also demonstrates that the algorithm and its various improved
parts are effective. It is worth noting that the main purpose of introducing the Butterworth
low-pass filter in this section is not for phase filtering, but to assist in the processing of
singular values; this is to retain as many useful phase signals as possible, since the local
phase frequency estimation algorithm based on SVD and the unscented Kalman filter
method have been able to process the noisy interferograms. Additionally, the ASRUKFPU
method enables the parallel processing of phase filtering and PU, so that the obtained
unwrapped results are smoother and more accurate. Furthermore, another set of simula-
tion experiments demonstrates that the model of the ASRUKFPU method is more robust.
The test of TerraSAR-X/TanDEM-X real data shows that the accuracy of ASRUKFPU is
improved by approximately 15% compared to UKFPU, and by about 30% compared to
MCF, which is significative in practical engineering applications.

The ASRUKFPU method proposed in this study has great potential for the production
of high-precision DEMs in local areas, especially for regions with elevation variations
exceeding the ambiguous height (i.e., the elevation difference that can be represented by
an interferometric phase period) and high noise. On the other hand, our method is also
suitable for surface deformation monitoring, especially in regions with large deformation
variables, e.g., mining areas, earthquake belts, volcanoes, etc. Lately, the deep-learning
technique has been widely studied in PU, which broadens the research direction of PU.
Next, we will try to combine deep learning with the ASRUKFPU method to obtain more
satisfactory PU results, even in regions with large gradient changes and high noise.

Nevertheless, there still exists a problem in this article that needs to be further studied.
In terms of computational efficiency, the computation of the ASRUKFPU method increases
due to the addition of some improvement measures, which is also closely related to the
implementation of the code to a certain degree. The authors are working on the problem
and hope to resolve it in the near future.
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7. Conclusions

In this research, the PU method based on an adaptive square-root unscented Kalman
filter with a modified phase gradient estimation algorithm is proposed. Specifically, square-
root filtering is introduced into UKFPU for the first time, and the Butterworth low-pass
filter is applied to the PGE based on local frequency estimation in PU for the first time.
In SRUKFPU, we also add an adaptive divisor to revise the outlier of the square root
of the measurement noise covariance. Moreover, the window for calculating the phase
gradient can be adaptively selected according to the phase root-mean-square error of the
interferogram pixels, and the outliers of the PGE results can also be detected and revised.
A set of simulated data experiments and a set of TerraSAR-X/TanDEM-X SAR image data
experiments have demonstrated that ASRUKFPU has higher accuracy than MCF, SNAPHU
and UKFPU. Another set of simulated data experiments indicates that ASRUKFPU has
better model robustness and higher accuracy than the other three methods. Particularly
in the regions with large topographic gradient changes and high noise, the unwrapped
results of ASRUKFPU are better.
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