
����������
�������

Citation: Fallatah, A.; Jones, S.;

Wallace, L.; Mitchell, D. Combining

Object-Based Machine Learning with

Long-Term Time-Series Analysis for

Informal Settlement Identification.

Remote Sens. 2022, 14, 1226. https://

doi.org/10.3390/rs14051226

Academic Editor: Saeid Homayouni

Received: 29 December 2021

Accepted: 23 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Combining Object-Based Machine Learning with Long-Term
Time-Series Analysis for Informal Settlement Identification
Ahmad Fallatah 1,2,* , Simon Jones 3 , Luke Wallace 4 and David Mitchell 3

1 Department of Geomatics, Faculty of Architecture and Planning, King Abdulaziz University,
Jeddah 21589, Saudi Arabia

2 The Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah 21589,
Saudi Arabia

3 School of Science, RMIT University, Melbourne, VIC 3000, Australia; simon.jones@rmit.edu.au (S.J.);
david.mitchell@rmit.edu.au (D.M.)

4 School of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
luke.wallace@utas.edu.au

* Correspondence: amfallatah@kau.edu.sa; Tel.: +966-506622399

Abstract: Informal settlement mapping is essential for planning, as well as resource and utility
management. Developing efficient ways of determining the properties of informal settlements (when,
where, and who) is critical for upgrading services and planning. Remote sensing data are increasingly
used to understand built environments. In this study, we combine two sources of data, very-high-
resolution imagery and time-series Landsat data, to identify and describe informal settlements. The
indicators characterising informal settlements were grouped into four different spatial and temporal
levels: environment, settlement, object and time. These indicators were then used in an object-based
machine learning (ML) workflow to identify informal settlements. The proposed method had a 95%
overall accuracy at mapping informal settlements. Among the spatial and temporal levels examined,
the contribution of the settlement level indicators was most significant in the ML model, followed by
the object-level indicators. Whilst the temporal level did not contribute greatly to the classification of
informal settlements, it provided a way of understanding when the settlements were formed. The
adaptation of this method would allow the combination of a wide-ranging and diverse group of
indicators in a comprehensive ML framework.

Keywords: informal settlement indicators; urbanisation; sustainable development goals (SDGs); machine
learning (ML); very-high-resolution (VHR); time-series analysis; object-based image analysis (OBIA)

1. Introduction

For many of the world’s urban poor, slums and informal settlements have become
the new reality. Informal settlements are the result of a pressing demand for shelter, rapid
urbanisation, and a scarcity of acceptable housing [1,2]. The term “informal settlement”,
as used in this paper, has a wide-ranging meaning, incorporating slums but also referring
to other unplanned settlements not authorised by local authorities. Providing timely and
accurate spatial information about informal settlements is essential. This information can
help to facilitate enhanced urban planning and service provision, as well as helping to
ameliorate social and environmental issues [3,4].

Because signatory countries will be expected to report their progress towards sus-
tainable development goals, the 2030 Agenda for Sustainable Development serves as a
planning framework for informal settlements (SDGs) [2]. Sustainable Development Goal
11.1.1 includes a series of aims pertinent to issues surrounding informal settlements, to be
met by 2030 [5]. Ending poverty and hunger, combatting inequities, preserving human
rights, promoting gender equality, and establishing conditions for long-term, inclusive,
and sustainable economic growth are among the targets [6]. Through the reduction (by
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at least half) in the number of people living in poverty and providing appropriate, safe,
and affordable housing, as well as essential services, including the upgrading of slums,
the 2030 agenda aims to improve the living conditions of informal settlement residents.
While evidence of a steady shift in poverty from rural to urban regions is developing, it is
obvious that updated data on urbanisation, especially the spread of informal settlements,
is required [7].

1.1. Spatial Data

High-quality urban data for use as a fact foundation are critical to decision-making
at multiple scales, and across a wide range of sectors. Non-governmental organizations
and researchers in developing nations, in particular, typically have difficulty accessing
these data [8]. In order to manage urban development and urban growth, spatial and
attribute data are essential requirements for establishing policies, urban studies, and future
planning [9]. Many approaches were proposed to evaluate urban growth and sprawl [10,11].
High amounts of geographical and temporal resolution data are required to understand the
dynamics of land-change processes in metropolitan settings [12]. Remote sensing data sets
are useful due to their synoptic view, recurring coverage and real-time data collection [13].

The spatio-temporal analysis of satellite images gives significant information regarding
changes in land cover and land use (LCLUC) [14,15]. The growing volume and accessibility
of remote sensing data has inspired several new methods for mapping key environmental
features and processes [16]. For example, using timeseries satellite images to identify
changes in forest cover and LCLUC is one of numerous viable but extremely variable
approaches [17,18]. Monitoring land changes is anticipated to provide useful data for
regional informal settlement management and planning, as well as a better understanding
of the underlying socioeconomic and biophysical mechanisms affecting observable land
changes in urban settings [18,19].

1.2. Object-Based Approaches for Informal Settlement Mapping

In terms of definitions, types, data availability, and procedures, monitoring informal
settlements from satellite images is challenging [20]. Object-based image analysis (OBIA)
approaches to classifying satellite imagery have demonstrated strong capability for over-
coming some of these challenges when compared with pixel-based algorithms for urban
identification [21]. OBIA methods can be applied to extract urban impervious surfaces
using a range of feature descriptors, including textural, spectral, semantic, topological, and
geometric information [22]. For object attribution, OBIA has the potential to capture hetero-
geneity utilizing contextual information and local knowledge [23]. OBIA approaches have
been tested for distinguishing formal from informal settlements in different environments
and at multiple scales [24–27].

In addition to base satellite images, combining OBIA with machine learning (ML)
classification algorithms enables the inclusion of geographical and other auxiliary data.
The utility of OBIA and the random forest ML algorithm was tested by [28] using physical
characteristics (i.e., slope) and remote-sensing-derived descriptors, providing a classifica-
tion accuracy of 91% for informal settlement mapping from GeoEye-1 imagery. In recent
works [4,17], the authors showed that ML algorithms have the highest reported accura-
cies in comparison to manually created rulesets and pixel-based approaches. ML-based
classifications also allow a broad set of indicators to be evaluated in a computationally
efficient manner. The random forest algorithm has become a good candidate for different
remote-sensing classification tasks using different data sources [28–35].

1.3. Monitoring Urban Change in Informal Settlements

Time-series analysis (TSA) is essential for the attribution of disturbance types and
land cover classes, especially for urban areas [36]. Many machine learning algorithms
have been applied to quantify LCLUC [37]. These algorithms have been developed to deal
with the monitoring of forest change over large geographic areas [38]. However, there is
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significant potential to test the utility of such algorithms in urban areas to better understand
the creation of informal settlements over time. There are many advantages to the adoption
of TSA approaches to detect changes and to map informal settlements. TSA is capable of
handling short-duration events and long, smooth trends. It is able to illustrate changes
and their duration, as well as when exactly they occur and their magnitude. First, the
problem of informal settlements is highly associated with developing countries. Second,
the whole historic Landsat archive held by the USGS is now freely available online in
highly pre-processed formats [39]. Therefore, there has been a significant growth in the
usage of Landsat data by many areas of society [36]. Third, [40] developed, evaluated, and
operationalised powerful automated algorithms capable of processing annual LTS. One of
the algorithm’s features is its sample design flexibility, specifically the ability to sample an
area of interest with statistical validity over space and time [40].

Rapid population growth in developing countries mostly affects metropolitan cities,
causing dynamics in LCLUC that mostly result in a decrease in natural resources [14].
There is a huge demand for detailed information on urban transformation across large
areas that is both temporally and spatially detailed, as well as for urban management
and policy features [41]. LandsatLinkr has been used to detect forest dynamics over large
areas using Landsat [35,42]. Furthermore, it has been used in urban applications, such as
surface temperature [43], depending on biophysical land surface components, and tourism
activities [14].

1.4. Objectives

Mapping heterogeneous objects throughout a large urban area is a time-consuming
and challenging task [43,44]. While OBIA and machine learning algorithms can produce
accurate maps of informal settlements from a single extremely-high-resolution image,
the integration of TSA into this process is yet to be properly investigated and validated.
Previous research has tended to concentrate on a limited number of images rather than
taking into consideration the temporal information obtained by Landsat sensors [43].
This research investigates how the TSA technique, combined with a single-date, very-high-
resolution (VHR) image, could be utilised to map informal settlements in the Middle Eastern
environment. The authors of [28] provide an overview of the indicators and parameters
that were used to map and monitor informal settlements at the object, settlement, and
environ levels. Therefore, in this research, we integrate two sources of data to map and
monitor informal settlements: very-high-resolution imagery and time-series Landsat data.
The informal settlements were identified using indicators that were extracted from the
data and grouped into four different spatial and temporal levels: environment, settlement,
object, and temporal. Table 1 shows the indicators used to map the informal settlements at
the object, settlement, environment, and temporal levels to produce an informal settlement
ontology. This was achieved through an object-based ML approach, in which features
from these two data sources were mapped onto the ontological classes proposed in [45].
These indicators were then used in an object-based machine learning (ML) workflow to
identify the informal settlements. Finally, the contribution of each class to the mapping of
the informal settlements was evaluated and discussed.
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Table 1. The indicators of informal settlements considered in this study including temporal level as a
new dimensional level to informal settlement mapping (adapted from [46]). For full details of the
parameters and indices used for mapping informal settlements, see [25,28].

Indicator Description and Expected Informal Settlement Values Level

Roofing extent of built-up area The total area occupied covered by buildings. High densities are
expected in urban settlements. Object

Dwelling size Mean dwelling size. Small dwellings (between <50 m2 and 380 m2)
are expected in informal settlements.

Object

Vegetation extent Total area covered by vegetation present. Low densities are
expected in urban settlements. Settlement

Lacunarity of housing structures Measures heterogeneity or ‘gappiness’ of empty spaces (lacunae)
between built-up structures. Low value expected. Settlement

Road segment type and materials Length and type of road segments. Less road elongation and fewer
regular road segments are expected in informal settlements. Settlement

Texture measures of built-up area Measurement of the arrangement of colour and within an area.
Less-structured and rapid changes expected in urban settlements. Settlement

Road accessibility

Accessibility of roads for a range of vehicle types. Narrower roads
less suitable for vehicular traffic; a higher proportion of dead-ends

(dangles) and fewer intersecting nodes expected in
informal settlements.

Settlement

Consistency of housing orientation
Consistency in orientation of the directions of line segments

describing buildings. Low consistency expected in
informal settlements.

Settlement

Dwelling shape The height and shape of dwellings, including the simplicity of
shape (four-sidedness). Simpler shapes in informal areas. Settlement

Dwelling road setback Distance of dwellings from roads. Precarious house placement and
lack of road setbacks expected in urban settlements. Settlement

Building density (dwelling separation) Spacing between buildings. A lower separation is expected in
informal settlements. Settlement

Proximity to hazards

Proximity to hazourdous or potentially hazardous areas, including
e-flood zones, hydrologic setbacks, landslide/earthquake, garbage
mountains, point source pollution, airports, energy transmission
lines, and major transportation. Informal settlements are more

likely to be closer to these hazards.

Environ

Geomorphology of terrain
Properties (slope, elevation, aspect of the terrain, and soil type).

Settlements built in gullies, ravines, steep slopes, and unstable soils
are more likely to be informal.

Environ

Proximity to city centre and social
services

Driving distance to the city centre and other civic services, such as
markets and healthcare facilities. Greater distances expected for

informal settlements.
Environ

Temporal development
The temporal properties of the most recent land cover change.

Informat settlements are expected to occur rapidly and present a
large difference in cover type.

Temporal

2. Material and Methods
2.1. Area of Study

The research was carried out in Jeddah, the most populous city in the west of Saudi
Arabia, with an estimated 3.4 million residents in 2009 and an annual growth rate of 2.2%
(2010 census). Jeddah has a continually increasing number of urban settlements (Figure 1).
The Jeddah Strategic Plan (2009) suggests that this driven by a shortage of housing for the
growing number of low- and middle-income residents. Population growth within Jeddah
is multifaceted, with new residents arising through natural growth, as well as illegal and
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legal immigration from outside the country and rural areas [47]. Currently, approximately
a million people live in such conditions [48]. The geographic location of Jeddah is shown
in Figure 2. For this study, a 70 km2 area was analysed; it is shown in Figure 2c. This
area contains a mixture of vegetation and residential and commercial buildings, with the
informal settlement section located mainly to the east.
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Figure 2. (a) The case study area investigated in this work; (b) Jeddah, a geographic region of Saudi
Arabia (image courtesy of Google Earth); (c) the green rectangle displays the case study’s extent.

2.2. Dataset

Two types of earth observation imagery were used in this study: single-date VHR
imagery from the GeoEye-1 sensor, and medium-resolution imagery from the Landsat
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archive. The VHR image, which was used to map informal settlements in a previous
study [28], was obtained on 8 January 2010, and has a resolution of 0.5 m, panchromatic,
and 2 m, multi-spectral.

The medium-resolution imagery, which comprised an annual composite time series
of 34 years covering the area archive, was created by combining many images using the
method shown in [47]. The USGS archive provided all accessible Landsat TM and ETM+
data, as shown in Table 2, with less than 20% cloud cover, from 1 June to 31 August
(summer in the northern hemisphere) for the years 1984–2018 (path 170 and row 45). The
Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm was used
to process surface reflectance information [48], which included a cloud mask computed
with the Landsat cloud mask (FMask algorithm) [49]. Following [47,50,51], the annual
summer composites were created using the best available pixel (BAP) method of image
compositing. Figure 3 shows four annual composites of this time series, highlighting the
dynamics of the urban extent of Jeddah from 1984 to 2018.

Table 2. Landsat TM/ETM + spectral bands.

TM Bands (µm) ETM + Bands (µm)

Band 1 (0.45–0.52) Band 1 (0.45–0.515)
Band 2 (0.52–0.60) Band 2 (0.525–0.605)
Band 3 (0.63–0.69) Band 3 (0.63–0.69)
Band 4 (0.76–0.90) Band 4 (0.75–0.90)
Band 5 (1.55–1.75) Band 5 (1.55–1.75)

Band 6 (10.40–12.50) Band 6 (10.40–12.50)
Band 7 (2.08–2.35) Band 7 (2.09–2.35)
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3. Methodology

To combine object-based ML with time-series analysis, the ontological framework
proposed was adopted from [45] and the informal settlement indicators suggested in [46]
were used. This ontological framework consists of the object, settlement, and environment
levels, as discussed in detail in [45]. The approach used to map remote-sensing-based
features to this framework and these indicators within the context of Jeddah developed
in [24] was adopted. In addition to the indicators and mapping proposed in [24], a temporal
level and associated indicators were included and described using TSA.

Figure 4 depicts the workflow used to map and describe informal settlements through
the combination of object-based ML and TSA. This process has three main phases: (1) TSA,
(2) object-based image analysis, and (3) image classification, which are described in the
following section. The method used to determine the success of the classification is also
described. The findings of this research are presented at four spatial levels: object, settle-
ment, environment, and temporal. In eCognition Developer 9.0, object-based mapping was
implemented, as well as random forest in the R programming environment. In Appendix A,
Table A1, there is a list of parameters and indices used to detect each indicator.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 4. Flow chart for informal settlement identification in Jeddah using an object-based random 
forest approach that incorporates data from the LandsatLinkr. 

3.3. Random Forest Classification 
The random forest classification algorithm was used to classify objects into the six 

land cover classes; informal settlements, formal settlements, vacant land, vegetation ex-
tent, road networks, and water bodies. In order to determine the effect of including TSA 
features, the classifier was run twice, once with the TSA features, and once without. 
McNemar’s test was then used to compare the classifications. The null hypothesis of 
McNemar’s test states that the same proportion of the population will be accurately iden-
tified with and without TSA measurements [64]. 

Training Data 
A visual interpretation of the VHR imagery was used to acquire the reference data. 

A stratified random distribution was used to choose the training data to represent each 
class, such as a road network and a built-up area. An overall number of 4,500 samples was 
chosen from the colour composite image, illustrating the variety of the image component 
sizes and shapes. This approach was used to ensure a statistically robust sample that was 
representative of the entire study area. At each point, the interpreter used the information 
within an image, as well as local knowledge, to allocate the point to one of the six classes 
(formal settlement, informal settlement, bare ground, vegetation, roads, and vacant land). 
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forest approach that incorporates data from the LandsatLinkr.

3.1. Time-Series Analysis (TSA)

The TSA was completed in two steps using existing algorithms: LandsatLinker (LLR)-
TimeMachine and LandTrendr. LLR is a Landsat image-processing system that links images
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spatially and spectrally together over time, producing annual cloud-free image composites
for spectral chronologies of 30 years or over [37,47]. The outputs are then used as inputs to
map complex changes using LandTrendr.

3.1.1. LandsatLinkr (LLR)-TimeMachine

The LLR was explicitly developed and used extensively to assess changes in forested
areas using annual Landsat time series [37,52]. LLR can be used to as an iterative method
for segmenting each pixel’s temporal trajectory into a sequence of straight lines (point-
to-point and regression), allowing essential parameters, such as the year and the amount
of the disturbance, to be detected. LLR is a tool to prepare Landsat images for further
analysis. Landsat images from OLI, ETM+ and TM sensors were downloaded from [53].
These images were then used to create a temporal image composite.

This step shows the trend of each sample over the selected period (1984–2018). The
main stages were the unpacking, the calibration of OLI to TM and ETM+, and the com-
positing of the images, as shown in Figure 4. Upon execution of the program, LLR was
automatically run through all the procedures for a given step defined in the LLR workflow
(Figure 4 below) for all the images in a given directory. For a detailed description of each
procedure, see [47].

A cloud cover mask was measured by analysing clear-sky and cloud-contaminated
data. For the reliable retrieval of LSTs, atmospheric profiles should be used as inputs for
simulations of the up-welling and down-welling radiances and transmissivity based on
a set of integration techniques [54]. By applying image cloud masks (including masking
ETM+ poor scan lines) and combining numerous overlapping images from the same year
into a single image using the mean [48] with version 0.5.0-beta, the time machine creates
annual cloud-free composites in the final step of LLR.

3.1.2. LandTrendr

The segmentation and labelling processes were performed using ENVI software, in
order to remove noise and simulate the main characteristics of the trajectory [47]. After
eliminating the shallowest angle, a new segment was drawn between the two neighbor-
ing vertices, and all the vertex angles were recalculated. Change-labeling and spatial
filtering were achieved by running an IDL batch file. Following [37], we used the de-
fault LandTrendr parameters, as shown in Appendix B Table A2. More detailed informa-
tion about LandTrendr parameterisation and value ranges can be found in [47,55]. The
LandTrendr labeling techniques were then used to extract the most significant disturbances
for each pixel.

We calculated the four Landsat spectral indices of Tasseled Cap (TC), brightness
(TCB), angle (TCA), wetness (TCW), and greenness (TCG), for each composite of surface
reflectance [35,47,56,57]. TCA was used as it was found to be most sensitive for detecting
changes in urban areas. Landsat imagery is frequently transformed using TC to minimize
data volume and improve data interpretability by emphasizing the structures in the spectral
data [56]. The trajectory for each index was then used to calculate the year and magnitude
(spectral difference) of the greatest change of each pixel. The LandTrendr outputs were
used as new indicators, as shown in Table 1, with the informal settlement indicators used
in a previous study [28].

3.2. Object-Based Image Analysis (OBIA)
3.2.1. Segmentation

Object-based image analysis starts with image segmentation to generate coherent
groups of similar pixels’ details within the image [58,59]. For this study, the aim of this
process was to represent basic land cover objects (buildings, road segments, grass patches)
as individual segments. Segments were generated from the VHR using the multi-resolution
segmentation tool in eCoginition following [23–25,60]. The parameterisation consisted of a
scale parameter of 40 and weights of 0.5 for both shape and compactness.
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3.2.2. Object Attribution

Following the segmentation, individual objects were attributed with image and TSA
features that acted as informal settlement indicators. These features can be divided into
three categories: spectral, shape, and temporal. The spectral features for each object
were derived from the VHR and consisted of the built-up area index (BAI) [28] and the
normalized difference vegetation index (NDVI) [61] and texture measures (contrast, entropy,
homogenous, correlation, and mean) calculated using the grey-level co-occurrence matrix
(GLCM) approach [1,62,63].

The temporal features derived from the TSA (year and magnitude of last change)
were also calculated for each segment. As the segmentation and Landsat time series
were not coaligned, the temporal features were assigned using zonal statistics, where the
segment was attributed with the value from the TSA covering the largest proportion of the
segment area.

3.3. Random Forest Classification

The random forest classification algorithm was used to classify objects into the six land
cover classes; informal settlements, formal settlements, vacant land, vegetation extent, road
networks, and water bodies. In order to determine the effect of including TSA features, the
classifier was run twice, once with the TSA features, and once without. McNemar’s test
was then used to compare the classifications. The null hypothesis of McNemar’s test states
that the same proportion of the population will be accurately identified with and without
TSA measurements [64].

Training Data

A visual interpretation of the VHR imagery was used to acquire the reference data.
A stratified random distribution was used to choose the training data to represent each
class, such as a road network and a built-up area. An overall number of 4,500 samples was
chosen from the colour composite image, illustrating the variety of the image component
sizes and shapes. This approach was used to ensure a statistically robust sample that was
representative of the entire study area. At each point, the interpreter used the information
within an image, as well as local knowledge, to allocate the point to one of the six classes
(formal settlement, informal settlement, bare ground, vegetation, roads, and vacant land).

3.4. Accuracy Assessment

To assess the classification accuracy, an out-of-the-bag (OOB) sample statistic was used.
These estimates were performed OOB (see Figure 4), as explained in [65]. Random forest
multiple decision trees were trained on a bootstrap sampling of the original training data.
As is common practice (e.g., [66,67], to acquire the best result, we ran the re-sampling pro-
cess 500 times. One randomly selected group of input parameters was picked as the optimal
split and used for node splitting at each node of every decision tree [68]. For interpretation
and prediction, variable selection is critical, especially for multi-dimensional datasets. In
this paper, the importance of the variables was ranked using a relative importance graph.

4. Results

The findings of the mapping of the informal settlement indicators, including the results
of the LLR time machine technique, are presented in this section.

4.1. Time Series Analysis

After evaluating all the temporal trajectories, we found the temporal TCA median
trajectory to be a good candidate to represent the changes over the 34 years from 1984 to
2018. Figure 5 shows the outputs (year, duration, and magnitude of greatest change) of the
LandTrendr for the Jeddah area. These outputs demonstrate the dynamic nature of areas of
known informal settlements. For example, it is clear that significant changes occurred in
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the region in the period between 1990 and 2002 (see Figure 5). Such changes can be linked
to development stages at the city scale [4].
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Figure 5. Example of TCA results in the case study. The image on the left represents the duration of
the change within the 34 years. The image in the middle represents the magnitude of the change. The
image on the right represents the year of the change.

4.2. Classification Accuracy

The overall accuracy of the classification using the outlined approach was 94% and
95% with and without the inclusion of the TSA variables, respectively (see Figure 6).
Based on McNemar’s research, the inclusion of TSA variables was not found to provide a
significant increase in the classification of all the classes (p = 0.03). In general, the results
were highly encouraging, with user and producer accuracies over 90% in all the classes.
At the individual class level, small improvements were seen in the producer’s accuracy.
Table 3 documents the usefulness of using TSA as an additional dimension to enhance the
mapping of informal settlements. As a slight increase in accuracy was observed with the
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inclusion of TSA descriptors, the remainder of this section focuses on the classification
with TSA descriptors included. For example, there was a noted improvement in all the
classes except for vacant land. There was a slight improvement in the detecting width
of the road network and an increase in the road network connectivity. The improvement
in the road networks resulted from a clear distinction between built-up areas and other
classes, such as vacant land, as shown in Figure 7. Figure 8 shows the relative importance
of the 30 variables used within the classification. In general, the indicators played a large
role in identifying informal settlements, while they had less impact on the TSA variables.
Of the two TSA variables included, the year of change had a higher relative importance
than the duration of change, which ranked last out of all the included variables.
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Figure 8. The relative importance of 30 object-based random forests with TSA classification variables
in four different spatial and temporal levels. Red bars represent the settlement level, yellow the object
level, green the environ level, and blue the time-series analysis.

At the object level, dwelling size was ranked second in importance, with a relative
importance of 23, followed by roofing; built-up areas, using the built-up area index (BAI),
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were fourth (see Figure 8). The dwelling size contributed to the classification with a relative
importance of 23 and ranked fourth in relative importance.

At the settlement level, density was the most crucial variable, with a relative impor-
tance of almost 24. The most essential sources of information for distinguishing informal
settlements from other classifications were the density and texture measurements. Gen-
erally, among all the spatial and spectral variables, the settlement variables contributed
the most. Of the five texture measures, the GLCMentropy and GLCMcontrast were the most
successful parameters, rated fifth and sixth in the importance graph, with a relative im-
portance of 18 and 16, respectively. By contrast, GLCMcorrelation was the least important
variable at the settlement level, with a relative importance of 14. The high sensitivity of the
green band to urban areas rated the green band as seventh in importance, with a relative
importance of 18, sharing the same contribution to the model as the texture measures. The
NDVI index was used mainly due to its sensitivity to vegetation. The NDVI index was
rated among the top variables, which allows the detection of the vegetation extent indicator
with 96% accuracy.

The analysis was performed twice with and without TSA to evaluate the utility of
TSA using the random forest model. Therefore, the contribution was checked based on
the classification performance of each class and its overall accuracy. The impact of the
vegetation extent was significant due to the sensitivity of seasonal change. The formal
class was completed with a 4% increase in producer accuracy. The road network came in
second, with a producer accuracy of 3%. However, there was a slight drop in accuracy
(2%) when mapping informal settlements and vacant land almost. Figure 9 shows the
annual composite of formal and informal trend patterns. The similarity of the spectral
characteristics reduced the benefit of TSA. Therefore, utilising TSA for enhancing informal
settlement identification requires clear and distinct spectral characteristics [4]; an urban
development should be within the scope of the used images to represent this development.
Despite this constraint, high-resolution spectral and temporal resolutions were proven to be
critical for exploring new ways to investigate urban landscapes utilizing VHRe metrics [69].
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Figure 9. Annual composite of chosen class from 1984 to 2018. (a) A TCA trajectory of the formal
area. (b) A TCA trajectory of an informal settlement representing changes.

Roofed and built-up areas, as measured by the built-up area index (BAI), were ranked
third in importance at the object level, with a relative importance of 20%, followed by
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dwelling size, as shown in Figure 6. With a relative importance of 18.1 and ranking fourth
in relative importance, the housing size contributed to the classification.

At the settlement level, density was the most crucial variable, with a relative im-
portance of almost 24. Density and texture measures were the most important sources
of information for distinguishing informal settlements from the other classes. Generally,
among all the spatial and non-spatial variables, the settlement variables contributed the
most. The most successful texture measures were GLCMcontr and GLCMentro, which were
ranked fifth and sixth on the importance graph, respectively, with a relative importance of
18%. At the settlement level, however, GLCMcorre was the least important variable, with a
relative importance of 14%. Because of the green band’s strong sensitivity to urban areas, it
was ranked seventh in importance, with a relative importance of 18, and it made the same
contribution to the model as the texture measurements. The NDVI index was used mainly
due to its sensitivity to vegetation. The NDVI index was rated among the top variables
which allows the detection of the vegetation extent indicator with 96% accuracy.

The geomorphology of the terrain indicator (DEM) had the least impact on the classifi-
cation at the neighborhood level, with a relative importance of 4%. Proximity to the city
centre had the greatest impact on the environment, accounting for 17% of the total.

At the temporal level, the results showed the slight importance of the environment
level, i.e., DEM, with a 6% relative importance; the year of change was found to be the
most significant indicator contributing to the random forest model. One the other hand,
the magnitude of change had the least impact on the classification using the random forest
model. The year of change, the magnitude of change, and the informal settlement boundary
contributed to the overall accuracy and to the accuracy of each class classification (see
Figure 10).
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Figure 10. The performance of object-based ML and TSA mapping in an informal settlement. The
results were not limited to the informal boundary because they depend on many indicators, such as
texture measurements, size, and density.

4.3. Temporal Analysis of Informal Settlements

While the use of the TSA approach led to a significant improvement in the classification
accuracy of informal settlements, we also used the information from this approach to gain
a greater understanding of the evolution of the area and its informal settlements. For
example, 62% of the study area was found to have undergone a change (or disturbance)
in its spectral characteristics. The greatest amount of change was seen in areas classified
as roads using the object-based approach (7.2 km2). Furthermore, 52.1% (or 6.0 km2) of
the area classified as informal settlements was found to have been disturbed since the
beginning of the time series (1985). Areas with spectral disturbance early in the analysis
period were found to mostly occur within or around existing settlements. The majority of
areas were shown to have changed later in the study period, occurring in small clusters or
in isolation from the larger urban settlements.
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5. Discussion

This study applied a ML approach for mapping informal settlements using the VHR,
OBIA-ML, and TSA analysis paradigm. As a hierarchical procedure, the OBIA approach
has been the most popular strategy used to solve complex pattern classifications over the
past decade [70,71]. Currently, ML algorithms have become good candidates to overcome
some of OBIA’s problems, such as its ingestion of big data sets and poor accuracy [4]. The
utility of OBIA in identifying informal settlements with ML was evaluated in [28]. Here, a
new data set, based on a time-series analysis of medium-resolution imagery, was evaluated
for informal settlement mapping.

With the inclusion of the time dimension, a slight improvement in accuracy was
achieved, as shown in the relative importance graph in Figure 6. However, the overall
accuracy of the random forest classification was high (95%) compared with [28] The struc-
ture of the urban characteristics, in general, is complex to present because of the large
variation in the urban context in VHR satellite imagery [15,72]. Mapping urban dynamics
at fine spatiotemporal resolutions is critical for sustainable urban development [73]. The
use of time-series analysis with LandTrendr as input data in a ML classifier made the
least contribution to the model. However, it helped to achieve better accuracy for each
predicted class (see Table 2), which resulted in better overall accuracy. LandTrender is a
pixel-based algorithm and a generalisation of the results should be performed to combine
it with segments generated from VHR imagery. Furthermore, the method is very sensitive
to natural changes because it is mainly designed for forest mapping. However, the method
gives a wider view of city-scale development phases using free data sources. Currently, the
identification of the temporal dynamics of urban development phases over three decades
is available to informal settlement authorities and governments in developing countries.
Based on the municipality of Jeddah’s strategic plane, this case study is part of the begin-
ning of urban expansion from the old city centre more than 30 years ago through to recent
developments. This can explain the lower impact of time dimensions on the classification
contribution when less development accrued, as shown in Figure 1.

Figure 11 shows the timing of the changes that occurred inside the informal settlements
within the study area. This figure shows that TSA is very useful for understanding the
evolution and growth direction of informal settlements. While these changes do not
necessarily inform the year in which the informal settlements were formed, they do provide
an indication of changes within the settlement. Therefore, TSA is a powerful tool for
local authorities, such as urban planners and governors, to monitor changes, as well as
determining their dimension and direction. This can help to control illegal growth and
allow reporting to SDGs.

The strengths of the inclusion of TSA within the developed method for informal
settlement mapping are as follows. First, the Landsat satellite data and the associated
TSA algorithms are currently freely available. Since the required LandSat long archive
data is freely available, this can help local authorities to monitor and manage the spatial
distributions of informal settlements in countries in the global south, where there are
budget shortages. Second, the approach allows a quick overview on city or country scales.
Third, the modelled results give a quick overview of where to proceed with deeper, more
detailed analysis. However, the most significant disadvantage of an approach using this
data is the level of detail of descriptors appearing on the images and in the reference data
set on the ground. However, to maximize the facilitation of mapping informal settlements
using the Landsat data, development phases at the city scale should be considered. Current
mapping paradigms and data combination need further investigation.
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measures were used frequently to map informal settlements in a different context 
[1,23,25,76]. Five texture measures using the grey-level co-occurrence matrix (GLCM) 
were calculated to detect a vector that describes the texture of each segment based on 
Haralick’s method [63]. Among all the GLCM variables, 𝐺𝐿𝐶𝑀஼௢௡௧௥ and 𝐺𝐿𝐶𝑀ா௡௧௥௢ rated 
third and fourth, respectively, in the relative importance graph. Roofing texture in an in-
formal settlement is homogeneous and has high entropy [24], which makes it possible to 
differentiate between formal areas and informal settlements. This finding demonstrates 
the effectiveness of texture measurements, such as image segment variation or repetition 

Figure 11. The year of change, as indicated by the Landsat time series analysis, within areas classified
as informal settlements using object-based random forest classification. The grey indicates areas
classified as informal settlements that showed no land use or land cover changes after the beginning
of the time-series analysis period.

At the object level, both dwelling size and roofing and built-up areas were significant
based on their contribution to the model classification, with a relative importance > 20%, as
shown in Figure 6. Buildings in the Middle East are vary widely in terms of size, colour,
shape, tone, and texture, according to visual interpretations of urban fabric. As can be
seen in Figure 12, dwellings of the same size were mapped as informal settlements even
though they were outside the district extent, as well as being surrounded by the main
road network.
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Figure 12. The impact of dwelling size and other indicators on informal settlement mapping.
(a) Shows the informal settlement (Bin Malek district) in yellow, (b) shows the used GeoEy1-1
satellite imagery in random forest classification.
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At the settlement level, in developing countries, the road networks within informal
settlements and rural areas are often unpaved and irregularly patterned [74]. Therefore,
urban road networks are challenging to map. To solve this issue, the normalized difference
water index (NDWI) was used to enhance the connectivity of the mapping of the road
networks [25,74,75]. Although there were differences in road networks between formal
and informal areas, such as elongation and regularity, road networks were identified with
a producer accuracy off 90% and a user accuracy of 93%.

Informal settlements have become dominant descriptors in urban areas. Structural and
textural variables are significant when identifying such descriptors [76]. Texture measures
were used frequently to map informal settlements in a different context [1,23,25,76]. Five
texture measures using the grey-level co-occurrence matrix (GLCM) were calculated to
detect a vector that describes the texture of each segment based on Haralick’s method [63].
Among all the GLCM variables, GLCMContr and GLCMEntro rated third and fourth, re-
spectively, in the relative importance graph. Roofing texture in an informal settlement is
homogeneous and has high entropy [24], which makes it possible to differentiate between
formal areas and informal settlements. This finding demonstrates the effectiveness of
texture measurements, such as image segment variation or repetition evaluated by spectral
intensity, for determining differences in informal settlements [46]. The importance graph
in Figure 10 shows that the texture measurements varied due to the textural homogene-
ity inside the informal settlements. With a relative relevance of 14%, the GLCMcorrelation
variable had the lowest impact on classification at the settlement level. Adding texture
measures to ML approaches enhances the value of categorisation results when employing
VHR imagery, especially in metropolitan settings [77,78].

The performance of the indicators at the environment level was less relevant and
scored lower than the indicators at the settlement and object levels, with a relative relevance
ranging from 4% to 12%. The distribution of informal settlements occurs frequently outside
of city centres [24,46]. This was not always the case, however. As a result, the proximity
indicator showed a lack of descriptive capabilities. Moreover, DEM had the least effect on
the classification at the environ level, with a relative importance of less than 5%. Since the
terrain was almost flat, the formal and informal settlements were found to be equally subject
to flood hazards. When informal areas are located along river banks or on steep slopes,
the terrain can be highly useful for detecting them [23]. Figure 11 shows the temporal
characteristics of the areas classified as informal settlements within the study area. The
purple shows the changes in dwellings occurring inside informal settlements. The grey
represents the areas that experienced no changes over 35 years.

6. Conclusions

The proposed method was structured to be transferable to the mapping of informal
settlements in comparable metropolitan settings. Unlike OBIA, the object-based ML and
TSA technique using VHR and Landsat remote sensing images does not necessitate param-
eter optimisation. The proposed methodological framework combines the benefits of using
OBIA and ML to tackle variability in VHR imagery and complex urban patterns. The overall
goal of this research was to design a reliable classification approach for informal settlement
mapping utilising OBIA-ML and TSA based on Landsat and VHR images. The random
forest approach showed the importance of each data input at all levels. Therefore, the utility
of each indicator can be evaluated for informal settlement identification by local authorities
based on the local context. The overall accuracy of the informal settlement mapping using
the proposed paradigm was 95%. According to this study, the indicators at the settlement
level had the highest impact on the informal settlement mapping. The study concludes that
adding the temporal level enhanced the mapping and monitoring of the spatial distribution
of informal settlements at the city scale rather than the neighbourhood scale.
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Appendix A

Table A1. Informal settlement indicators and parameters used for object-based ML classification in
the Middle East environment. The first six indicators appended with (*) were used only in the [25],
using the OBIA approach. In this work, all the informal settlement indicators were adopted.

Informal
Settlements/Variable Parameters Description Equation/Tool

* Built up area Built up area index (BAI) BAI is used to measure
Built-up area. BAI = (B1 − B4)/(B1 + B4)

* Dwelling size Area

The number of pixels forming
an image object. Mean

dwelling sizes between <50
m2 and 380 m2 classified as

informal settlements.

Object feature in eCognition

* vegetation Normalised Difference
Vegetation Index (NDVI)

NDVI is used to measure
vegetation. NDVI = (B4 − B3)/(B4 + B3)

* Lacunarity of housing
structures Visible brightness (VB)

The mean intensity of all the
image bands for an image

object.
VB = (B1 + B2 + B3)/3

* Road segment type and
materials

Normalised difference water
index (NDWI)

NDWI: An index developed
to distinguish tarred roads

from other classes.
NDWI = (B2 − B4)/(B2 + B4)

* Texture measures
Grey-level co-occurrence

matrix (GLCM)

GLCM entropy

Object feature in eCognition
GLCM homogeneity

GLCM contrast
GLCM correlation

GLCM mean.

Road accessibility Accessibility

Based on road elongation and
the regularity of road

segments. Roads not easily
accessible, a higher proportion

of dead-ends (dangles) and
fewer intersecting nodes.

Spatial analysis in ArcGIS

Consistency of housing
orientation Asymmetry

This indicates simplicity of
shape. In the computer vision

literature, the angles and
lengths of line segments
exhibit greater angular

variability and shorter lengths
in informal settlements.

Object feature in eCognition

Dwelling shape Shape
The relative length of an

image object, compared to a
regular polygon.

Area of the segment/area of
the minimum bounding
rectangle of the segment.
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Table A1. Cont.

Informal
Settlements/Variable Parameters Description Equation/Tool

Building density (dwelling
separation) Density

Lower nearest-neighbour
distance using centroid of

dwelling polygons. Density is
calculated based on the image

object that contains the
current candidate pixel. This
allows the smoothing of the
border of the image object

without taking neighbouring
image objects into account.

Object feature in eCognition

Proximity to hazards Digital elevation model
(DEM)

Only flood hazards were
considered. Spatial analysis in ArcGIS

Geomorphology of terrain Digital elevation model
(DEM)

Settlements built on relatively
flat surfaces. Object feature in eCognition

Proximity to city centre and
social services ProxToCent

Network analysis of distance
to city services, market area or

city centre and healthcare
facilities. Greater distances

expected.

Spatial analysis in ArcGIS

Appendix B

Table A2. LandTrendr segmentation parameters used in this study as default values.

Run_Name Refpoints

base_index TCA, TCB, TCG, TCW
background_val 0

divisor 1
minneeded 6
kernelsize 1

pval 0.05
fix_doy_effect 1
max_segments 7

recovery_threshold 1
skipfactor 1

desawtooth_val 1
distweightfactor 2

vertexcountovershoot 3
bestmodelproportion 0.75

mask_image na
ulx na
uly na
lrx na
lry na
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