
����������
�������

Citation: Apostolakis, A.; Girtsou, S.;

Giannopoulos, G.; Bartsotas, N.S.;

Kontoes, C. Estimating Next Day’s

Forest Fire Risk via a Complete

Machine Learning Methodology.

Remote Sens. 2022, 14, 1222. https://

doi.org/10.3390/rs14051222

Academic Editor: Nikos Koutsias

Received: 27 December 2021

Accepted: 23 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimating Next Day’s Forest Fire Risk via a Complete Machine
Learning Methodology
Alexis Apostolakis *, Stella Girtsou, Giorgos Giannopoulos, Nikolaos S. Bartsotas and Charalampos Kontoes

National Observatory of Athens, Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing,
152 36 Athens, Greece; sgirtsou@noa.gr (S.G.); giannopoulos@noa.gr (G.G.); nbartsotas@noa.gr (N.S.B.);
kontoes@noa.gr (C.K.)
* Correspondence: alex.apostolakis@noa.gr

Abstract: Next day wildfire prediction is an open research problem with significant environmental,
social, and economic impact since it can produce methods and tools directly exploitable by fire
services, assisting, thus, in the prevention of fire occurrences or the mitigation of their effects. It
consists in accurately predicting which areas of a territory are at higher risk of fire occurrence each
next day, exploiting solely information obtained up until the previous day. The task’s requirements in
spatial granularity and scale of predictions, as well as the extreme imbalance of the data distribution
render it a rather demanding and difficult to accurately solve the problem. This is reflected in the
current literature, where most existing works handle a simplified or limited version of the problem.
Taking into account the above problem specificities, in this paper, we present a machine learning
methodology that effectively (sensitivity > 90%, specificity > 65%) and efficiently performs next
day fire prediction, in rather high spatial granularity and in the scale of a country. The key points
of the proposed approach are summarized in: (a) the utilization of an extended set of fire driving
factors (features), including topography-related, meteorology-related and Earth Observation (EO)-
related features, as well as historical information of areas’ proneness to fire occurrence; (b) the
deployment of a set of state-of-the-art classification algorithms that are properly tuned/optimized on
the setting; (c) two alternative cross-validation schemes along with custom validation measures that
allow the optimal and sound training of classification models, as well as the selection of different
models, in relation to the desired trade-off between sensitivity (ratio of correctly identified fire
areas) and specificity (ratio of correctly identified non-fire areas). In parallel, we discuss pitfalls,
intuitions, best practices, and directions for further investigation derived from our analysis and
experimental evaluation.

Keywords: wildfire prediction; next day prediction; machine learning; feature extraction; imbalance

1. Introduction

Wildfires are events that, although relatively rare, can have catastrophic impacts on
the environment, economy and, on several occasions, on people’s lives. Climate change
expectedly adds to the problem, increasing the frequency, severity, and consequences of
wildfires. Thus, the analysis of such events has been gaining increased research interest,
especially during the last decade, with a plethora of works examining different aspects and
settings [1]. Indicatively, the research community has proposed methods for fire detection,
fire risk and susceptibility prediction, fire index calculation, fire occurrence prediction,
burnt area prediction estimation, etc.

In this work, we focus on the task of next day wildfire prediction (alt. fire occurrence
prediction), proposing a machine learning methodology and models that allow the highly
granular, scalable, and accurate prediction of next day fire occurrence in separate areas
of a territory, utilizing information (features) obtained for each area up until the previous
day. We need to emphasize here that the specific task is the most challenging among
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the discussed wildfire analysis tasks, and in particular compared to the (most similar)
fire susceptibility prediction task, which estimates the danger of fire occurrence within
a comparatively much larger upcoming time interval (i.e., from one month to one year
ahead). The difficulty of the task lies in (a) the extreme imbalance of the data distribution
with respect to the fire/no-fire instances, (b) the massive scale of the data, (c) the heterogeneity
and potential concept drifts that lurk in the data, along with the factor of (d) the absence of
fire phenomenon, namely the fact that different areas with almost identical characteristics
might display different behavior with respect to fire occurrence.

With the advent of machine/deep learning methods (ML/DL), domain scientists are
increasingly realizing the capacity of such techniques to capture more complex patterns in
the data and exploiting them, on the task of fire prediction, as opposed to more traditional,
theoretical/statistical methods. This is reflected in a plethora of recent works [1–7] that
present ML-based methods for the tasks of fire prediction and susceptibility, instead of
more traditional approaches (e.g., the calculation of fire indexes). Thus, machine learning is
steadily becoming the de facto methodology applied in the task. However, most approaches
in the current literature either solve a simplified version of the problem, with limited
applicability in a real-world setting, or present methodological shortcomings that limit the
generalizability of their findings, as described next.

One of the most significant shortcomings of current state-of-the-art works is that they
ignore the fact that wildfire prediction is an extremely imbalanced classification problem.
As a consequence, most approaches of the literature [2–5,8–10] focus on a balanced version
of the problem, by under-sampling no-fire instances or over-sampling fire ones, or by
considering specific non-fire areas as fire ones [6]. We need to emphasize here that the actual
problem of next day fire prediction is merely handled by a handful of works; most methods
cited handle other versions of the problem, such as weekly/monthly/yearly fire occurrence
prediction, or fire susceptibility in general. Such approaches, although often demonstrating
impressive prediction effectiveness in their experiments, are essentially detached from
a real-world setting, since they assess their methods on different (re-sampled) test set
distributions than the original, real-world ones. We note here that adopting a balanced
dataset setting during model training or even validation is an acceptable procedure; the
methodological issue of the aforementioned approaches lies in expanding the balanced
setting also to the test set of their evaluation. In this work, we maintain the extremely
imbalanced distribution of the data on the test set, essentially evaluating the methods’
expected real-world effectiveness. Further, we investigate how we can optimally select
models trained in balanced training sets, with the aim to perform well when deployed on
imbalanced test sets.

Another important omission of works in the literature [4,6,7,11] regards the fact that
the instances of the problem (individual areas of a territory, often represented as grid
cells) are spatio-temporally correlated, since they represent geographic areas through the
course of time. Ignoring this fact by, e.g., performing shuffling of the data before splitting
them into train/validation/test partitions, leads to misleading effectiveness results, since it
allows almost identical instances to be shared between training and test sets, essentially
performing information leakage. In this work we propose a strict scheme for partitioning
the data during cross-validation, so as to avoid the aforementioned pitfall.

An additional shortcoming of several existing works [2–6,12] is the poor exploration of
the model space of the classification algorithms that are applied. Each of these algorithms
can be configured via a set of hyperparameters that, if properly set, can significantly change
the algorithm’s effectiveness. However, selecting the proper set of hyperparameters for
each algorithm is a highly data-driven process, and might lead to completely different
hyperparameterizations (configurations) for different datasets. Most works in the literature
deploy cross-validation exclusively for assessing a manually selected configuration for
an algorithm, which, however, might be sub-optimal in the context of the task and the
underlying data. In our work, we exploit cross-validation to perform extensive search of
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the hyperparameter space of each assessed algorithm, in order to select models that both
perform well and are expected to generalize well.

The presented work builds on and significantly extends our previous two works on
the field [13,14], by: (i) Implementing an extended set of training features (described in
Section 2.3) for capturing the most important fire driving factors within the adopted ML
models. (ii) Implementing two alternative cross-validation schemes, as well as task-specific
evaluation measures (described in Section 3.2.2) for model selection during validation, in
order to handle the large data scale and imbalance; the second cross-validation scheme, as
well as the second task-specific evaluation measure comprise new contributions compared
to [14]. (iii) Presenting an extended evaluation and discussion of the proposed methodology.
The contributions of our work are summarized as follows:

• The proposed methods, including the extended feature set, the alternative cross-
validation processes, and the task-specific evaluation measures, considerably improve
sensitivity (recall of fire class) and specificity (recall of no-fire class) compared to
our previous work [13]. To the best of our knowledge, the achieved effectiveness
comprises the current state of the art in the problem of next day fire prediction, for the
considered real-world setting, with respect to data scale and imbalance.

• The proposed methodology produces a range of models, allowing the selection of
the most suitable model, with respect to the desirable trade-off between sensitivity
and specificity.

• An extended analysis and discussion on the specificities of the task is performed,
tying the proposed methods and schemes with specific gaps, shortcomings and errors
of existing methodologies that handle the task. Further, insights, intuitions, and
directions for further improving the proposed methods are discussed.

The paper is organized as follows. Section 2 first provides the problem definition and
identifies the specificities of the task. Then, it describes in detail the study area, the derived
evaluation dataset and the implemented training features. Section 3 presents the proposed
methodology, including the deployed ML algorithms and the cross-validation/model
selection procedures that are implemented. Section 4 presents an extensive experimental
evaluation of the proposed methods. Section 5 summarizes our most important findings
and discusses future steps on the task. Finally, Section 6 concludes the paper.

2. Materials
2.1. Problem Definition and Specificities

In this work, we handle the problem of next day fire prediction. Our dataset comprises
a geographic grid of high granularity (each cell being 500 m wide) covering the whole
territory of interest (in our case, the whole Greek territory). Each instance corresponds
to the daily snapshot of each grid cell, and is represented by a set of characteristics (alt.
fire driving factors, features) that are extracted for the specific area, for a specific day dk.
Given a historical dataset annotated (labeled) with the existence or absence of fire, for each
grid cell, for each day, each available historical instance carries a binary label lk for the
day dk, denoting the existence (label:fire) or absence of fire (label:no-fire). It is important
to point out that all the features of the instance dk, are available from the previous day
dk−1 because they either (1) are invariant in time (e.g., DEM), (2) have a slow variation
(e.g., land cover), or (3) can be represented with satisfying accuracy by next day predictions
(e.g., wind, temperature). Thus, our problem is formulated as a binary classification task;
the goal is to learn, using historical data, a decision function fH(xk : θ), comprising a set of
hyperparameters H to be properly selected and a set of parameters θ to be properly learned,
that, given a new instance xk accurately predicts label lk.

In our real-world operational setting, a fire service needs to be provided, each previous
day, with a map that assigns fire predictions for the whole country’s territory, so that they
can properly distribute their forces. In case the majority of the map is predicted as fire,
this map is useless, even if all fires are eventually predicted correctly, since the available
resources/forces are not adequate to cover the whole territory. On the other hand, assigning
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fire predictions to an adequately small part of the whole territory but missing e.g., half
of the actual fires is obviously equally undesired; while predicting fire occurrences in a
very small part would allow the fire service to efficiently distribute their forces there, there
would exist several areas that would actually have a fire occurrence but no fire service
forces to handle them. Thus, a proper evaluation measure in our task should favor models
that identify the majority of the actual fire events, while, in the same time, not falsely
classify the majority of a territory. This requires the joint inspection of the measures of
sensitivity and specificity in order to evaluate the quality of a method. Sensitivity is defined
as the recall of fire instances, i.e., the ratio of predicted (by the method) fire instances to
the number of actual, total fire instances and specificity is defined as the recall of no-fire
instances, i.e., the ratio of predicted (by the method) no-fire instances to the number of
actual, total no-fire instances [15].

This is empirically, based on our work in the problem and our interactions/collaboration
with the Greek Fire Service, translated to achieving sensitivity values of ∼90%, while,
on the same time, specificity of at least 50%. This of course does not comprise a fixed
requirement and, depending on the exact real-world setting and need, another trade-off
might be preferable, e.g., something closer to (80%, 80%). We emphasize that the methods
we propose are not tied to any specific requirement and provide the agility to learn different
models that can aim at different sensitivity/specificity trade-offs, as demonstrated in
Section 4 and in particular in Section 4.2.3.

We note that the above problem formulation fully aligns with the requirements of a
real-world fire prediction system; the adopted spatial granularity of predictions (500 m
wide cells) is more than sufficient for the fire services to organize and distribute their
resources in a targeted and efficient manner, while the next day horizon provides adequate
time for the aforementioned organization. As briefly outlined in Section 1, the task presents
certain specificities that render it particularly challenging:

1. Extreme data imbalance. Due to the fact that each instance of the dataset corresponds
to a daily snapshot of an area (grid cell), it is evident that we end up with extreme
imbalance in favor of the no-fire class. Consider for example a fire that spanned
for two days of month August 2018 and through an area of 16 grid cells. This fire
generates 32 fire instances and more than 3300 no-fire instances for year 2018, if we
consider the whole seven-months period, for the specific grid cells. The imbalance
becomes even larger given that fire occurrences naturally correspond to a small
percentage of a whole territory (country) and that it is rather unusual to have a fire
occurrence in the same area during consecutive (or even close) years. Indicatively,
considering the whole Greek territory, one of the most prone countries to wildfires,
for the 11-year period of 2010–2020, the ratio of fire to non-fire areas (grid cells) is
in the order of 1̃:100,000. Note that the difference in data distribution to the much
more widely uptaken task of fire susceptibility is vast, where even a single day’s fire
occurrence in a grid cell generates one fire instance (but no no-fire instances) for the
whole prediction interval, which might be e.g., monthly or yearly. As a consequence,
most approaches in the literature handling fire susceptibility end up with balanced or
slightly imbalanced (at most 1:10) datasets [2–6,8–10].

2. Massive scale of data. In order to be exploitable by the fire service, a next day fire
prediction system needs to produce individual daily predictions for areas that are
adequately granular. Consider for example a system that produces predictions per
prefecture; it is quite possible that during the summer period, several prefectures
are predicted as having a fire, for the same day. Then, it is essentially impossible
for a fire service to organize their resources in order to cover the whole range of
them. Instead, if the predictions regard small enough areas, it is then feasible to
distribute their forces to the areas with the highest risk, even if these individual areas
are distributed through various prefectures. To satisfy the above requirement, in our
work we consider grid cells 500 m wide, ending up with a total of 360 K grid cells
(distinct areas 500 m wide) to cover the whole Greek territory. Considering that, each
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of these cells “generate” daily instances, for a 7-month fire period and for an 11-year
interval, this amounts to a dataset of more than 830 M instances. Such scale makes
the task of properly selecting and learning expressive ML models rather difficult,
requiring high performance computing (HPC) infrastructure, which is hardly the
case for fire services. Essentially, a significant amount of undersampling needs to be
carefully performed to produce a realistically exploitable training set, upon which
proper cross-validation/model selection processes can be executed.

3. Heterogeneity and concept drifts (dataset shift). It is observed from our analysis that
different months of each year can demonstrate significant differences with respect to
the suitability and effectiveness of different ML models on the task, while different
ML models are able to produce quite different prediction distributions, with respect
to the sensitivity/specificity trade-off.

4. Absence of fire. Finally, it is empirically known that fire occurrence can be caused
by rather unpredictable factors (i.e., a person’s decision to start a fire, a cigarette
thrown by a driver, a lightning), which are impossible to be captured and utilized as
training features within the prediction algorithms; as a result any algorithm deployed
to discriminate between fire and no-fire instances (areas) is bound to decide lacking
such crucial information and is inevitably expected to classify instances based on
their proneness on fire occurrence. Thus, several instances with “absence” of fire are
areas that could as well have displayed a fire occurrence based on their characteristics,
however, due to almost random factors did not. Such instances lead to significant
restrictions of potentially any algorithm’s achieved specificity.

In the following sections we propose solutions that aim to handle, to a certain extent,
the above specificities, as well as we discuss potential future steps for further address-
ing them.

2.2. Study Area and Evaluation Dataset

The area of interest is the whole Greek territory, situated on the southern tip of the
Balkans. It is a typical Mediterranean country with a total area of 131,957 km2, out of which
130,647 km2 is land area. The climate of Greece is Mediterranean with usually hot and dry
summers and mild and rainy winters with sunshine during the whole year. Due to the
influence of the topography (great mountain chains along the central part), the upper part
of Greece can be very cold in the winter with significant snowfall events, whereas the south
of Greece and the islands experience much milder winters.

Eighty percent of Greece consists of mountains or hills, making the country one of the
most mountainous in Europe. A major part, up to 58.8% of the total surface, represents low
altitude areas (0–500 m) which are prone to fire ignition according to [16]. More specifically,
it is indicated that the great majority of burnt area falls within the 0–500 m elevation zone
(61–86.5%), followed by the 500–1000 m elevation zone (13.4–33.6%).

According to [17], the mean annual rainfall depth ranges from less than 300 mm in
Cyclades islands to more than 2000 mm in Pindos mountain range in central Greece. The
lower mean monthly rainfall depth is less than 10 mm, in July and August in Aegean
islands, Crete, coastal areas of Peloponnese, Athens, and south Euvoia. The average annual
temperature ranges from less than 8 ◦C to 19.8 ◦C. The lowest temperatures occur at
Northern Greece at the mountains’ peaks and the highest at the southern coasts of Crete
and Athens mainly due to the urban islet phenomenon. The highest monthly average
temperature is observed in July in the plains of central Macedonia, Thessaly, Agrinio,
Kopaida, in the plain of Argos, in Tympaki, and in the Attica basin.

Concerning the average monthly sunshine, the highest rates are observed in July in
southern Crete, northeast Rhodes and western Peloponnese. The lowest average values
occur in northern Greece in the mountains of Rodopi, southeast Greece, and the peaks of
Pindos [17].

The topography and the dominant north winds in combination with the vegetation
types of central and southern parts of Greece are prime drivers for fire ignition during
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the summer period [16]. The vegetation cover that makes Greece particularly prone to
fire hazard and fire risk, such as coniferous and mixed forests, sclerophyllous vegetation,
natural grasslands, transitional woodlands, semi-natural, and pasture areas, corresponds
to approximately 72% of the total surface of the country [18].

As is it reported in [16] and other studies in Mediterranean Europe [19,20], wildfire
activity in Greece is increased in the southern and more arid parts comparing to the
northern and wetter parts, revealing a climatic gradient that strongly affects fire regime.

The construction of a reliable forest fire inventory can be a demanding task but is vital
for the prediction of wildfire outbreaks, given that future fires are expected to occur under
similar conditions. In this work an exhaustive forest fire inventory and burn scar maps
were compiled by obtaining and fusing data from multiple sources, including the FireHub
system of BEYOND (http://195.251.203.238/seviri/; accessed on 22 February 2022), NASA
FIRMS (https://firms.modaps.eosdis.nasa.gov/active_fire/; accessed on 22 February 2022),
and the European Forest Fire Information System (EFFIS) (https://effis.jrc.ec.europa.eu/;
accessed on 22 February 2022). The FireHub system provides the diachronic burned scar
mapping (BSM) service which maintains an archive of burned areas polygons in high
resolution (30 and 10 m) for the last 35 years over the entire country. The burned areas
are provided per year, but, given that the problem is defined as a daily fire risk prediction
through the study of previous day’s conditions, each polygon should be assigned the exact
outbreak date. Thus, given the seasonal FireHUB burned scars produced seasonally by
BEYOND, we exploited the active fire and BSM products from NASA FIRMS and EFFIS for
cross examination and exact fire date retrieval. More specifically, we validate each FireHUB
scar, considering its intersection with a burned area from EFFIS or NASA and also the
existence of active fires swarm inside it. The exact fire ignition date is then derived from the
active fires product, since this product records the fire event at the time of the satellite pass,
whereas the burned areas are recorded in later passes. Finally, a fire inventory for the years
2010–2020 was constructed in order to be used for training, validation, and testing [13,14].

2.3. Training Features

Twenty five forest fire influencing factors were considered, including topography-
related, meteorology-related and Earth Observation (EO)-related variables. All factors were
gathered and harmonized into a 500 m spatial resolution. Meteorology features had coarser
granularity while topography-related (DEM) and land cover had finer granularity than
500 m. The former were processed and rescaled at the desired resolution by nearest neigh-
bor interpolation [21]. From the latter, the DEM was downscaled via bilinear interpolation
and land cover via the weighted majority resampling for continuous and categorical raster
values. The weighted majority resampling was applied considering higher weights on
more fire prone categories. We note that the initial resolution of each dataset is given in the
column Source Spatial Resolution of Table 1. Next we present them in detail.

DEM. Topographic variables include the digital elevation model (DEM) which rep-
resents elevation and three more derivative factors: aspect, slope, curvature. For this,
the European DEM ( https://land.copernicus.eu/imagery-in-situ/eu-dem; accessed on
22 February 2022) at 25 m resolution provided by Copernicus programme was employed.
According to [16], the elevation distribution of the burnt areas shows a trend since the
great majority falls within the 0–500 m elevation zone. The variables were downscaled via
bilinear interpolation. The code names are DEM, aspect, slope, and curvature.

Land cover. Fire ignition and spread is strongly affected by land cover type as
well. Sclerophyllous vegetation and natural grasslands form the main fuel sources of
fires in Greece and the Mediterranean region generally. Copernicus’ Corine Land Cover
(https://land.copernicus.eu/dashboards/clc-clcc-2000--2018; accessed on 22 February
2022) (CLC) datasets from the years 2012 and 2018, with spatial resolution 100 m, were
retrieved and processed for the purposes of this study. Specifically, after applying weighted
majority downscaling to the datasets, the Corine 2012 dataset was used to represent the
corresponding variable (code named corine) for the instances up to the year 2015, while

http://195.251.203.238/seviri/
https://firms.modaps.eosdis.nasa.gov/active_fire/
https://effis.jrc.ec.europa.eu/
https://land.copernicus.eu/imagery-in-situ/eu-dem
https://land.copernicus.eu/ dashboards/clc-clcc-2000--2018
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the Corine 2018 was used to represent the instances after 2015. Each land cover category
is assigned with a distinct constant value, thus forming a feature with categorical nature,
which was transformed to one-hot encoding features [22].

The factors of meteorology (like wind, temperature, precipitation) are crucial fire
driving factors because their variability has impact both on the occurrence and the inten-
sity of forest fires [23,24]. The meteorology variables (Temperature, Dewpoint, Wind speed,
Wind direction, and Precipitation) were all extracted from ERA5-Land reanalysis datasets
of Copernicus EO program and dowsncaled at 500 m via nearest neighbor interpolation.
ERA5-Land provides hourly temporal resolution and enhanced native spatial resolution at
9 km. Each cell was divided and, as a result, the following feature groups were considered:

Temperature. From the hourly values of the 2 m temperature dataset, the minimum,
maximum and mean aggregations for the temperature were calculated and introduced
as the features Maximum temperature, Minimum temperature, Mean temperature in the
dataset, with code names max_temp, min_temp, mean_temp.

Dewpoint. A feature with dewpoint temperature was added in the current work,
compared to [14], which measures the humidity of the air. According to ERA5 Land
definition it is the temperature at which, the air at 2 meters above the surface of the
Earth would have to be cooled for saturation to occur (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview; accessed on 22 February 2022).
Processing the hourly values of the dewpoint from ERA5 land, the minimum, maximum
and mean aggregations for the dewpoint were extracted introducing the features Maximum
dewpoint, Min dewpoint, Mean dewpoint in the data set with code names max_dew,
min_dew, mean_dew.

Wind speed. The wind is long known to be one of the most influencing factors
for fire ignition and spread [24], therefore the maximum wind velocity of the day was
extracted from ERA5-Land reanalysis datasets at 10m for u, v components. We named this
feature Maximum speed of the dominant direction (code name dom_vel) as it expresses
the maximum wind speed for the direction of wind that is measured the majority of times
(dominant direction).

Wind direction. Although wind direction cannot influence directly the primary igni-
tion, it can help or prevent the fire to evolve in combination with other factors. To study
and estimate the influence of the wind direction, the Wind direction of the maximum
wind speed and Wind direction of the dominant wind speed features were introduced
in the feature space with code names dirmax and domdir respectively. The former is the
direction of the wind when during maximum wind speed within the day and the latter
is the direction of the wind that was the dominant within the day. The eight major wind
directions that were considered as values, formed a feature with categorical nature that
was also transformed to one-hot encoding.

Seven-day accumulated precipitation. At regions that it recently rained, the soil
moisture and humidity reduce the probability of fire ignition. To exploit this information,
we formed the precipitation feature as an accumulation of the past seven days of the ERA5
land total precipitation variable. The code name of the feature is rain_7days.

Vegetation indices. The existence and state of vegetation is another important factor
for fire ignition as dry vegetation is more prone to fire than fresh. Such information can be
derived by empirical remote sensing vegetation indices based on calculations of the light
reflectance in specific frequencies of the spectrum [25,26]. The remote sensing index NDVI
(Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) [27] are
two of the most utilized vegetation indices in many applications for which several analysis
ready products are provided. For this work the two indices were collected from NASA
products of the Moderate Resolution Imaging Spectroradiometer (MODIS), MYD13A1 and
MOD13A1. Each pixel value of those products is an average of the daily products collected
within the 16-day period, with 500 m spatial resolution (https://modis.gsfc.nasa.gov/data/
dataprod/mod13.php; accessed on 22 February 2022).

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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LST. It is well known that prolonged heat leads vegetation to water stress conditions
and increased plant temperature [28]. These conditions can be represented by the radiative
skin temperature of the land surface (LST), a commonly used remote sensing index. For
this reason MODIS MYD11A2 and MOD11A2 products of daytime and nighttime sur-
face temperature (https://modis.gsfc.nasa.gov/data/dataprod/mod11.php; accessed on
22 February 2022) (LST-day, LST-night) were exploited to further assist fire risk prediction.
Each pixel value of those products is an average of the daily LST products collected within
the 8-day period, with 1 kilometer (km) spatial resolution which was downscaled at 500 m
by nearest neighbor interpolation.

Fire history and Spatially smoothed fire history. Up to this point we considered the
explicitly identifiable and measurable fire driving factors, like the vegetation type, the
weather conditions, the altitude, etc. However, there exist factors that cannot be easily
identified or measured, like human activity, difficulty in accessing the area by firefighting
means, special ground morphology, etc. A historical frequency metric of the fire ignitions
in an area during a large number of years would probably incorporate, to some extent,
not only the identifiable and measurable factors but also the unidentifiable or difficult
to measure influencing factors. To this end, we introduced two new features, Fire history
and Spatially smoothed fire history with code names f requency and f 81 respectively. Fire
history is a count of all the appearances of fire from 1984 to 2009 in each grid cell, while
Spatially smoothed fire history is the blurred (smoothed) image of the Fire history feature
after applying a low-pass linear filter in order to smoothly disperse the frequency feature.
Specifically, to apply this filter, an 81 × 81 kernel of the box blur type was used to calculate
the convolution [29,30]. The source of the Fire history feature is the diachronic BSM service
of Firehub from 1984 to 2009. The BSM polygons were mapped to the 500 m grid to annotate
the fire cells for each single day in that time period. The BSM period used for creating this
feature did not extend beyond the year 2009 for avoiding any interference with the training
dataset which starts from the year 2010.

Cell coordinates. The coordinates of a region are features with similar purpose to the
Fire history and Spatially smoothed fire history described previously, since they can be
used to relate location with the fire ignition risk. In the case of x position and y position
this relation is sought in the possible correlation of the coordinates with the output labels
(fire and no-fire). For example, if in the north of the country (higher y coordinate) less
wildfires occur, then there might be a substantial correlation between y coordinate and fire
risk. Of course, a combination of reasons may be responsible for this, like the lack of forests,
the different vegetation, the lower temperature or even a better organized civil protection
service. In any case, these features, together with Fire history and Spatially smoothed fire
history, can potentially assist in the prediction of the total fire risk from known and even
unknown causes. The code names of the features are xpos and ypos.

Month of the year and Week day. As shown in related works [24,31], some calendar
cycles (months, weeks) are related to the fire ignition risk. The months of the year differ
significantly in the meteorological conditions, the vegetation status, and the type and
intensity of human activities. Months with higher mean temperature and wind tend to
be the months when the most fire ignitions occur. The differentiation in the week days
that may affect the fire ignition regards mainly human activities. During weekends many
people travel from large cities to rural areas, thus increasing the probability of human
caused wildfire ignitions. However, the influence of the Week day is shown to be less
important than that of the Month of the year [31]. The code feature names or these features
are month and wkd. These categorical features were also transformed and introduced as
one-hot encoding in the training dataset.

Table 1 summarizes the aforementioned features, denoting with bold the ones that
were added in the current work, as compared to our previous one [14].

https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
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Table 1. Synoptic presentation of features. The first column contains the type/category which
corresponds to a suit of products from the same source, the second column is the name of the feature
and the third contains the shorthands of the names. In the next two columns we find the spatial and
temporal resolution of the feature’s source and the last column contains the reference of the source.
The newly added features in this study are noted with bold lettering.

Category Feature Code Name
Source
Spatial

Resolution

Source
Temporal

Resolution
Source

DEM
Elevation dem

25 m - Copernicus DEMSlope slope
Curvature curvature

Aspect aspect

Land cover Corine Land Cover corine 100 m 3 years Copernicus Corine Land
Cover

Temperature

Maximum daily
temperature max_temp

9 km hourly ERA5 landMinimum daily
temperature min_temp

Mean daily temperature mean_temp

Dewpoint

Maximum dewpoint
temperature max_dew

9 km hourly ERA5 land
Minimum dewpoint

temperature min_dew
Mean dewpoint

temperature mean_dew

Wind speed Maximum wind speed dom_vel 9 km hourly ERA5 land

Wind direction
Wind direction of the

maximum wind speed dir_max
9 km hourly ERA5 landWind direction of the

dominant wind speed dom_dir

Precipitation 7 day accumulated
precipitation rain_7days 9 km hourly ERA5 land

Vegetation indices NDVI ndvi 500 m 8 days NASA MODISEVI evi

LST LST-day lst_day 1 km 8 days NASA MODISLST-night lst_night

Fire history
Fire history frequency

500 m daily FireHub BSMSpatially smoothed fire
history f81

Cell coordinates x position xpos 500 m daily FireHub cell gridy position ypos

Calendar cycles Month of the year month 500 m daily Fire Inventory date fieldWeek day wkd

3. Method

The proposed methodology implements a machine learning pipeline that aims to
learn scalable and accurate models for next day fire prediction, handling the large scale
of available training data and, on the same, time ensuring the proper assessment and
generalizability of the models. The first step of the pipeline comprises feature extraction,
i.e., producing vector representations of the instances (grid cells/areas) derived from
meteorological, topographical, vegetation, earth observation, and historical characteristics
of the areas, as already described in Section 2.3.

The next step consists in performing a cross-validation procedure on the training
dataset to compare a series of machine learning algorithms with respect to their effective-
ness and generalizability on the task. We include several state-of-the-art tree ensemble
algorithms (Random Forest, Extra Trees, XGBoost) and a series of shallow Neural Network
architectures, as described in more detail in Section 3.1. The aforementioned algorithms,
depending on the selection of their hyperparameters, can become adequately expressive,
ensuring a low bias in our methods. Nevertheless, as discussed in Section 5, more com-
plex/expressive models could potentially capture deeper patterns in our data and, thus,
further increase the prediction effectiveness. An extensive hyperparameter search for each
algorithm is performed via two alternative cross-validation schemes in order to identify
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the best performing models, with respect to different evaluation measures, as detailed in
Section 3.2. We consider the measures of ROC-AUC, f-score (considering precision and re-
call of fire class), as well as hybrid measures that are derived by the weighted combinations
of sensitivity (recall of fire class) and specificity (recall of no-fire class). In the following
subsections, the proposed approach is described in detail.

3.1. ML Algorithms

We adopt a set of state-of-the-art classification algorithms, that includes tree ensembles
(Random Forest, Extremely Randomized Trees, and XGBoost) and shallow NNs (up to five
layers). Our goal is twofold: (a) to consider expressive algorithms, that are well proven on a
plethora of classification tasks as well as on wildfire risk prediction [1] where instances are
represented in the form of tabular data and (b) to represent relatively diverse algorithmic
rationales. The latter is particularly significant since the handled problem is quite complex
and different algorithms may perform better in different settings (e.g., see Section 4.2).
Next, we briefly present the main characteristics of the considered algorithms.

Random Forest (RF) [32] is an ensemble of multiple decision trees (DT) that generally
exhibits a substantial performance improvement over plain DT classifiers. The algorithm
fits a number of DT classifiers using the bootstrap aggregating technique; it extracts ran-
dom samples (with resampling) of training data points when training individual trees,
considering random subsets of features when splitting nodes. Classification of unseen
samples is performed through majority voting between the individual trees.

Extremely Randomized Trees (ET) [33] are also ensembles of multiple decision trees,
similar to RF with two main differences; ET use the whole original sample to build the trees
and the cut points are selected randomly instead of searching for the optimum split.

Extreme Gradient Boosting (XGBoost-XGB) [34] is an implementation of gradient boosted
decision trees. In this case, trees are not independently but sequentially constructed and, at
each iteration, more weight is put on instances that were misclassified by the learned trees
of the previous step.

Neural Networks [35,36] are widely used algorithms that consist in stacking layers of
nodes, connected with edges which are assigned weights during the training of the model,
via back-propagation.

There exists a plethora of NN variations with respect to the architecture, optimization
algorithms and hyperparameters used. In our setting, shallow NN architectures of up to
five hidden layers, with Adam optimizer [37] and drop-out [38] were considered. Herein we
denote them as NN and NNd, when we use them without and with drop-out respectively.
We note that, as detailed in Section 3.2, in this work the training of the models is performed
in significantly undersampled (with respect to the no-fire class), balanced versions of the
initially available training data. Thus, deploying deeper NNs is empirically not expected to
increase the effectiveness of the models. Nevertheless, we consider as part of our future
work the exploration of deeper architectures in training our models on the initial, vast-sized
training data.

For each of the above algorithms, we consider several hyperparameters to search and
optimize through the cross-validation process, the most important of which we briefly
enumerate next. We note that the complete hyperparameter spaces that were searched for
each model are provided in the Appendix A.

The most important arguments during hyperparameter search (performed within the
cross-validation process) are the number of different hyperparameterizations to try (n_iter),
and the number of folds to use for cross validation. In the tree ensembles case, we set n_iter
to 200 and the number of folds to 10.

Hyperparameters of the Random Forest classifier include split criterion, to be used
in individual trees (estimators), total number of estimators to be constructed (n_estimators),
minimum number of samples in estimator leaf node (min_samples_leaf ), maximum number
of features to be considered in constructing individual estimators (max_features), minimum
number of samples required to perform a split in estimator (min_samples_split), maximum
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depth of estimators (max_depth), and the function to measure the quality of a split (criterion).
A wide range of values was tested for each of the aforementioned hyperparameters, i.e.,
50 to 1500 estimators and 10 to 2000 or None for max_depth.

Hyperparameters of the Extremely Randomized Trees classifier are similar to those of
RF. The hyperparameter search was based mainly on the number of decision trees in the
ensemble (n_estimators), the number of input features to randomly select and consider for
each split point and the minimum number of samples required in a node to create a new
split point (min_samples_leaf ).

Regarding the particular parameters of Extreme Gradient Boosting, gamma, lambda,
and alpha parameters were tuned to increase the model performance. These parameters
refer to the minimum loss reduction required to make a further partition on a leaf node of
the tree, the L2 regularization and the L1 regularization respectively. Extensive search was
performed with values that range from 1 to 21 for lambda, from 0 to 1000 for gamma and 0
to 100 for alpha. The higher the parameters’ values, the more conservative the algorithm
will be.

In the case of Neural Networks we are using a fully connected architecture (FCNN)
and the most important parameterization is the number of fully connected layers together
with number of nodes in each layer. The parameter space contains two basic schemes of
FCNN, one wide and one narrow. In the wide scheme, the FCNN is formed with minimum
one to maximum four internal layers comprising from 100 to 2000 nodes at intervals of
100 nodes; in the narrow scheme the FCNN is formed from minimum one to maximum five
internal layers comprising from 10 to 100 nodes at intervals of 10 nodes. Other important
parameters for the FCNNs are the optimization algorithm, the loss function, the batch size, and
the number of epochs to be trained. The number of epochs in our training scheme is dynamic
and it depends on the Keras (https://keras.io/; accessed on 22 February 2022) framework’s
EarlyStopping class. Based on preliminary training runs, where only the EarlyStopping
parameters were tried, we have determined a combination of patience and min_delta to
trigger the training stopping when the model learning stabilizes. The min_delta defines the
difference of the monitored measure (e.g., loss, accuracy) to be considered as improvement
and the patience is the number of epochs to continue training without improvement. In
the same way we determined the batch size to be used, we derived the value from the best
model performances from preliminary training runs, where only that parameter was varied.
The optimization algorithm was also selected likewise, through dedicated preliminary
runs for tuning that parameter. The best performing optimization algorithm found to
be Adam, using the default parameters from Keras library. Briefly, the Adam algorithm
is based on Stochastic Gradient descent with the improvement of automatically adapting
the learning rate which is constant in the latter algorithm [37]. The type of the output,
a two node so f tmax layer representing the two classes imposed the use of the standard
categorical cross entropy loss function.

During the preliminary training-validation runs, alternative subsets of the input
features were fed to the different models for getting a first evaluation of the performance
achieved due to the newly added features. Those runs clearly showed that the FCNN
models performance was considerably lower when the features concerning calendar cycles
and wind direction were part of the feature subset (month, wkd, dir_max, dom_dir), while
those features did not harm the ensemble trees algorithms. Consequently those features
were removed from the input dataset used for the FCNN in our subsequent experiments,
while the reasons for this different behavior between FCNN and ensemble trees is to be
further investigated.

Particular emphasis needs to be given on the class_weights hyperparameter, which
is common to all the deployed algorithms and allows them to behave in a cost-sensitive
manner with respect to the minority class of our setting (fire class) [39]. This hyperparameter
allows to adjust the misclassification cost of each instance (depending on the class that
it belongs to) that is imposed on the error function being optimized during the training
iterations. This way, assigning a higher weight to the instances of the fire class, the

https://keras.io/
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algorithm can potentially, to some extent, compensate for the extreme imbalance of the data.
Of course, one could claim that since the training of all considered models is performed
on balanced (undersampled) versions of the initial data, searching this hyperparameter’s
space is unncesessary; nevertheless, our extensive experiments demonstrate the opposite.
Nearly all the best performing models in the several experimental settings comprise a
hyperparameterization that assigned higher weight to the fire class.

3.2. Cross-Validation Schemes and Measures

As discussed in Section 4.1, in our real-world operational setting, a fire service needs
to be provided, each previous day, with a map that assigns fire predictions for the whole
country’s territory, so that they can properly distribute their forces. This is empirically
translated to achieving sensitivity (alternatively recall of the fire class) values of ∼90%,
while, on the same time, specificity (alternatively recall of the no-fire class) of at least
50%. In what follows, we first provide a short presentation of a typical cross-validation
process, in order to point out its shortcoming with respect to our large scale and extremely
imbalanced setting. We then present our proposed methodology, which comprises task
specific evaluation measures (exclusively used for model selection on the validation sets
and not for model assessment in the test sets) in combination with two alternative cross-
validation schemes, aiming to produce ML models that satisfy the aforementioned empirical
and practical requirements.

3.2.1. The Generic Methodology

In general, applying a cross-validation scheme [36] has a twofold purpose: (a) to search
the hyperparameter space of the adopted ML algorithm(s), so as to identify configurations
(hyperparameterizations) that optimize the effectiveness of the model with respect to
a selected measure, and (b) to assess the generalizability of each configuration/model,
considering the achieved effectiveness between the different partitions of the dataset
(training/validation/test). The rationale is that the available dataset is split into three
discrete partitions that are utilized for different purposes.

The training set is used to learn the parameters of the considered models (algorithms
with specific hyperparameterizations), that best optimize an objective function that com-
pares class predictions of the model and actual classes of the training instances (usually
targeting to optimize the overall accuracy of the model, due to inherent restrictions of most
algorithmic implementations [39]).

The validation set is utilized in order to assess the effectiveness of the learned models,
not on the instances they have learned their parameters, but on separate ones. Depending
on the specificities of the task to be solved (e.g., which classes are more important to
be correctly predicted, the distribution of the data with respect to the classes) different
measures might be selected in order to assess and compare the effectiveness of the models,
such as ROC-AUC, f-score, sensitivity, etc. The comparative effectiveness of the assessed
models on the validation set is examined in order to select the best achieving model for
testing/deployment. Further, the absolute and relative effectiveness values achieved in
the training and validation set are used to provide an estimation of the performance of
the models with respect to overfitting and underfitting. If a model does not manage to
reach high effectiveness values on the training set, it underfits the data, meaning that
it not expressive (complex) enough to capture the desired patterns on the data. The
lack of expressiveness (alt. low complexity or high bias) might be due to both the lack
of proper features and/or the (low) complexity of the ML algorithm itself, i.e., what
functions it applies on the input data/features. On the other hand, if a model achieves
high effectiveness values on the training set, but considerably low ones on the validation
set, this is an indication of overfitting: the model is more complex than required and, as a
result, overfits the training set, essentially learning even the noise/variance of the training
instances. A first verification of a model’s effectiveness and robustness is provided when
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the model performs well on the training set and, similarly well on the validation set. A
more trustworthy estimation is provided via the utilization of the test set.

The test set is utilized in order to assess the effectiveness of the selected model on an
unseen dataset. Since the test set is not involved in the process of selecting the model (in con-
trast to the validation set), the effectiveness reported on it comprises an unbiased estimation
of the robustness of the model, regarding its effectiveness and generalization ability.

Cross validation schemes, through their several variations (plain train/validation/test
split; cross-validation; nested cross-validation), normally require that the individual dataset
partitions follow roughly the same data distributions. It is evident that a model that is
trained and assessed on instances of a specific distribution, no matter how effective might
be, is not guaranteed to perform similarly if deployed on a different distribution. We note
here that distribution may regard both the characteristics of the instances (distributions of
the individual training features values), as well as how the instances are shared through
the classes of the task (in our case, through fire and no-fire classes).

The above requirement raises a significant issue in the next day fire prediction setting,
due to the scale and the imbalance of the underlying data. In particular, if we regard a
daily deployment basis, the considered models need to be deployed (equivalently tested)
on ∼365 K instances, out of which, only a few tens might belong to the fire class. While
the deployment of such models is relatively lightweight, the bottleneck lies in training
them. In order to obtain a sufficient number of fire instances so that the classification
algorithms are properly trained (i.e., a few thousand of fire instances), one needs to include
in their training set daily instances spanning almost a decade. Simply put, if we consider
only the seven months of each year (April–October for the Greek territory) for the fire
season, a decade of daily instances summing up to more than 830 M instances needs to be
used as training set, out of which the train/validation partitions will be derived, within a
cross-validation process. The above number of instances is prohibitive for performing a
hyperparameter search via cross validation, since training a single algorithm, with a single
hyperparameterization on conventional hardware might take days to execute on data of
such scale.

The most common practice in order to alleviate the above bottleneck is to perform
undersampling of the majority class so that the training dataset is considerably reduced,
rendering the execution of a proper cross-validation scheme feasible. The issue with this
approach is that it drastically changes the distribution of no-fire instances in the training
set. Indicatively, considering the aforementioned Greek territory dataset, the number of
instances drops from ∼830 M to ∼13 K, if we consider the scenario where a balanced
(containing almost equal number of fire and no-fire instances) train/validation setting is
produced. As a consequence, a ML model trained, optimized and selected based on a
specific evaluation measure (e.g., f-score) in this (balanced) train/validation dataset, cannot
be expected to demonstrate the same effectiveness behavior on a test dataset that maintains
the initial, real-world, extremely imbalanced distribution.

Finally, we emphasize that usually, in a typical cross-validation process, the same
evaluation measures (e.g., f-score) are used both to perform model tuning and selection on
the validation set and to assess the final models on the test set.

3.2.2. The Proposed Schemes

The proposed pipeline is realized via (a) two alternative cross-validation schemes,
that differentiate on the validation set selection, thus implementing two model selection
alternatives and (b) task specific, hybrid evaluation measures that are used for model
selection during cross-validation with the aim to maximize the performance of the models
(with respect to sensitivity and specificity) on the real-world test sets.

Default cross-validation scheme.Given the massive amount of training data, and the
heavyweight processing required during the hyperparameter search in a cross-validation
scheme, we perform undersampling on the initial training dataset (in particular, on the no-
fire instances), and produce a balanced training set of 25 K instances in total. Undersampling
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is performed by examining the spatial and temporal attributes of no-fire instances. In
particular, the instances are spatially sampled uniformly on the whole territory of interest,
while temporally the no-fire instances are sampled according to the the yearly and monthly
distribution of the fire instances. Then, a k-fold cross-validation process is performed, where
the training dataset is split into k subsets (folds) and k training sessions are executed. In
each training session k-1 folds are used for training, leaving each time a different fold to be
used as validation set. Since the number of eventual training instances in the undersampled
training set (∼25 K) allows it, we set k = 10. Further, to account for the strong spatial
correlations in the data, which could lead to data leakage and model overfitting, a strict rule
was followed in the 10-fold splitting process: cells of a specific day were not allowed to be
distributed in more than one fold. This rule effectively prevented neighboring cells from the
same day and the same fire event to be included in both the training and the validation folds
during cross-validation. Omitting this rule would probably produce validation partitions
easier to predict but it would also compromise the model generalization capability [13].

During the process, a large grid of hyperparameterizations for each algorithm is sam-
pled, each creating a model that is trained on the training set and assessed on the validation
set. The best performing models are selected based on the average validation performance
on all folds with respect to several considered evaluation measures, as described next. We
point out that the selected models are eventually assessed on a hold-out test set, which
maintains the real-world, extremely imbalanced distribution of classes (1:100 K ratio of
fire/no-fire instances).

Alternative cross-validation scheme. Inspired by time series validation, we consider
a cross-validation scheme that comprises the following: (a) Each validation set chronologi-
cally succeeds the respective training set, considering yearly granularities. For example, if a
training set comprises instances from years 2010 to 2013, then the respective validation set
includes instances exclusively from year 2014. (b) At each iteration of the validation process,
the training set is additively increased with the validation year of the previous iteration,
while the next year becomes the next validation set. Continuing the example above, the
second iteration of the process would comprise a training set from years 2010 to 2014 and a
validation set from year 2015. (c) Training sets are always created by undersampling the
initial datasets to a balanced set of fires and non-fires i.e., reducing the no-fire instances
by a factor of 100 K; on the other hand, validation sets are slightly undersampled by just a
factor of 10, aiming to maintain, as much as possible, the initial dataset distribution. We
note here that in this scheme, ideally, the validation sets should not be undersampled at all,
maintaining this way their exact size and distribution. However, validating a series of algo-
rithms and hyperparameterizations on such sizes (indicatively, one month requires ∼11 M
predictions), severely slows down the cross-validation process, inevitably leading to con-
siderably less number of hyperparameterizations to be assessed. With this “intermediate”
scheme that we propose, we aim at assessing a feasible scheme, that considers validation
sets closer to their initial distribution and, on the same time, does not dramatically reduce
the number of hyperparameterizations that are sampled and assessed.

The aforementioned scheme has a twofold purpose: (a) to allow us to select the best per-
forming models on validation sets that are very close to the actual, real-world distribution
of the data (and not on the severely undersampled version of the default cross-validation
setting), and (b) to simulate a more real-world deployment/assessment of the models,
where training is always performed on data of years preceding the deployment year.

Task-specific evaluation measures. A plethora of evaluation measures are defined
for assessing the effectiveness of models on classification tasks, including accuracy, f-score,
ROC-AUC, precision/recall, etc. Depending on the specific task that needs to be solved,
different measures are more appropriate, while selecting an inappropriate measure, no
matter how widely used it is, can lead to highly misleading conclusions. For example,
accuracy, although one of the most widely used measures must not be used in our setting,
due to the highly imbalanced nature of the data; a naive model that would classify all
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instances as no-fire would be assigned an almost perfect accuracy score. Similarly, more
elaborate measures such as f-score cannot fully cover the informativeness needs of the task.

Further, in a typical cross-validation setting, an evaluation measure is used not only to
assess the final model, but also to select the best model on the validation sets. Typically,
exactly the same measure is used in both processes, which is directly related to the end goal
of the task, as described above. However, in practice, the extremely imbalanced setting of
our problem requires tuning the considered evaluation measure, in favor of the extremely
rare, fire class, when used during model selection. To this end, apart from the widely used
measures of ROC-AUC and f-score, and based on our empirical experimentation [14], we
define a set of task-specific evaluation measures that combine the two most important
effectiveness indicators for the task, i.e., sensitivity and specificity, and put additional
weight on sensitivity, i.e., the percentage of fires that are identified by the model:

rhybridk =
sensitivity ∗ speci f icity

sensitivity + k ∗ speci f icity
(1)

shybridk = k ∗ sensitivity + speci f icity (2)

The first measure, ratio-based hybrid rhybrid is inspired by f-score [40], however,
instead of considering precision and recall of the fire class, it directly considers the recall
of the two classes. This way, the importance of the two recall values (sensitivity and
specificity) can be more intuitively weighted via factor k. This measure was first introduced
and assessed in our previous work in [14].

The second measure, sum-based hybrid shybrid adjusts Youden’s index [41], so that,
again, sensitivity can be boosted by factor k. Both measures target at the same goal: select
the best models of the cross-validation process directly on their joint performance with
respect to sensitivity and specificity, and boosting the relative importance of sensitivity by
variable factors (k). As shown in more detail in Section 4, we treat these measures as meta-
hyperparameters in our evaluation, meaning that different (configurations of the above)
measures are used in conjunction with different classification algorithms to produce/select
models that achieve the best results (with respect to sensitivity and specificity values) on
the hold-out, test sets.

4. Results

In this section we present the results of our experimental analysis. First, the evaluation
setting is presented (Section 4.1). Then, we present the evaluation results, including:
(i) the considerable improvements we achieve in comparison with our previous work [14],
which, to the best of our knowledge, is the only one that solves the specific problem, in its
realistic basis with respect to the vast sizes and imbalance of the data (Section 4.2.1); (ii) the
contribution of the additional training features that were implemented Section 4.2.2; (iii) the
merits that are obtained for different algorithms by utilizing the proposed, problem specific
evaluation measures for model selection and the two alternative cross-validation schemes
(Section 4.2.3); (iv) how the best models’ performance further generalizes in different test
years (Section 4.2.4).

4.1. Evaluation Setting

Table 2 presents a synopsis of the dataset used in our evaluation, derived from the
study area presented in Section 2.2. It is comprised of daily instances of grid cells covering
the Greek territory, for months June–September, for years 2010–2020. We can observe that
the number of fires largely varies through consecutive years, considering both the yearly
totals, as well as August individually, further indicating the complexity and multifactoriality
of the problem. Another point is that, in most cases, the majority of the fire instances
expectedly belong to August, increasing thus the importance of the particular month in the
evaluation of the examined models.
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Table 2. Distribution of fire and no-fire instances in the dataset.

Year August Sum June–September
No Fire Fire No Fire Fire

2010 11,687,055 347 45,995,051 607
2011 11,685,953 1468 45,993,489 2202
2012 11,685,532 1816 45,992,810 2806
2013 11,686,833 599 45,994,470 1233
2014 11,687,130 304 45,994,809 899
2015 11,687,290 144 45,994,915 793
2016 11,687,188 246 45,993,758 1950
2017 11,686,508 926 45,994,210 1498
2018 11,687,345 87 45,995,092 598
2019 11,562,808 386 45,100,739 631
2020 11,560,400 221 44,926,467 749

Instances from years 2010–2018 are used for training and validation of the exam-
ined models (via the two presented cross-validation schemes), while years 2019 and 2020
are used exclusively as hold-out, test sets for evaluating prediction effectiveness. For
each algorithm (RF, XT, XGB, NN, NNd) a wide space of hyperparameters was searched
during cross-validation, by applying the following hyperparameterization methodolo-
gies: (i) the Tree of Parzen Estimators (TPE) and random search from hyperopt library
http://hyperopt.github.io/hyperopt/; accessed on 22 February 2022) and the random
search of scikit learn library (https://scikit-learn.org/stable/modules/grid_search.html;
accessed on 22 February 2022). To select the best performing models on validation sets, the
following measures where considered:

• ROC-AUC. Area under the receiver operating characteristic curve [42] is a widely
utilized evaluation measure, since it is a measure that summarizes the performance
of a classification model over a range of different classification thresholds, that pro-
duce different sensitivity/specificity thresholds. Due to its definition, ROC-AUC is
imbalance insensitive [39], which is a desirable property for out setting. However, a
significant disadvantage of the measure is that it does not allow adjusting the relative
importance of sensitivity and specificity values.

• F-score. This is also a widely used evaluation measure [40], that can also tackle data
imbalance, since it produces a joint score by weighting precision and recall. Its down-
side in our setting is that weighting these two factors cannot be easily performed in an
intuitive way, since, due to extreme imbalance in combination with the importance
that is given on fire class recall (sensitivity), precision values are expected to be orders
of magnitude lower than recall.

• rh-2, rh-5. Ratio-based hybrid, with setting weight k to values 2 and 5, are two
instantiations our proposed measure (first introduced in [14]), that directly produces
a joint score on sensitivity and specificity and allows boosting the importance of the
former via parameter k.

• sh-2, sh-5, sh-10. Sum-based hybrid, with setting weight k to values 2, 5, and 10, are
three instantiations our second proposed measure that target exactly the same goal
as rh-k, but performs the weighting (boosting of sensitivity) in a more direct way, as
presented in Section 3.2.

We remind that the aforementioned measures are exclusively used for model selec-
tion within the cross-validation process. Instead, for the final evaluation of the assessed
methods in the test sets, sensitivity and specificity measures are exclusively utilized, since,
as described in and Section 3.2, these two measures need to be jointly (but separately as
two individual values) examined to assess our models. The core part of our evaluation
examines how combinations of each algorithm’s cross-validation evaluation measure and
cross-validation scheme perform on on average on the 2019 test set, as well as specifically
on August 2019 in comparison with our previous work (IGARSS21 [14]). A complemen-
tary step, to further examine the generalizability of our methods, examines how the best
performing models on the 2019 test set perform on average on the 2020 test set. More

http://hyperopt.github.io/hyperopt/
https://scikit-learn.org/stable/modules/grid_search.html
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specifically, the best performing models of the tests on 2019 dataset were considered those
with sensitivity score over 0.9 and specificity over 0.5.

In order to facilitate the presentation of the results, next we briefly present the model
naming notations that we use in the following subsections.

• Algorithms. The notation for the three tree ensembles, Random Forest, Extra Trees,
and XGBoost are RF, XT, and XGB respectively. For Neural Networks, we consider
two variations, without and with dropout, denoted NN and NNd, respectively.

• Cross-validation measure. In order to denote that a model has been selected based
on a specific evaluation measure on the validation sets, we append the measure’s
abbreviation (AUC, fscore, rh2, rh5, sh2, sh5, sh10) at the end of the model. For
example, if a RF is selected via shybrid-5 is selected, then it is denoted as RF-sh5.

• Cross-validation scheme. In order to discriminate which of the two presented cross-
validation schemes, we append the terms defCV or altCV respectively at the end of
the model’s name. Thus, to further denote that the above model has been trained on
the alternative cross-validation scheme, then we write it as RF-sh5-altCV.

4.2. Evaluation Results
4.2.1. Overall Effectiveness

Starting our analysis by comparing with our previous work [14], we present in Table 3
a list of models that achieved high performance with respect to sensitivity/specificity met-
rics from our previous ([14]—denoted igarss21) and our current work (current). Ref. [14]
reports prediction values only for August 2019 due to limited computing resources, so
comparison is only possible for this month. However, we also include average sensitivity
and specificity results for months June–September from our current work We note that the
test dataset also contains months April, May, and October, however, we excluded them to
simplify our analysis, since the number of fire occurrences within these three months are
marginal. We need to emphasize here that our experiments have demonstrated increased
average effectiveness scores when including these months, meaning that the excluded
months comprise “easier” cases for the proposed models.

Table 3. Effectiveness (sensitivity/specificity) of the proposed models, compared to [14] on the 2019
test set. In the first column the model is referenced as “Algorithm-Cross Validation measure-Cross
Validation scheme” (see Section 4.1) and in the parentheses next to the model we denote the origin
of the results (current work or IGARSS 2021 [14]). The second column contains the sensitivity and
specificity scores for August 2019 test set while the third column contains the same measures averaged
on the most significant months of the wildfire period: June, July, August, and September.

# Algorithm/Model August 2019 June–September 2019
Sens. Spec. Sens. Spec.

1 NN-AUC-defCV (igarss21) 0.87 0.42 - -
2 RF-AUC-defCV (igarss21) 0.92 0.36 - -
3 XG-rh5-defCV (igarss21) 0.91 0.39 - -
4 NN-rh5-defCV (current) 0.90 0.51 0.90 0.66
5 NNd-sh5-altCV (current) 0.94 0.47 0.90 0.62
6 RF-sh5-defCV (current) 0.89 0.42 0.90 0.55
7 XG-sh5-defCV (current) 0.91 0.46 0.91 0.56
8 ET-sh5-defCV (current) 0.92 0.38 0.94 0.54
9 ET-rh5-altCV (current) 0.91 0.47 0.92 0.59

For August predictions, the best models from the present study in most of the cases
achieved scores over 0.9 in sensitivity (models # 4, 5, 7, 8, 9 in Table 3), while they maintained
specificity scores over 0.4 (models # 4, 5, 6, 7, 9) and reaching specificity over 0.5 in one case
(model # 4). These values considerably improve the best models of our previous work with
respect to both measures.

Further, focusing on the average yearly performance of models of our current work,
we can see that specificity is increased, ranging from 54% to 66%, while sensitivity is
maintained in the same high levels, as compared to the respective August values. This is
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an expected behavior, since August is the most prone to fire occurrences month of the year
due to various factors (both meteorological and human-induced). As a consequence, the
particular month comprises the most challenging case for the assessed prediction models.
Nevertheless, we observe that the proposed models essentially maintain the values for
the most important measure, i.e., sensitivity, ensuring that, even in the most challenging
deployment scenario, the largest percentage of fire occurrences is predicted. In brief, Table 3
demonstrates that the proposed methods, and in particular Neural Networks selected on
the proposed hybrid measures can achieve high enough effectiveness values (sensitivity
of 90%, specificity 66%) to be exploitable in real-world deployment scenarios. Next, we
present more detailed experiments, further analyzing the individual gains from the several
components of the proposed methods.

4.2.2. Gains from New Training Features

In order to demonstrate the contribution of the additional features that were im-
plemented in the current work, we exploit two different instruments that measure in
different ways the importance of different features with respect to the response variable
(fire occurrence): permutation importance and correlation with the response variable.

The permutation importance algorithm [32] computes each feature’s importance by
comparing the model’s performance when having inserted noise in the feature (e.g., by
shuffling the values) with the model’s performance when all the features are in their original
state. This algorithm belongs to the category of the wrapper feature ranking algorithms
in the utilized libraries, which means that any estimator can be used (as wrapped model)
to compute the feature importance. In our case, we deployed the algorithm on three of
the best models that emerged from the test results, one from FCNNs with dropout layer
(NNd-nh2-defCV), one from RF (RF-nh5-defCV), and one from XGB (XGB-nh5-defCV). As
scoring for the permutation importance we set the ROC-AUC metric. We note that, in this
table, the one-hot encoded features were excluded, because the permutation importance
algorithm handles each feature separately whereas in the case of one-hot encoded features,
the numerous vectors that comprise the encoded categorical feature influence the model
more as a whole than each one separately.

In Table 4 we present the first ten features from each of the three permutation rank-
ings. The percentage values denote the drop in ROC-AUC when the specific feature is
permuted. For the first two rankings (NNd, RF), the first three features (dom_vel, evi, f81)
are identical. While it is naturally expected that wind speed and the EVI index are factors
highly influencing the occurrence of fire, we can observe that the newly introduced feature
of spatially smoothed fire history (f81) takes the third place in NN and RF and a 7th place in
XGB, meaning that the fire history of an area plays an important role in considering the risk
of a future occurrence. The coordinates of a cell in the grid (xpos, ypos) take a placement
in the first ten most influencing features according the three rankings confirming that the
location of the cell has a strong relation to fire risk. Furthermore, of the new features, the
land surface temperature (lst_day) and the mean dew temperature (mean_dew_temp) are
placed among the ten features, the first in the RF and the latter in the RF and XGB rankings.
Overall, we can see that for three different models with good performance, four to five
newly introduced features are found in the top-10 list of the most important ones.
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Table 4. Feature ranking using permutation importance with three of the best models emerged from
tests for algorithms NNd (FCNN with dropout layer), RF and XGB.

Rank NNd (nh2-defCV) RF (nh5-defCV) XGB (nh5-defCV)
Feature Imp. (%) Feature Imp. (%) Feature Imp. (%)

1 dom_vel 6.07 dom_vel 12.94 dom_vel 7.47
2 evi 2.38 evi 2.37 evi 2.24
3 f81 1.99 f81 2.18 dem 1.68
4 xpos 1.47 ndvi_new 2.13 max_temp 1.63
5 xpos 1.18 mean_temp 1.72 xpos 1.58
6 dem 1.17 max_temp 1.71 xpos 1.48
7 rain_7days 0.57 lst_day 1.48 f81 1.36
8 max_temp 0.44 xpos 1.20 rain_7days 0.80
9 frequency 0.26 xpos 1.12 mean_dew_temp 0.67

10 slope 0.19 mean_dew_temp 1.11 mean_temp 0.47

The above findings are further strengthened by examining the correlation between the
features and the response variable. Figure 1 presents the values of Spearman’s correlation
for all available numerical features. We can observe that almost all introduced features
(except for dewpoint temperature ones) present absolute correlation values of more that
20%, reaching up to 36%.

Figure 1. Spearman’s correlation values between problem’s independent (training features) and
dependent (fire occurrence to be predicted) variables.

We note that the above schemes (permutation importance and feature correlation) can
only serve as indication and not as proof of the (the degree of) importance of the examined
features. For example, permutation importance can be problematic when there are strong
correlations between training features. On the other hand, Spearman’s correlation is able to
capture only monotonic correlations between variables, while the ML algorithms we deploy
are able to identify and exploit more complex (e.g., non-monotonic) relations. Nevertheless,
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the findings on feature importance provided by the two above schemes, in conjunction
with the comparative findings of Section 4.2.1, provide strong indications about the utility
of the newly introduced training features.

4.2.3. Gains from Hybrid Measures and Alternative Cross Validation Scheme

In Table 5 we present the effectiveness (sensitivity/specificity) scores achieved by the
proposed models on the 2019 test set. In this table, we analyze the contribution of the task
specific, hybrid evaluation measures for model selection, as well as the alternative cross-
validation scheme, that were presented in Section 3.2. The tested models were chosen from
both cross validation schemes for each measure as described in Section 4.1. We emphasize
here that the top row of the table refers to the measures that were used during cross-
validation to select the best model, which is then assessed in terms of sensitivity/specificity
(second row of the table) on the test set.

Table 5. Comparative scores of the different measures from both the default and the alternative cross
validation scheme on test set 2019.

Algo AUC f-Score rh2 rh5 sh2 sh5 sh10
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Default (k-fold) Cross-Validation

RF 0.87 0.66 0.86 0.67 0.78 0.71 0.88 0.59 0.87 0.61 0.90 0.55 0.94 0.47
ET 0.57 0.83 0.79 0.69 0.75 0.73 0.81 0.68 0.79 0.69 0.94 0.54 0.79 0.68

XGB 0.54 0.80 0.57 0.75 0.67 0.74 0.74 0.69 0.68 0.71 0.91 0.56 0.93 0.51
NN 0.71 0.77 0.67 0.80 0.72 0.78 0.90 0.66 0.83 0.68 0.92 0.58 0.96 0.47

NNd 0.66 0.84 0.77 0.78 0.79 0.76 0.91 0.65 0.90 0.67 0.93 0.59 0.97 0.47

Alternative Cross-Validation

RF 0.74 0.80 0.13 0.99 0.82 0.71 0.87 0.64 0.91 0.47 0.91 0.47 0.91 0.47
ET 0.32 0.96 0.27 0.97 0.85 0.69 0.92 0.59 0.94 0.52 0.93 0.52 0.95 0.45

XGB 0.70 0.77 0.34 0.94 0.74 0.69 0.82 0.62 0.91 0.59 0.95 0.46 0.95 0.46
NN 0.90 0.61 0.48 0.88 0.84 0.67 0.90 0.61 0.84 0.64 0.91 0.61 0.93 0.62

NNd 0.81 0.71 0.51 0.87 0.85 0.68 0.89 0.64 0.88 0.66 0.91 0.59 0.91 0.61

The first observation is that the proposed hybrid measures perform much better than
the traditional ones (AUC and f-score). Given the empirical and practical requirement of
achieving sensitivity close to 90% and specificity > 50%, the best models we can obtain from
the two traditional measures achieve values of (87%, 66%), (86%, 67%), (90%, 61%) (RF-
AUC-defCV, RF-fscore-defCV, NN-AUC-altCV respectively), with the latter being achieved via
the proposed alternative cross-validation scheme. On the other hand, the hybrid measures
provide a variety of models with better performance, indicatively marked with bold in
Table 5. For example, all models based on sh5 measure and the default cross-validation
consistently achieve at least 90% sensitivity with specificity ranging from 54% to 59%,
while NNd-sh2-defCV achieves values of (90%, 67%), which can be considered the best
performance according to the aforementioned empirical requirement.

Additionally, in general, we can observe a slightly better performance of NN models
compared to the tree ensemble algorithms and in particular regarding the NN with drop-
out. This can be potentially/partly justified by the fact that some hurtful features were
removed from NNs early on on the experimental process, since they were empirically
shown to severely hurt their performance (Section 3.1), while they were left as is for the
tree ensembles, since they seemed more robust at handling them at the time. Nevertheless,
a more in-depth analysis of this effect is part of our ongoing work.

Another observation regards the expected trade-off between sensitivity and specificity
scores for each model, as higher values of the first lead to lower values of the second
and vice versa. Given this, we can see that the proposed hybrid measures can be used to
increasingly adjust this trade-off in favor of sensitivity; moving rightward in each row of
the table, most of the times sensitivity increases while specificity decreases. This is a useful
behavior that allows the configurable selection of different models, when the needs on
effectiveness slightly differ.
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Comparing the performance of the two cross-validation schemes, we observe that
when focusing on models with very high sensitivity, the default scheme performs slightly
better than the alternative one, with the differences being in the order of 1–3% in most
cases, e.g., when examining the best models from both schemes in the sh5 measure column.
One possible explanation is the fact that, as described in Section 3.2.2, not being able to
use as validation set the whole respective dataset, but only 10% of it, we are still missing
significant information from the initial data distribution. The information gain compared
to the default scheme (which maintains a marginal percentage from the initial dataset
for validation) seems to not be adequate to compensate for the decreased number of
hyperparameterizations that are searched. On the other hand, considering scenarios where
sensitivity can drop to 80–85% in favor of increased specificity, we can observe that the
alternative cross-validation scheme and, in particular, combined with rh2 measure, provides
the most suitable/balanced models via RF and ET ((82%, 71%), (85%, 69%) respectively).
This indicates some tangible gains on specificity, i.e., that the alternative scheme does
capture some additional, useful information regarding the no-fire instances of the initial
data distribution. Our ongoing work investigates more optimal schemes for balancing the
aforementioned trade-off.

4.2.4. Model Generalization

To obtain an indication of how well our proposed models generalize through different
years (without re-training), we handpick several models with good performance on the 2019
test set and present them in Table 6. There, we compare their performance between the 2019
and the 2020 test set. The results in the 2020 test set demonstrate an increased performance
w.r.t. sensitivity, reaching nearly optimal values of 95% to 98%, compared to the 2019 test
set, where the values range from 90% to 94%. A somehow higher volatility though for the
sensitivity measure is expected if we account for the huge imbalance between the classes
(Sections 4.1 and 5.1, Table 2). On the other hand, the specificity values demonstrate a
relative stability, as the metric difference per model between the two test sets is in the range
0–2% (e.g., RF-sh5-defCV, ET-rh5-altCV, NN-rh5-defCV, NNd-sh2-defCV, NN-auc-altCV)
with the exception of a few models of which the difference is in the range 3–4% (e.g.,
NN-sh5-altCV, NNd-sh5-altCV, NNd-sh10-altCV). The above findings indicate that our
models can generalize well in terms of both measures, allowing the selection of models
that achieve values of at least (90%, 65%) in both test years.

Table 6. Comparison of average yearly results on 2019 and 2020 test sets.

Model 2019 2020
Sens. Spec. Sens. Spec.

RF-sh5-defCV 0.90 0.55 0.97 0.56
ET-sh5-defCV 0.94 0.54 0.97 0.54
XGB-sh5-defCV 0.91 0.56 0.97 0.58
XGB-sh10-defCV 0.93 0.51 0.98 0.52
ET-rh5-altCV 0.92 0.59 0.96 0.59
ET-sh2-altCV 0.94 0.52 0.98 0.52
ET-sh5-altCV 0.93 0.52 0.98 0.52
XGB-sh2-altCV 0.91 0.59 0.96 0.58
NN-rh5-defCV 0.90 0.66 0.95 0.67
NNd-rh5-defCV 0.91 0.65 0.95 0.66
NNd-sh2-defCV 0.90 0.67 0.95 0.67
NN-sh5-defCV 0.92 0.58 0.95 0.59
NNd-sh5-defCV 0.93 0.59 0.96 0.62
NN-auc-altCV 0.90 0.61 0.97 0.59
NN-rh5-altCV 0.90 0.61 0.97 0.58
NN-sh5-altCV 0.91 0.61 0.96 0.58
NNd-sh5-altCV 0.91 0.59 0.98 0.55
NN-sh10-altCV 0.93 0.62 0.97 0.58
NNd-sh10-altCV 0.91 0.61 0.97 0.60
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5. Discussion

Next day fire prediction comprises an open and quite challenging problem, which
is reflected by the fact that, in its realistic formulation that we consider in this work, it
is hardly handled in the existing literature [8,14,43]. On the contrary, most works (see
Section 1) focus on related but quite different problem formulations, regarding the problem
setting and challenges, such as next week/month/year fire prediction or fire susceptibility
prediction. As a result, the majority of such works do not handle real-world characteristics
of the next day fire prediction problem, such as extreme scale and imbalance, proposing
methods that cannot be operationally adopted by fire services in real-world scenarios. In
the current work, we introduce a ML methodology and models that can effectively solve
the task, achieving sensitivity and specificity values at the levels of 90% and 65% on a
yearly level, on real-world test sets covering a whole country. Such values render our
proposed models already more effective than existing operational systems, such as the
one published from the Greek Civil Protection Agency that operates on prefecture level
(https://www.civilprotection.gr/el/daily-fire-prediction-map; accessed on 22 February
2022). Further, the proposed methodology adheres to strict best practices that rule out the
possibility of data leakage and ensure the generalizability of the fire prediction models.
Nevertheless, through our analysis we identify room for improvement in several aspects of
the task, as analyzed next.

5.1. Data Scale and Imbalance

To handle the massive amounts of extremely imbalanced training data, we resort
to the widely adopted solution of undersampling the majority class (no-fire) instances.
However, no matter how sophisticated the undersampling process might be, it is expected
to severely change the distribution of the data, since only a marginal percentage of the
initial no-fire instances is left in the dataset (in case we aim for a balanced training set).
In particular, the initial fire to no-fire instances ratio is 1:100 K and drops to 1:1, meaning
that only 0.001% of the initial no-fire instances are kept in the final, balanced training set.
This means that a large amount of potentially very informative no-fire instances, with
respect to differentiating against fire instances, are inevitably removed from the training set.
Thus, any ML model that is utilized, however effective it might be, is trained on a different
distribution than the one that is finally tested/deployed on. On the other hand, maintaining
the initial distribution is practically computationally inefficient as analyzed in Section 3.2.1.
In this work, we tried to partially ameliorate the above significant issue, by assessing the
trained models on validation sets that are much closer (size-wise) to the initial data sizes
(alternative cross-validation scheme in Section 3.2.2), aiming this way to maintain as much of
the initial data distribution as possible. Although some positive indications on the value
of such a process were identified (see Section 4.2.3), in general it did not clearly improve
the effectiveness of the model and needs further investigation and potential enhancements
planned in our future work.

Further, we recognize that the above scheme is practically a “half-measure”, or at
least one side of the coin, for the discussed problem. This is because it only targets at a
more proper selection (on validation sets) of models (algorithm hyperparameterizations)
that are trained on a changed distribution, thus already inherit a bias from this training.
Namely, even if a cross-validation scheme is very effective in selecting the proper models
with respect to the real-world data distribution, it is still limited in selecting from a pool
of models that are trained on a different (undersampled) distribution. Therefore, more
sophisticated schemes need to be devised for the construction of more informative and
close to the real-world distribution training sets. Uniformly undersampling both classes
in order to maintain the exact initial ratio is out of the question due to the extreme class
imbalance that leads to absolute rarity [39]. e.g., reducing the 830 M dataset by a factor of
100 is expected to lead to just over 100 fire instances, depriving the training set of valuable
information. This gets even worse if we take into account the rigidness of most existing
algorithmic frameworks in training models on imbalance data [39]. On the other hand,

https://www.civilprotection.gr/el/daily-fire-prediction-map
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a set of initial, ongoing experiments we are currently conducting indicate that simply
performing a more limited undersampling process on the majority class (e.g., dropping
from 1:100 K to 1:1000 fire to no-fire instances) might not be adequate and most probably
needs to be combined with more targeted/task-specific sampling process for the no-fire
class. This needs to take into account properties of the data, such as rare cases [39] or absence
of fire. Rare cases are identified when a certain class (fire class in our case) is comprised of
several individual “cases”, i.e., groups of instances that might considerably differ to each
other, but are classified to the same class—for example, areas with different topological
characteristics that had a fire occurrence.

Absence of fire on the other hand comprises an opposite issue: no-fire areas that had
very similar characteristics with fire areas. It has to be emphasized that those labels do not
declare true absence of fire, because it is not known with absolute certainty whether a fire
could not occur (and thus to be a true absence), or simply did not happen for “random”
reasons [12]. In reality those labels are used as pseudo-absence data because the task we
handle needs to be formalized as a binary classification problem. In general, the feature
representations of no-fire instances can be very similar to the ones of fire instances (hard
instances [44]), or very different (easy instances) that make extremely unlike a fire to occur,
or lie between these two extremes (semi-hard instances). A training set that contains too
many no-fire instances similar to fire ones (hard instances) could potentially make the
training process extremely difficult, resulting either to a model that predicts many fire
instances as no-fire or to a very complex-overfitted model that has struggled to learn to
discriminate between the two classes essentially based on noise. On the other hand, if a
training set contains too many no-fire instances very different to fire ones (easy instances)
it will make the training process easier but it will produce models that struggle to decide
(and thus perform poorly, potentially achieving very low specificity values) when an area’s
conditions are not extreme in favor of either classes.

A statistical analysis of the features and (intra- and inter-class) similarities between the
instances of fire and no-fire classes and between the instances of each class itself would be
helpful towards obtaining a better understanding of the training set and, at a further step,
for optimizing the sampling the no-fire instances. Especially given the fact that, for different
scenarios, sampling of different types of instances might be more appropriate [44,45]. In
our setting, several sampling strategies could be compared or combined, in order to obtain
a training set as close to the initial dataset distribution as possible. Re-assigning “absence
of fire” areas from no-fire to fire class is one option, as performed in [6], where the authors
consider buffers around fire cells and denote no-fire cells lying within the buffers as fire
ones. Of course this oversampling process needs to be performed exclusively on the
training set, and not be extended to the test set as done in the specific work. Another option
would be to further investigate rare cases within the fire class instances and potentially
handle them as separate classes, facilitating thus the classifier into better discriminating
these cases into more canonical spaces within the feature hyperspace. Further, improving
the majority class undersampling process from random selection towards the obligatory
consideration of semi-hard no-fire instances as a percentage of the eventually sampled set
could potentially assist the learning process; the optimization algorithm would this way
focus on discriminating inter-class instances that are meaningfully distant to each other
and would potentially produce more robust models.

5.2. Concept Drifts and Model Robustness

Wildfires are highly volatile phenomena, often affected by factors that are quite difficult
to be captured and encoded as training features, such as arson, accidentally human-induced
fires, lightning, power pole sparkles, etc. The training features that we are able to utilize
essentially describe the proneness of an area regarding fire occurrence. Further, there exist
temporal correlations, also difficult to capture, through consecutive years. For example,
having an excess of fire occurrences during a year might lead to high operational alertness
during the next year, which can potentially dramatically reduce fire occurrences (more
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than what would otherwise be expected). The best chance at handling this problem lies at
devising features that could, even implicitly or partially, encode such information. Example
of such features are the fire history and spatially smoothed fire history, which are already
proposed in this work and seem to contribute (Section 4.2.2) to the improvement of the
ML prediction algorithms. Additional features that could be examined regard the general
“context” of an area, such as the proximity to urban or agricultural territories, the density
of existing buildings/structures, the surrounding road network [46], etc. Further, it is
probably worth examining socio-economic and demographic (e.g., population density)
features, since they have been widely used in various earth observation modelling and
analysis tasks [47].

Apart from the above, dataset shift [48] is an inherent problem in the specific task. Take
for example meteorological conditions that can highly vary through the months of the
same year, as well as gradually change through the course of years due to climate change.
The effects of the former (variability in data distribution through different months) can
be implicitly observed in Table 3, where the effectiveness values for the same models are
lower for month August compared to the average yearly effectiveness (especially regarding
specificity), meaning that for some of the other months the models are much more effective.
These heterogeneous behaviors indicate that implementing individual models for different
months of each year could potentially help better dealing with this heterogeneity. Going
a step further, experimenting with ensemble schemes that learn to differently weight
these individual models might be a promising direction towards ameliorating the above
heterogeneity and dataset shifts.

5.3. Deep Learning

Deep learning (DL) has recently overwhelmed the research community, presenting
great advancements in machine vision (e.g., image classification, object detection) and
sequential tasks (e.g., natural language processing). The most common paradigm of
DL methods is neural network architectures with many hidden layers, accompanied,
depending on the task, by several specific schemes (e.g., recurrent gates, convolutions,
normalization layers, dropout layers, encoder/decoder/attention mechanisms, etc.) [36].
Nevertheless, it is often the case that ML problems comprising tabular data (such as in our
case) tree ensemble algorithms present superior performance [49,50], depending though on
the task and the underlying data.

In our work up until now, we have extensively studied tree ensembles and shallow
NNs on the task, having also in mind the important hardware restrictions of the task in a
real-world deployment scenario. However, we do believe that DL methods have a high
potential for further improving the currently reported prediction effectiveness. In particular,
we have identified two directions to be explored in our future work.

Siamese Neural Networks and Outlier Detection. Casting the fire prediction task as
an outlier detection problem, with supervised deep metric learning approaches such as
Siamese networks [51] and Triplet networks for extremity recognition comprises a first
direction. These types of architectures tend to bring semantically similar samples closer
and dissimilar samples further away in the latent representation space. In our research,
we plan to exploit this behavior combined with optimized cost functions, in order to learn
new spaces of distributed representations (embeddings) and identify out-of-distribution
samples (i.e., areas that are likely to be on fire) [52]. In previous works, it has been stated
that metric learning performs well in tasks with high imbalance [53], while, to the best of
our knowledge this type of methods has not yet been assessed on EO data and fire risk
prediction in particular.

Convolutional Neural Networks and Bayesian CNN. In this study, we explored the tab-
ular aspect of the instances at hand, i.e., for each area we extracted numerical vectors as
representations. However, another viewpoint of the problem can consider the area-grid
cells as a 2-dimensional plane/image. In such a setting, Convolutional Neural Networks
(CNN) [54] can be deployed, like in [6], so that the inherent spatial correlations of the data
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can be better captured/utilized. In our future work, we particularly plan to assess semantic
segmentation algorithms, i.e., CNNs that exploit labeling information in the level of pixel
(cell), such as Fully Convolutional Networks, U-nets, etc. [55]. Furthermore, and in order
to incorporate a measure of the certainty in the class selection probability which implies
the fire risk, we will attempt to exploit Bayesian CNN algorithms that combine CNNs with
the ability of Bayesian methods to measure the certainty of the algorithm’s decision [56].

Finally, overall, the aforementioned DNN-oriented research directions will facilitate
the exploitation of larger parts of the available data for training/validation.

5.4. Operational Mode

The presented work is not limited to a “laboratory” setting; on the contrary it is
implemented into an integrated pre-operational environment that has been producing daily
maps during the wildfire season of 2021 for the whole Greek territory. This environment,
which is shared with the Greek Fire Service, facilitates the continuous assessment and
evaluation of the proposed methods on a daily basis, as well as the gradual embracement of
the proposed technologies by the Fire Service. Each cell in the produced maps is assigned a
level of risk (in a five-grade scale) using the probability of fire to no-fire class selection by
the model’s prediction.

An indicative risk map of 4 August 2021 is presented in Figure 2 (left map), where the
fire events of that day are indicated by a location marker. The zoomed rectangles around
the map correspond to all the ignition points. We can observe that all the fire events of that
day were located in cells predicted with high risk of fire (>0.8 probability of “fire” class
selection) by our system. The map on the right in Figure 2 is the published fire risk map
of the same day by the Civil Protection Agency where the risk is provided at prefecture
level. Although the Civil Protection risk map may be used for various purposes, like
public awareness, it is evident that the fine-grained resolution of our predictions, compared
to the highly coarse one of the Civil Protection, is of much higher utility for operational
organization of the Fire Service. In particular, for the specific day, the Civil Protection map
has annotated the whole Greek territory as medium and high risk; on the other hand, our
map identifies very high risk areas, while it also assigns a considerable proportion of areas
to low and no risk.

Figure 2. Daily wildfire risk map. The map on the left is created by our pre-operational system
for 4 August 2021; the provided resolution is 500 m. The map on the right is the official daily map
published by civil protection agency for the same day; the resolution is on prefecture level.

Furthermore, apart from the continuous assessment, the proposed solution is continu-
ously enhanced considering various components.For example, the meteorology features are
currently in the process of being enhanced to higher resolution provided by the operational
NOA/BEYOND numerical weather prediction method, which is an implementation of
WRF-ARW atmospheric model [57], and runs daily in NOA/BEYOND premises. This
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will result to obtaining meteorology features of a higher-resolution (2 km grid spacing as
compared to the currently used, coarser granularity of 9 km) over Greece. That allows for a
significantly more detailed representation of the meteorology driving factors for wildfire
compared to the ERA5-land dataset.

6. Conclusions

In this paper we presented a ML methodology and models for handling the problem
of next day wildfire prediction in the scale of a country. The proposed methods aim at
solving (some of) the several lacks and shortcomings in existing works of the literature,
while based on the analysis of a large wildfire dataset we have created, and the results
we achieve, we discuss directions for future exploration. Further, our proposed methods
achieve adequately high effectiveness scores (sensitivity > 90%, specificity > 65%) and are
realized within a pre-operational environment that is continuously assessed on real-world
conditions and also improved based on the feedback of the Greek Fire Service.
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Appendix A. Hyperparameter Spaces

In this Appendix we subjoin the hyperparameter spaces as they were structured in
python code for the hyperopt library. Function hp.quniform(label, low, high, q) returns a
value like round(uni f orm(low, high)/q) ∗ q. Function hp.choice(label, options) returns one
of the options in a list or a tuple. The elements of options can themselves be nested
stochastic expressions.

Appendix A.1. FCNN Parameter Space
space_FCNN = {’n_internal_layers’: hp.choice(’n_internal_layers’,

[
(0, {’layer_1_0_nodes’: hp.quniform(’layer_1_0_w_nodes’, 100, 2100, 100)}),
(1, {’layer_1_1_nodes’: hp.quniform(’layer_1_1_w_nodes’, 100, 2100, 100),

’layer_2_1_nodes’: hp.quniform(’layer_2_1_w_nodes’, 100, 2100, 100)}),
(2, {’layer_1_2_nodes’: hp.quniform(’layer_1_2_w_nodes’, 100, 2100, 100),

’layer_2_2_nodes’: hp.quniform(’layer_2_2_w_nodes’, 100, 2100, 100),
’layer_3_2_nodes’: hp.quniform(’layer_3_2_w_nodes’, 100, 2100, 100)}),

(3, {’layer_1_3_nodes’: hp.quniform(’layer_1_3_w_nodes’, 100, 2100, 100),
’layer_2_3_nodes’: hp.quniform(’layer_2_3_w_nodes’, 100, 2100, 100),
’layer_3_3_nodes’: hp.quniform(’layer_3_3_w_nodes’, 100, 2100, 100),
’layer_4_3_nodes’: hp.quniform(’layer_4_3_w_nodes’, 100, 2100, 100)}),

(0, {’layer_1_0_nodes’: hp.quniform(’layer_1_0_nodes’, 10, 100, 10)}),
(1, {’layer_1_1_nodes’: hp.quniform(’layer_1_1_nodes’, 10, 100, 10),

’layer_2_1_nodes’: hp.quniform(’layer_2_1_nodes’, 10, 100, 10)}),
(2, {’layer_1_2_nodes’: hp.quniform(’layer_1_2_nodes’, 10, 100, 10),

’layer_2_2_nodes’: hp.quniform(’layer_2_2_nodes’, 10, 100, 10),
’layer_3_2_nodes’: hp.quniform(’layer_3_2_nodes’, 10, 100, 10)}),

(3, {’layer_1_3_nodes’: hp.quniform(’layer_1_3_nodes’, 10, 100, 10),
’layer_2_3_nodes’: hp.quniform(’layer_2_3_nodes’, 10, 100, 10),
’layer_3_3_nodes’: hp.quniform(’layer_3_3_nodes’, 10, 100, 10),
’layer_4_3_nodes’: hp.quniform(’layer_4_3_nodes’, 10, 100, 10)}),

(4, {’layer_1_4_nodes’: hp.quniform(’layer_1_4_nodes’, 10, 100, 10),
’layer_2_4_nodes’: hp.quniform(’layer_2_4_nodes’, 10, 100, 10),
’layer_3_4_nodes’: hp.quniform(’layer_3_4_nodes’, 10, 100, 10),
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’layer_4_4_nodes’: hp.quniform(’layer_4_4_nodes’, 10, 100, 10),
’layer_5_4_nodes’: hp.quniform(’layer_5_4_nodes’, 10, 100, 10)})

]
),

’dropout’: hp.choice(’dropout’,[0.1, 0.2, 0.3]),
#’dropout’: hp.choice(’dropout’,[None]),
’class_weights’: hp.choice(’class_weights’, [{0:1, 1:1}, {0:1, 1:2}, {0:2,1:3},

{0:1, 1:5}, {0:1, 1:10}]),
’feature_drop’: hp.choice(’feature_drop’,[[’dir_max’, ’dom_dir’,’month’, ’wkd’]]),
’max_epochs’: hp.choice(’max_epochs’, [2000]),
’optimizer’: hp.choice(’optimizer’,[

{’name’:’Adam’,’adam_params’:hp.choice(’adam_params’,[None])}]),
’ES_monitor’:hp.choice(’ES_monitor’, [’loss’]),
’ES_patience’:hp.choice(’ES_patience’, [10]),
’ES_mindelta’:hp.choice(’ES_mindelta’, [0.0001]),
’batch_size’:hp.choice(’batch_size’, [512])
}

Appendix A.2. Ensemble Trees Algorithms Parameter Spaces
space_RF = {’algo’: hp.choice(’algo’, [’RF’]),

’n_estimators’: hp.choice(’n_estimators’, [50, 100, 120, 150,170,200, 250, 350,
500, 750, 1000,1400, 1500]),

’min_samples_split’: hp.choice(’min_samples_split’,[2, 10, 50, 70,100,120,150,180,
200, 250,400,600,1000, 1300, 2000]),

’min_samples_leaf’ :hp.choice(’min_samples_leaf’,[1, 10,30,40,50,100,120,150]),
’criterion’:hp.choice(’criterion’,["gini", "entropy"]),
’max_features’:hp.quniform(’max_features’, 1,10,1), # the x/10 of the total features
’bootstrap’:hp.choice(’bootstrap’,[True, False]),
’max_depth’: hp.choice(’max_depth’, [10, 20, 100, 200, 400,500, 700, 1000, 1200,2000, None]),
’feature_drop’: hp.choice(’feature_drop’, [[]]),
’class_weights’:hp.choice(’class_weight’,[{0:1,1:300},{0:1,1:400},{0:1,1:500},{0:1,1:1000}])

}

space_XT = { ’algo’: hp.choice(’algo’, [’XT’]),
’n_estimators’: hp.choice(’n_estimators’,[10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000]),
’criterion’: hp.choice(’criterion’,[’gini’, ’entropy’]),
’max_depth’: hp.quniform(’max_depth’,2, 40, 2),
’min_samples_split’: hp.choice(’min_samples_split’,[2, 10, 50, 70, 100, 120, 150, 180,
200, 250, 400, 600, 1000, 1300, 2000]),
’min_samples_leaf’: hp.choice(’min_samples_leaf’,[5, 10, 15, 20, 25, 30, 35, 40, 45]),
’max_features’: hp.quniform(’max_features’, 1,10,1), # the x/10 of the total features
’bootstrap’: hp.choice(’bootstrap’,[True, False]),
’class_weights’: hp.choice(’class_weights’,[{0: 4, 1: 6}, {0: 1, 1: 10}, {0: 1, 1: 50},
{0: 1, 1: 70}]),
’feature_drop’: [],

}

space_XGB = { ’algo’: hp.choice(’algo’, [’XGB’]),
’max_depth’: hp.quniform(’max_depth’,2, 100, 2),
’n_estimators’: hp.choice(’n_estimators’,[10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000]),
’subsample’: hp.choice(’subsample’,[0.5, 0.6, 0.7, 0.8, 0.9, 1]),
’alpha’: hp.choice(’alpha’, [0, 1, 10, 20, 40, 60, 80, 100]),
’gamma’: hp.choice(’gamma’,[0, 0.001, 0.01, 0.1, 1, 10, 100, 1000]),
’lambda’: hp.quniform(’lambda’,1, 22, 1),
’scale_pos_weight’: hp.choice(’scale_pos_weight’,[9, 15, 50, 70, 100, 200, 500]),
’feature_drop’: [],
}
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