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Abstract: Capturing and identifying field-based agricultural activities, such as the start, duration and
end of irrigation, together with crop sowing/germination, growing period and time of harvest, offer
informative metrics that can assist in precision agricultural activities in addition to broader water
and food security monitoring efforts. While optically based band-ratios, such as the normalized
difference vegetation index (NDVI) and normalized difference water index (NDWI), have been used
as descriptors for monitoring crop dynamics, data are not always available due to the influence of
clouds and other atmospheric effects on optical sensors. Satellite-based microwave systems, such
as the synthetic aperture radar (SAR), offer an all-weather advantage in monitoring soil and crop
conditions. In this paper, we leverage the relative strengths of both optical- and microwave-based
approaches by combining high resolution Sentinel-1 SAR and Sentinel-2 optical imagery to monitor
irrigation events and crop dynamics in a dryland agricultural landscape. A microwave backscatter
model was used to analyze the responses of simulated backscatters to soil moisture, NDVI and NDWI
(both are correlated with vegetation water content and can be regarded as vegetation descriptors),
allowing an empirical relationship between these two platforms. A correlation analysis was also
performed using Sentinel-1 SAR and Sentinel-2 optical data over crops of maize, alfalfa, carrot and
Rhodes grass in Al Kharj farm of Saudi Arabia to identify an appropriate SAR-based vegetation
descriptor. The results illustrate the relationship between SAR and both NDVI and NDWI and
demonstrated the relationship between the cross-polarization ratio (VH/VV) and the two optical
indices. We explore the capacity of this multi-platform and multi-sensor approach to inform on
the spatio-temporal dynamics of a range of agricultural activities, which can be used to facilitate
field-based management decisions.

Keywords: synthetic aperture radar; normalized difference vegetation index; normalized difference
water index; Sentinel-1; Sentinel-2; irrigation; crop dynamics

1. Introduction

Climate change and population growth have driven an increasing demand for ir-
rigation water to support agricultural production, making this one of the most serious
issues facing arid and semi-arid regions around the world [1,2]. As such, quantifying water
use for agriculture and monitoring crop status represent critical sources of information
for optimizing water allocation and improving agricultural productivity [3,4]. It is also
important to develop the capacity to monitor and characterize field-scale events, including
activities, such as irrigation scheduling (e.g., start, duration and end of irrigation) and
related crop dynamics, capturing activities including the sowing date, growing period
and time of harvest. In many cases, these activities can be identified through time series
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characteristics of the normalized difference vegetation index (NDVI) [5–8] and normalized
difference water index (NDWI), facilitating the retrieval of information not just to improve
agricultural water use management, but also to provide further insight into the security of
our food and water systems.

Satellite remote sensing in the optical and shortwave infrared bands has long been
an effective approach for monitoring crop dynamics, e.g., the application of vegetation
and water indices constructed from multi-spectral band-ratios, such as the NDVI [5–8] and
NDWI [9,10]. For example, the moderate-resolution imaging spectroradiometer (MODIS)
derived enhanced vegetation index has previously been used to determine crop phenologi-
cal features (including planting/germination date, heading date and harvesting/maturity
date) [11]. Similarly, the fusion of multi-platform/sensor data have been widely applied in
crop phenology tracking [12,13] and crop intensity mapping [14]. However, optical sensors
are limited to cloud-free conditions. On the other hand, synthetic aperture radar (SAR)
sensors can overcome this limitation due to their cloud-penetrating capabilities [15,16].
The SAR signal can also penetrate the crop canopy and sense the information from both
the vegetation and soil surface, providing a more comprehensive understanding of crop
and soil moisture conditions. Relative to visible and thermal remote sensing, SAR data
have only been applied to a limited extent for agricultural monitoring, partly because
of the uncertainties in backscattering models [17] and the inherent speckle noise of SAR
images [18].

Capturing irrigation events and monitoring crop dynamics at agricultural field scales
require a high spatiotemporal resolution remote sensing time series. With recent develop-
ments in Earth observation platforms, including through the availability of CubeSat [19]
and Sentinel constellations [20], high spatiotemporal resolution imagery have become
increasingly available. The Sentinel missions of the European Space Agency (ESA) provide
an unprecedented opportunity for agriculture monitoring, as they deliver radiometri-
cally calibrated high spatial resolution imagery (10 m) with up to 5 days revisit time.
Sentinel-1 [21–23] includes a C-band SAR, while Sentinel-2 [24,25] offers a multispectral
instrument that measures the Earth’s reflected radiance across 13 spectral bands located in
the visible, near infrared and shortwave infrared.

The combined use of high spatio-temporal resolution data acquired from both the SAR
and optical Sentinel platforms provides enhanced sensing capabilities to monitor the status
and processes of agricultural fields, including for soil moisture retrieval [21,22,26–29], crop
classification and mapping [30,31], vegetation phenology monitoring [32,33] and many
other applications. Although several studies have explored the combination of Sentinel-1
SAR and Sentinel-2 optical images for crop type mapping [34–36], how to establish a
connection between the optical and SAR signals to develop an integrated analysis of
agricultural dynamics has not been reported. For example, Veloso et al. [37] analyzed the
temporal backscattering and NDVI behavior of various crops using time series of Sentinel-1
and Sentinel-2-like data (including SPOT5-Take5, Landsat-8, Deimos-1 and Formosat-2).
They demonstrated that the dense time series of Sentinel data allowed for an assessment of
short phenological stages. However, they did not analyze in detail how to link the optical
and SAR signals for the integrated analysis of crop dynamics.

The relative strength of combining optical and SAR data from two platforms may
lead to a more comprehensive monitoring of irrigation and crop dynamics than the use of
any single platform. While optical data can provide information on crop extent, condition
and the temporal span of growing seasons, SAR data are well suited for measuring soil
moisture and vegetation water content. Thus, establishing relationships between SAR and
optical data is key to enhance monitoring capabilities of agricultural field processes. To
generalize results to a range of agricultural systems, modeling the relationship between
SAR backscatter and optically derived NDVI and NDWI prior to jointly monitoring crops
and irrigation with Sentinel-1 and Sentinel-2 time series is necessary. An investigation of
the combined use of SAR backscatters and NDVI has been reported [38,39]. These studies
utilized regression to explore statistical relationships between NDVI and backscatters or
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interferometric coherence, but did not seek to interpret the physical principles behind the
backscattering process. The backscattering modeling presented herein aims to explore the
backscattering mechanism, providing an improved and more generalized understanding
of the SAR time series.

The overall aim of this paper was to identify a number of important irrigation activities
(i.e., start, duration and end of irrigation) and crop dynamics (including sowing, growing
and harvest dates), by combining Sentinel-1 and Sentinel-2 observations. To do this,
relationships between SAR signals and soil moisture, NDVI and NDWI were examined
using a backscattering model combined with an estimation scheme for vegetation water
content (VWC). A correlation analysis between SAR and both NDVI and NDWI was then
undertaken for a range of different crop types, including maize, alfalfa, carrot and Rhodes
grass, as well as for bare soil. These analyses provided a foundation for interrogating the
remote sensing time series data under different crop and irrigation conditions, with key
irrigation events and crop status identified accordingly.

2. Site Description and Data
2.1. Study Area

Saudi Arabia is a water scarce country with annual rainfall rarely exceeding 100 mm in
most places [40]. Since the mid-1980s, the Kingdom has witnessed a rapid development and
expansion in agriculture [2]. While this development successfully increased the country’s
production of a number of key crops, the hot and dry climate and scarce water resources
make it extremely difficult to develop agriculture in a sustainable manner. The present
study focuses on an irrigated agricultural area in the Al Kharj region, approximately 200 km
southeast of Riyadh (Figure 1). The site consists of 47 center pivot fields with a total area of
approximately 2400 ha [41,42]. The terrain is relatively flat, with an average elevation of
380 m. The farm was predominantly planted with maize, alfalfa, carrot and Rhodes grass.
All fields are irrigated using center pivot systems.

The study spans the time period from January 2016 to December 2018, during which
time some fields were planted with the same crop type, while other fields had alternating
crop types. For example, pivot P22 (see Figure 1) was cultivated with alfalfa from January
2016 to November 2017, while TE-10 was cultivated with alfalfa from January to July 2016
and maize from August 2016 to the end of 2017.

2.2. Remote Sensing Data and Preprocessing

The pair of satellites that comprise Sentinel-1 (A and B) carry C-band SAR sensors,
while the Sentinel-2 pair (A and B) carry multispectral imaging optical sensors. Both
platforms can provide images with a spatial resolution of up to 10 m. Detailed descriptions
of the satellites and their imagery can be found in [24,29,43]. Sentinel-1 data were collected
in the interferometric width (IW) mode with dual-polarizations (VV and VH) at a spatial
resolution of 10 m. To ensure backscatter consistency, only images with an ascending
orbit and an incidence angle of approximately 310 were used, providing a time series
of 77 Sentinel-1A data acquired from 21 February 2016 to 19 December 2018, generally
with a 12-day interval between images. Sentinel-1B images were not used because limited
images were available over the region during the study period. The collected images were
Level-1 products that have been multi-looked and projected to ground-range [27]. The
collected images were preprocessed by Google Earth Engine (GEE) [44] using the Sentinel-1
Toolbox [45] for thermal noise removal, radiometric calibration and terrain correction. To
reduce the inherent speckle noise of the SAR images, speckle filtering was carried out using
a 3×3 boxcar filter on the GEE platform before downloading the data [46].

A total of 108 Level 1C Sentinel-2A and Sentinel-2B images acquired between 9 Jan-
uary 2016 and 14 December 2018 were downloaded from the ESA database at (https:
//scihub.copernicus.eu (accessed on 9 January 2019)) providing an average interval of
10 days. The images were geometrically orthorectified and corrected to top-of-atmosphere
reflectance. To produce at-surface reflectance values, an atmospheric correction of the

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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imagery was conducted using the sen2cor procedure [47], which is an extension plugin
for the ESA Sentinel Application Platform [45]. The Sentinel-2 image bands have three
different spatial resolutions: Bands 2 (496 nm), 3 (560 nm), 4 (665 nm) and 8 (833 nm) have
10 m pixels, whereas bands 5 (704 nm), 6 (740 nm), 7 (782 nm), 8A (865 nm), 11 (1614 nm)
and 12 (2202 nm) have a spatial resolution of 20 m. The remaining three bands (with 60 m
resolution) were not used in our analysis. To match the spatial scale of Sentinel-1, those
bands with 20 m resolution were resampled to 10 m using a nearest neighbor resampling
technique. Subsequently, NDVI and NDWI were calculated using bands 4, 8A, and 11 of
Sentinel-2, respectively (Equations (1) and (2)). Although band 8 has a higher spatial reso-
lution than band 8A, band 8A was used to calculate NDVI and NDWI based on previous
analyses that indicated it improved the estimation of soil moisture when using the water
cloud model framework (see Ma et al. [29]. These indices were selected for the assessment
of vegetation dynamics due to their well-established association with vegetation pigment,
phenology and wetness [10,48].
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Figure 1. (a) The location of the study area in Al Kharj, Saudi Arabia and (b) a false color composite
Sentinel-2 image from 2 July 2017. The two automatic weather stations (AWS, green circles) for
collection of soil moisture and precipitation measurements were located inside a planted center pivot
field (namely TE-10 north of TE11) and on bare ground between three fields. The blue squares denote
the fields that were used for time series analysis.

NDVI = (ρ8A − ρ4)/(ρ8A + ρ4) (1)

NDWI = (ρ8A − ρ11)/(ρ8A + ρ11) (2)
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where ρi denotes the processed reflectance at ith band.

2.3. Ground Soil Moisture and Farming Records

Soil moisture from HydraProbes (Stevens Water Monitoring Systems, Inc., Portland,
OR, USA) installed at 5 cm depth was collected from two site-based weather stations
(Figure 1b) for the assessment of soil wetness variation. These data would be used to
assess the capacity of the Sentinel-1 and Sentinel-2 time series data to characterize the
agronomic processes. One station was located inside an irrigated center pivot field, while
the other was located approximately 120 m from a center pivot field on non-irrigated
bare ground. Irrigation (monthly irrigation hours and total water applied), sowing and
harvesting records were also obtained from farmer-provided records to interpret the key
crop growth stages and agronomic events.

3. Methodology
3.1. Theoretical Analysis by Modeling Backscatter

To understand and interpret the time series characteristics of the SAR data over the
studied field conditions (e.g., bare soil and vegetated), we first conducted a theoretical
analysis using a backscattering model. Specifically, we simulated the VV- and VH-polarized
backscatters at the Sentinel-1 C-band frequency and incidence angle configuration using a
water cloud model [49,50] to demonstrate the relative contribution of the wetness of soil
and vegetation to the microwave backscatter signal.

The water cloud model, which considers the vegetation canopy as cloud-containing
water droplets, was proposed to simulate the backscattering from the vegetation canopy
and soil surface [49,50]. The model (Equation (3)) has been widely used in vegetated surface
modeling and for retrieving parameters, such as soil moisture, due to its simplicity [29]. It
simulates the total backscattering signal (σ0

total,pq) at a linear scale as the contributions of

vegetation (σ0
veg,pq) and soil (σ0

soil,pq).

σ0
total,pq = σ0

veg,pq + τ2 × σ0
soil,pq (3)

where σ0
soil,pq represents backscatters from the soil surface, which can be modeled by the

Oh model [51], a relatively simple (i.e., only one surface roughness parameter is used)
approach that has shown similar performance to physical models (such as the integral
equation model [52]). In addition, the Oh model can better represent the cross-polarized
backscatter compared to physical models and is well suited to the configuration of dual-
polarized Sentinel-1 data. τ2 is the two-way transmissivity that depicts the proportion of
backscatters that pass the vegetation canopy twice and are scattered by the soil surface.
σ0

veg,pq is the vegetation canopy backscattering component. τ2 and σ0
veg,pq are formulated by

Equations (4) and (5), respectively.

σ0
veg,pq = A × mV × cos(θ)×

(
1 − τ2

)
×

(
1 − e−α

)
(4)

τ2 = e−2×B×mV /cos(θ) (5)

where A, B and α are empirical parameters in the water cloud model, θ is the incidence
angle and mV is vegetation water content that is estimated by NDVI or NDWI using the
equations recommended in Gao et al. [6].

mV = 0.098e4.225 × NDVI (6)

or
mV = 7.84 × NDWI + 0.6 (7)

By doing this, the σ0
total,pq can be related to NDVI, NDWI and soil moisture.
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In the simulation experiment, the frequency and incidence angle were specified as
5.4 GHz and 31° according to the configuration of the selected Sentinel-1 data. The rough-
ness, specified here as the root mean square height (RMSH), was set to be 1.5 cm. As RMSH
was not measured within the study site, the value of 1.5 cm was set according to related
measurements over agricultural fields [53]. The empirical parameters A, B and α of the
water cloud model were specified as 0.0012, 0.091 and 2.12 for “all land uses” according
to Bindlish and Barros [50]. A recently published analysis [29] demonstrated that these
parameter values served as the optimal values for a surface with different crops.

3.2. Correlation between Observed Backscatters and Soil Moisture

In addition to forward modeling, the response of real (observed) SAR backscatters
was assessed against field-based soil moisture measurements to establish the feasibility of
monitoring soil moisture variations based on SAR images. In this experiment, the ground
soil moisture was measured at the two field-based climate stations and compared with the
corresponding SAR backscatters. To identify irrigation events based on SAR observations,
the response of observed SAR backscatters to the measured soil moisture was assessed
using linear regression.

3.3. Correlation between Backscatters and NDVI and NDWI

Optical data, such as Sentinel-2 imagery, are affected by cloud cover, whereas SAR
data can be obtained irrespective of atmospheric conditions. Hence, SAR data may act as
a gap-filler for optical data affected by clouds. NDVI and NDWI derived from Sentinel-2
data were correlated with SAR observations for the four different crop types to determine
whether the SAR data were suited for monitoring vegetation conditions. To exploit the
potential of VV- and VH-polarized backscatters of Sentinel-1, in addition to the ratio of
VH- against VV-polarized backscatters (VH/VV), and to depict vegetation properties
(e.g., VWC), we conducted an analysis to observe the correlation of VV-, VH-backscatters
and VH/VV against NDVI and NDWI. As both NDVI and NDWI have previously been
demonstrated to be correlated to VWC [6,9,10], if high correlations could be found between
SAR backscatters (and the ratio of VH/VV) and NDVI (and NDWI), the SAR backscatters
and/or VH/VV ratio may also be used to represent VWC. Thus, this correlation analysis
aims to test the possibility of replacing NDVI or NDWI with SAR backscatters (or other
corresponding indices) to estimate VWC.

3.4. SAR, NDVI and NDWI Time Series of Different Crops

While some center-pivot fields had just a single crop type between January 2016
and December 2018, others had alternating crop types, so the time series behavior of
SAR backscatters and NDVI and NDWI will certainly differ. To test this assumption, we
compared the SAR backscatters and both NDVI and NDWI for the different crop types.
Specifically, the SAR backscatters and NDVI and NDWI from four selected fields (P1-5, P14,
P22 and TE11; see Figure 1) that were planted with only a single crop type throughout the
study period were first identified. Considering the diameter of each center pivot field was
approximately 800 m, a square of 500 × 500 m inside each field was selected to preclude
the sampling of edge pixels along the field perimeter. The retrieved SAR backscatters and
the NDVI and NDWI of approximately 2500 pixels were averaged in order to provide a
mean value for each field. Based on the identified pixels, differences in NDVI, NDWI and
SAR time series among different crops were related to crop types.

To establish differences in time series behavior amongst the crop types, statistics
including maximum values (Max), minimum values (Min), amplitude variation (Amp)
and standard deviation (Std) were calculated from the time series of NDVI, NDWI and
backscatters for the four crops. These were applied to differentiate between the different
cover types.
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4. Results
4.1. Simulated Responses of Backscatters to Soil Moisture, NDVI and NDWI

A simulation experiment was conducted to test the response of backscatters to soil
moisture, NDVI and NDWI based on the water cloud model. Figure 2 shows the responses
of the simulated σ0

total,pq to soil moisture, while Figure 3 shows the same variable’s response
to NDVI and NDWI. Both VV- and VH-polarized backscatters increased with increasing soil
moisture (Figure 2a,b). At low NDVI and NDWI values, the increasing rate in backscatters
was slightly larger than that for high optical index values, e.g., when NDVI is approach-
ing 1.0, the increase in VH-polarized backscatter is minimal. This demonstrates that the
backscatters are no longer sensitive to soil moisture at high NDVI and NDWI values.
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Figure 3. Response of backscatter to NDVI (a) and NDWI (b) under different soil moisture (SM)
levels based on the water cloud model simulations.

Compared to the response of backscatters to the variation of soil moisture, both
NDVI and NDWI have much smaller effects on backscatters. As shown in Figure 3a,
almost no changes were observed to the backscatters for NDVI up to 0.6, beyond which
the VV-polarized backscatter starts decreasing. The VH-polarized backscatter first de-
creased slightly at NDVI values > 0.60 and then leveled between 0.9–1.0 for soil moisture
values > 0.3, or slightly increased for soil moisture values < 0.3. With increasing NDWI, the
backscatters demonstrated a relatively minor but consistent decrease (Figure 3b). Compar-
atively, both VV- and VH-polarized backscatters demonstrated higher sensitivity to soil
moisture than to NDVI and NDWI. It should be noted that while these responses varied
somewhat with crop type, model parameters (e.g., A, B and α) and radar configurations
(frequency and incidence angle), the general trends did not change.

4.2. Evolutions of Observed Soil Moisture Backscatters

Whereas Section 4.1 analyzed the relationships between backscatters and soil moisture
based on model simulations, here we evaluate their relationship based on real data to test
the feasibility of identifying irrigation events using Sentinel-1. As can be observed from
Figure 4, soil moisture was (naturally) much higher in the irrigated center pivot field at
TE-10_AWS (Figure 4a) compared with the adjacent bare ground at Desert_AWS (Figure 4b).
For the center pivot field, soil moisture was high due to the irrigation applied, whereas
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the backscatters showed large changes throughout the time series. Before July 2017, the
soil moisture changed with very high frequency, followed by a steady decline. Alfalfa was
cultivated and cut frequently during January to July 2016, with an irrigation of 161, 259,
567, 457, 727, 681, and 726 hours according to farmer records for the months from January
to July, respectively. From August to November 2016, the field was cultivated with maize
and irrigation kept the soil moisture high. After maize harvesting in December 2016, the
irrigation ceased until February 2017. During that period, soil moisture dropped sharply,
as did backscatters, especially the VH-polarized values. An increase in soil moisture of
0.1 m3/m3 was identified for the Desert_AWS in the middle of February 2017, with the
cause identified by an 18 mm precipitation event that occurred during 11–15 February 2017.
The precipitation event was captured by the SAR image on 15 February with an obvious
increase in both VV- and VH-polarized backscatters.
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Figure 4. (a) The temporal variation of soil moisture (SM) and backscatters at the irrigated field of
TE-10_AWS and (b) bare ground of Desert_AWS.

Overall, the observed backscatters indicate variations in soil moisture, potentially
enabling the identification of irrigation events. The VH-polarized backscatter time series
demonstrated larger amplitude than VV-polarized backscatter because the VH-polarized
backscatter is influenced more by vegetation than by soil moisture [29,37]. Thus, it is
anticipated that the VV-polarized backscatter is better suited for monitoring soil moisture
and irrigation [29].

4.3. Correlations between Observed Backscatters and NDVI and NDWI

Considering NDVI and NDWI as basic descriptors of VWC, we analyzed the cor-
relations between SAR backscatters and NDVI and NDWI, aiming to find an optimal
SAR-based vegetation descriptor. As shown in Figure 5, the VH/VV ratio produced the
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highest correlation with both NDVI (Slope = 0.348, R2 = 0.531) and NDWI (Slope = 0.423,
R2 = 0.508), respectively, followed by the VH-polarized backscatter. The VH-polarized
backscatter demonstrated the highest slope of a linear fitting (Slope = 0.525 for NDVI and
Slope = 0.633 for NDWI). Note that the slope here is a normalized slope, i.e., Slope= a/30
where a is the coefficient of the linear model, y = a × x + b. The normalization of the
slope was to facilitate the comparison of NDVI and NDWI. The VV-polarized backscat-
ter demonstrated a low correlation and slope with both NDVI (R2 = 0.210) and NDWI
(R2 = 0.111), consistent with findings in Veloso, et al. [37]. As the NDVI and NDWI were
found to estimate VWC [6] and the VH/VV ratio and VH-polarized backscatter were
positively correlated to NDVI and NDWI, the VH/VV ratio and VH-polarized backscatter
may potentially be used as an alternative for VWC estimation when NDVI and NDWI are
unavailable (i.e., under poor weather conditions).
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backscatter and NDWI. The slope (normalized slope = a/30 where a is the coefficient of linear model
y = a × x + b) and R2 were determined based on a linear model.
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Of some interest was the sharp increase in SAR backscatter observed for small values
of both NDVI and NDWI: an outcome that differed from the model simulation. When
investigating the Sentinel-2 imagery and field data, it was verified that for NDVI < 0.15
and NDWI < 0, the fields were mapped as bare surfaces. In such conditions, the variation
in backscatter was mainly affected by variations in soil roughness and moisture. With
NDVI increasing from 0.15 to 0.5 and NDWI increasing from 0.0 to 0.3, the backscatter
is jointly governed by soil moisture, RMSH and VWC. When NDVI and NDWI reached
relatively high values, the SAR observations demonstrated a slight decreasing trend. This
observation is consistent with the model simulation in Section 4.1.

4.4. Time Series of Remote Sensing Observations

Based on the forward modeling and correlation analysis, we analyzed the time series
of NDVI, NDWI and backscatters of the different crops and bare soil with the support
of field-based irrigation and farming records. Figures 6–9 show the time series of NDVI,
NDWI, backscatters and the ratio of VH/VV for different crops and bare soil. Throughout
the time series over the bare soil, NDVI remained stable and low, with a mean value of 0.09,
while corresponding NDWI values ranged from −0.2 to 0.04 with a mean value of −0.13.
Thus, NDVI and NDWI values < 0.09 and 0, respectively, can be regarded as non-vegetated.
Based on these observations, we can identify the specific growing seasons.
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Figure 6. Time series of NDVI (a), NDWI (b) and backscatters (VV (c), VH (d) and VH/VV (e)) for
maize and bare soil from January 2016 to December 2018. The blue bars indicate the beginning of
field irrigation in preparation for planting and the green bars indicate the growing seasons of maize,
during which the irrigation was applied consistently until the end of the growing season, as per the
data collected from the farming records.
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Figure 7. Time series of NDVI (a), NDWI (b) and backscatters (VV (c), VH (d) and VH/VV (e)) for
carrot and bare soil from January 2016 to December 2018. The blue bars indicate the beginning of
field irrigation in preparation for planting and the green bars indicate the growing seasons of carrot
(where the irrigation was applied consistently throughout the growing season).

From January 2016 to December 2017, there were four maize growing seasons with
two seasons per year (Figure 6a,b). In 2016, the first season began in March and ended in
June, and the second season ranged from late August to December. However, in 2017, the
first season started in May and ended in July, and the second season ran from the end of
August until the end of the year. After 2017, the planting of maize ceased in the field and
the surface was bare until September 2018. Both time series of NDVI and NDWI clearly
present the fluctuations in vegetation, with peaks up to 0.5 and 0.25 for NDVI and NDWI,
respectively, occurring during growing seasons. High values with a maximum NDVI of 0.2
and NDWI of 0.0 were observed in May 2018, which may have been caused by the presence
of weeds.

The Sentinel-1 backscatters demonstrate seasonal variation over the maize field
(Figure 6c–e). Due to limited image availability in the first half of 2016, the time series
analysis of Sentinel-1 started from the second growing season (August to December) in
2016. It can be observed that VV- and VH-polarized backscatters started to increase prior
to the beginning of each growing season. The starting points occurred around 30 days (or
more) and 15–20 days prior to the point where NDVI started to increase for the first (May
2017) and second (September 2017) growing seasons, respectively. From the unirrigated
stage to the irrigated stage, VV- and VH-polarized backscatters and their ratio presented a
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large increase, while after the crops started to grow (NDVI and NDWI started to increase),
the backscatters and their ratio maintained large values with a slight decrease. During
the growing seasons, NDVI and NDWI continued to increase to their maximum values,
whereas the backscatters started to decrease before maximum NDVI and NDWI. The rela-
tively high value in backscatters during vegetation growth represented the continuation of
the irrigation and the contribution of the vegetation canopy. This observation is consistent
with the model simulation. After irrigation was haulted in January 2018 and the vegetation
was cleared, the soil moisture approached non-irrigated status and the soil surface was
flattened, reducing the surface roughness below that of the natural surface. These changes
made the backscatters decrease to values lower than those of the bare ground.

During vegetation growth, the VH-polarized backscatter demonstrated much larger
variation in amplitude than the VV-polarized backscatter, and the variation trends of VH
and VH/VV were much closer to those of NDVI and NDWI (Figure 6c–e). This observation
is consistent with that of the correlation analysis in Section 4.2, demonstrating that VH and
VH/VV can reflect the variation of vegetation dynamics. Compared to the planted fields,
the backscatter for bare soil demonstrated small values and relatively small variation. The
high values over planted fields were caused by vegetation and soil water content.
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Figure 8. Time series of NDVI (a), NDWI (b) and backscatters (VV (c), VH (d) and VH/VV (e)) for
alfalfa and bare soil from January 2016 to December 2018. The blue bars indicate the beginning of
field irrigation in preparation for planting and the green bars indicate the growing seasons of alfalfa
(where the irrigation was applied consistently throughout the growing season).
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Figure 9. Time series of NDVI (a), NDWI (b) and backscatters (VV (c), VH (d) and VH/VV (e)) for
Rhodes grass and bare soil from January 2016 to December 2018. The blue bars indicate the beginning
of field irrigation in preparation for planting and the green bars indicate the growing seasons of
Rhodes grass (where the irrigation was applied consistently throughout the growing season).

Similar to what was observed in the maize field, the production routine and growing
cycle of carrot (i.e., irrigation applied 15–30 days prior to planting) were well captured
by backscatters and both NDVI and NDWI (Figure 7). Carrots were planted from the
beginning of 2016 to the end of 2018 in pivot P1-5. However, the length of the growing
seasons varied between the different years and were somewhat offset in relation to the
growing season for maize. The maximum NDVI and NDWI values were lower than those
for maize (Figure 7a,b). Additionally, field P1-5 was continuously planted with carrot in
2018, with individual growing seasons clearly observed in that year.

For the carrot field, VH-polarized backscatter, and the ratio of VH/VV showed inverse
variation trends to those of NDVI and NDWI in some growing cycles, including the
growing cycle during October 2017 to January 2018. This observation is counter to what
was observed in the maize field and might be attributed to the backscatters being more
strongly affected by soil surface properties (e.g., surface roughness and soil moisture) than
by properties of the vegetation canopy due to the penetration of SAR backscatters within
the carrot canopy.
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In contrast to the time series of maize and carrot, NDVI, NDWI and backscatters
changed frequently for alfalfa Field P22, with no observable seasonal trends due to their
rapid growing cycle and the short period between harvest and regrowth (Figure 8). Simi-
larly to the temporal dynamics of NDVI and NDWI, both VV- and VH-polarized backscat-
ters demonstrate highly fluctuating values from June 2016 until January 2018. Much smaller
backscatters over the alfalfa field were observed compared to those over bare soil after
January 2018, when irrigation was stopped, and the vegetation was cleared.

The NDVI, NDWI and backscatters over Rhodes grass also demonstrated seasonal
variation characteristics, but with short growing cycles (Figure 9). A lower frequency was
observed in NDVI and NDWI values of Rhodes grass than for that of alfalfa. The P14 field
was planted with Rhodes grass from January 2016 until October 2017, with production
ceasing in November 2017, causing NDVI and NDWI to approach bare soil values. Both
VH-polarized and the VH/VV ratio demonstrated similar variation trends to those of NDVI
and NDWI, indicating positive correlation.

Throughout Figures 6, 8 and 9, during both the growing season and irrigated periods,
the backscatters over vegetated surfaces were slightly higher than those over bare soil.
However, the backscatters over vegetated fields were much smaller than those over bare
ground after the end of 2017. This observation provided useful information for discriminat-
ing bare soil from previously cultivated soil, where crops had been harvested, cleared or
the field had been abandoned.

Statistical measures from the time series of NDVI, NDWI and backscatters were
calculated to assess differences between the four types of crops (Table 1). Alfalfa and maize
presented the largest maximum values and amplitude in NDVI, followed by Rhodes grass,
with the maximum value of carrot being the smallest, likely because of soil exposure in
between plants. Based on the statistical measures from the NDVI time series data, carrot
and Rhodes grass could be discriminated from alfalfa and maize. While alfalfa and maize
appeared with very similar NDVI statistical measures, differences in maximum values and
amplitude of NDWI were observed, potentially allowing the two crops to be discriminated.
The differences in the length of their growing cycles further aid discrimination.

Table 1. Statistics for NDVI, NDWI and backscatter time series for carrot, Rhodes, alfalfa and maize.

Crops Statistics Carrot Rhodes Alfalfa Maize

NDVI

Max 0.48 0.67 0.75 0.75
Min 0.08 0.04 0.09 0.08
Amp 0.40 0.63 0.66 0.66
Std 0.09 0.14 0.17 0.17

NDWI

Max 0.14 0.33 0.56 0.33
Min −0.20 −0.19 −0.36 −0.16
Amp 0.34 0.52 0.92 0.49
Std 0.08 0.11 0.16 0.13

VV

Max −8.30 −12.12 −10.95 −8.84
Min −16.73 −16.93 −14.20 −18.57
Amp 8.44 4.80 3.19 9.73
Std 1.88 1.01 0.76 1.96

VH

Max −17.22 −17.50 −17.28 −16.66
Min −26.14 −24.71 −24.53 −27.83
Amp 8.92 7.22 7.26 11.16
Std 2.81 1.50 1.14 3.21

VH/VV

Max −5.83 −4.89 −5.58 −5.54
Min −13.72 −8.60 −10.66 −12.28
Amp 7.89 3.70 5.08 6.74
Std 1.84 0.90 0.84 2.20

There are limited differences in maximum and minimum values of the backscatters
for the different crops, but differences can be observed in their amplitude and standard
deviations [11–13]. For example, the amplitude and standard deviation of VV-polarized
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backscatters for maize and carrot were twice as high as those for Rhodes and alfalfa,
demonstrating that the backscatters of the maize and carrot fields had larger dynamics than
those of the Rhodes and alfalfa fields. Thus, the differences among these statistical features
could be potentially applied to the classification of crops.

5. Discussion

Here, we explore a time series of Sentinel-1 and Sentinel-2 data for monitoring agro-
nomic events and crop growth dynamics over a three-year period to gain a better under-
standing of the interaction between SAR backscatter and surface processes of agricultural
fields. Below we discuss key findings and their potential application.

5.1. Estimating VWC and Monitoring Crop Dynamics with Combined Sentinel-1/2 Data

The correlation analysis between SAR backscatters and both NDVI and NDWI demon-
strated that the VH/VV ratio and VH-polarized backscatter had relatively high correlation
with the optical indices (NDVI, NDWI), indicating that the VH/VV ratio and VH-polarized
backscatter can potentially be used for VWC estimation, as NDVI and NDWI have previ-
ously been proven to be able to estimate VWC [6] and monitor the crop dynamics [11–13].
Exploiting this potential may provide an alternative when the NDVI and NDWI are not
available under either cloudy or rainy conditions.

SAR-based VWC has gained considerable research interest in recent years [54,55],
with the exploration of the radar vegetation index (RVI) [56,57] as a proxy to estimate
VWC. Several recent studies have found that cross-polarized backscatters and the ratio of
VH/VV also correlate well with VWC. For example, Twele [58] found that HV-polarized
backscatter provided an improved estimate of VWC when compared to the RVI. In another
example, Veloso et al. [37] found that the ratio of VH/VV reproduced similar temporal
trends to the NDVI and can be potentially applied for VWC estimation and monitoring.
Vreugdenhil et al. [59] demonstrated that VH/VV could account for 87% and 63% of the
variability in VWC for corn and winter cereals. The estimation of VWC from NDVI
and NDWI has been extensively reported, particularly in the work of Jackson et al. [10],
Chen et al. [9] and Gao et al. [6]. Our analysis indicates a high correlation between VH/VV
and NDVI/NDWI, which is consistent with the findings of Veloso et al. [37], further
supporting the application of Sentinel-1 SAR for VWC estimation.

Through the combination of high spatio-temporal resolution SAR and optical image
data, vegetation dynamics can be identified. Some previous research investigated the syn-
ergy of optical and SAR data for crop inventories [60] and identification [61], demonstrating
high feasibility of monitoring crop dynamics using combined SAR and optical images.
Our research presented herein further demonstrates this feasibility by introducing higher
spatio-temporal resolution images compared to previous studies [60,61]. Denser time-series
provide more detailed information about the agricultural status and processes and reduce
limitations of cloud issues. In addition to identifying key crop phenological stages, such
as germination/planting and crop maturity/harvesting dates, the combined SAR-optical
data can quantitatively estimate vegetation water content and other variables [62], as
well as map land cover [63], which would advance applications combining multi-source
high-resolution remote sensing data for precision agriculture.

5.2. Combining Sentinel-1 and Sentinel-2 for Identifying Irrigation Events

SAR images have previously been found to be suitable for monitoring irrigation due
to the high sensitivity of SAR backscatters to soil moisture [64–69]. However, the use of
SAR data for mapping agricultural irrigation only became practical after the launch of
the Sentinel-1 mission, due to its high spatial and temporal resolution, enabling dense
time series of SAR observations to be consistently obtained. Based on forward modeling
and correlation analysis, our results not only support previous findings in Gao [70] and
Bazzi [71], where Sentinel-1 was used for irrigation mapping using statistical analysis and
machine learning, but also quantify the influence of irrigation on the backscatters. Both
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model simulation (Figure 2) and time series analysis (Figures 4 and 6–9) demonstrated that
Sentinel-1 data could capture the start and end points of irrigation due to distinct temporal
changes in soil moisture.

The combination of Sentinel-1 SAR and Senitnel-2 optical images can enhance the
identification of irrigation events. On the one hand, both Sentinel-1 and 2 data have high
spatial resolution and short revisit cycles, making their dual-use well suited to capture
within field scale agronomic events and crop dynamics. On the other hand, Sentinel-1
SAR backscatters are sensitive to variability in soil wetness, while the Sentinel-2-derived
NDVI and NDWI can track the crop growth process. In arid regions, irrigation usually
starts prior to planting and after several weeks, the plant starts to grow. Thus, if an increase
in SAR backscatters is followed by an increase in Sentinel-2-derived NDVI (or NDWI), it
is likely that the increase in backscatter is caused by irrigation and the increase in NDVI
and NDWI is caused by plant growth. This combined information (the backscattering and
NDVI/NDWI increase successively) reflects the beginning of the irrigation events and
crop growth.

Here, we have demonstrated that it is feasible to identify the irrigation events and start
point of crop growth by combining Sentinel-1 and 2 images. Here, we provide a qualitative
analysis of such feasibility and potential. Prospectively, the value of such information
may best be realized through combination with other quantitative estimates of field-based
agroinformatics. For example, improved estimation of irrigated water volumes is of
considerable interest for precision irrigation and water resources management, and these
could benefit from more precise monitoring of irrigation start and end points (particularly
in pre-planting irrigation). Indeed, efforts and progress have been made towards this
direction, such as the work by Aragon et al. [72] and Johansen et al. [73] based on CubeSat
image time-series; thus, combining qualitative and quantitative measures will help deliver
further precision agricultural insights.

Another aspect that requires further consideration is that the present study was under-
taken in an ideal research setting, where Sentinel-2 optical images were rarely constrained
by cloud, ensuring collections of dense time series of optical images. If the methods used
here were applied in other locations (i.e., where optical imagery were more frequently
affected by clouds), overcoming the shortage of optical data may present as a significant
challenge. However, the increased resolution and frequency of CubeSat-based platforms
might provide a means of accounting for such temporal gaps [72,73]. In addition, using
temporal interpolation methods based on multi-platform optical images to fill the gaps
in the optical image time series can be a potential solution [33]. Furthermore, available
optical-SAR image pairs may be used to train a machine learning based relation between
SAR and optical images, with such relation potentially being used to restore the optical
image time series based on SAR data to reduce the effects of poor weather conditions [74].

6. Conclusions

A combination of Sentinel-1 and Sentinel-2 time series data were used to monitor
irrigation events and dynamics over four different crop types across a 3-year period. The
time series analysis was performed based on forward model simulation and correlation
analysis, as well as via verification from field-based farming records. The forward modeling
established the links between SAR backscatters and optical NDVI and NDWI indices, and
revealed the relation of backscatters to soil moisture, NDVI and NDWI, providing a theo-
retical foundation for the time series analysis. The correlation analysis demonstrated that
SAR backscatters at both polarizations together with their ratio were well correlated with
observed variations in NDVI and NDWI. These observations demonstrated the feasibility
and reliability of monitoring irrigation events and vegetation dynamics using a combi-
nation of Sentinel-1 and Sentinel-2 data. Our research also demonstrates the possibility
of using the VH/VV ratio and VH-polarized backscatter as an alternative for describing
vegetation under cloudy conditions when optical images may not be available. Overall, the
present study demonstrates the complementarity of Sentinel-1 and Sentinel-2 satellite data



Remote Sens. 2022, 14, 1205 18 of 21

to identify irrigation events and monitor crop dynamics for precision agriculture. Further
quantitative evaluation of agricultural production events and retrievable variables (such as
irrigation volume) across a range of different landscape and climate settings is required to
explore the broad-scale application of this approach.
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