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Abstract: As for rock numerical calculation and stability analysis, it is essential to build a numerical
model of rock mass with concise and accurate structure information through the three-dimensional
surface reconstruction of rock-mass point clouds. However, the current research on lightweight
surface reconstruction of non-artificial objects is very limited. In this paper, an efficient lightweight
surface reconstruction method for rock-mass point clouds is proposed. Firstly, the input point cloud
is segmented to obtain the plane primitives. In this process, the recognition of texture information
and the complete over-segmentation of effective information play a vital role in the high-precision
segmentation of rock surfaces. Secondly, the boundaries of all planes are reorganized according to
the obvious connectivity in the segmentation results, so as to realize the assembly of the model, while
solving all collision problems. Finally, an integer programming model is constructed to screen the
best closure scheme of each plane, thus ensuring the best outcome of the reconstruction. In this
study, seven groups of natural rock-mass point clouds are used to validate the proposed method.
As suggested by the experimental results, this algorithm is effective in compressing the point cloud
data of rock mass, to generate a watertight numerical model that can be directly used for simulation
calculation. In addition, this method has strong robustness to noise and can effectively deal with
highly corrupted rock-mass point cloud data.

Keywords: lightweight; surface reconstruction; point cloud; rock mass

1. Introduction

Whether an artificial target or a natural target, it is of great significance to obtain
its structure information. The acquisition of structural information can be realized by
surface reconstruction of point cloud data of the target. However, point cloud data of
some nature targets may carry a certain amount of unavoidable texture information and
noise. For this reason, it is usually inadvisable to retain all the details of the original point
cloud in the reconstruction results for some large-scale reconstruction tasks [1–3], because
the highly complex mesh structure can affect the efficiency and accuracy of subsequent
operations. In recent years, lightweight surface reconstruction technology has attracted
extensive attention in the field of computer vision and information processing.

Lightweight surface reconstruction refers to the technology of constructing a simple
mesh model to represent the target surface structure. Different from dense mesh recon-
struction technology, lightweight surface reconstruction only focuses on the main structure
information of the target. Therefore, it can better filter the texture information and simplify
the complexity of the model. At present, the available lightweight surface reconstruction
methods are mainly to process artificial targets (buildings and man-made models) [1,2,4–8],
for the purpose of extracting the contour information of the object and achieving data
compression. In respect of rock-mass engineering, the significance of constructing a rock
mass model with simple and accurate surface information goes further than that. Such
methods as block theory [9] and discontinuous deformation analysis [10] have been demon-
strated as effective in carrying out analysis of the rock masses for their stability [11]. In this
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process, it is essential to adopt a concise numerical model with accurate surface information
(without texture information) as input. In particular, to carry out the subsequent block
cutting process smoothly, the constructed rock mass model shall be made as simple as
possible, without any highly complex grid structure (extremely small angle). Therefore, the
lightweight surface reconstruction of rock mass point clouds is not only a problem needing
to be solved for computer vision, but plays a significant role in the related numerical
simulation calculations in the geotechnical field. Up to now, however, there is still limited
research on the lightweight surface reconstruction of natural targets.

Laser scanning technology has the characteristics of high precision and non-contact,
so it is widely used in the acquisition of natural rock mass data. However, different from
the reconstruction of buildings, there are some special cases that should be considered and
solved when processing point cloud data of natural targets, which can be summarized in
the following three respects. First of all, due to geographical limits, natural conditions,
and other influencing factors, it is practically difficult to ensure the quality of data on the
rock-mass point cloud as collected from nature. In addition, the surface structure in some
regions is extremely irregular, which can cause a further loss of surface information during
surface segmentation. Therefore, how to deal with highly corrupted data is the key problem
to be solved in rock mass surface reconstruction. Secondly, due to the complexity of surface
structure, some errors need to be accommodated during the process of rock-mass surface
segmentation, which may result in a deviation between the plane parameters and the
real surface information to some extent. Due to the varying degrees of deviation between
planes, there are various collision problems that may arise from the reconstruction. Finally,
the boundaries of rock surface structural planes are usually irregular, which means that the
shape information of boundaries is unfit for direct use in the reconstruction of the model.
On the contrary, careful consideration shall be given to the simplification of these irregular
shapes to ensure the simplicity of the model.

In order to address the above-mentioned problems, a lightweight surface reconstruc-
tion method is proposed in this paper from rock-mass point clouds. Figure 1 shows an
example of reconstruction. For each input point cloud, a surface segmentation method
based on supervoxel is adopted to determine initial planar primitives. In order to make
the generated model watertight, the segmentation result is added with an outer bounding
box. In the process of generating the basic model, the line segments and their initial lengths
in the model are obtained based on the connectivity of the patches and their true edge
information. The corner points determined to exist in the model are calculated to complete
the closure of local areas. Then, in order to determine the boundaries of missing areas,
boundary prediction is performed. The coverage rate and the matching rate are taken as
indicators to measure the results of boundary prediction in each plane. The final result of
reconstruction is obtained through triangle segmentation of holes.

Figure 1. Algorithm flowchart. (a) Input point cloud. (b) Surface over-segmentation result. (c) Seg-
mentation result. (d) Basic model. (e) Plane closure. (f) Reconstruction result.

The contributions of this paper are detailed as follows:

• A framework of lightweight surface reconstruction was proposed, which is effective
in processing the natural rock-mass point cloud to construct a numerical model with
accurate and concise surface information;

• A solution to rock mass surface segmentation based on supervoxel was proposed,
which can realize the effective segmentation of complex rock surface;
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• The hole search problem in a 3D point cloud was converted into the boundary pre-
diction of 2D planes. An integer programming model was constructed to perform
boundary prediction, so as to ensure the water-tightness of the model and the effec-
tiveness of reconstruction.

This paper is structured as follows. The related work is introduced in Section 2. In
Section 3, the proposed method is detailed. Then, the experimental results are presented
and discussed in Section 4. Section 5 concludes the study, with a summary made and the
future direction of research indicated.

2. Related Work

Over the past few decades, there has been plenty of research conducted on the surface
reconstruction of point cloud for obtaining a dense mesh model of the target [12–15].
However, the model constructed using the above algorithm is often highly complex in
structure and carries no clear structural plane information of the target. In recent years,
there has been widespread attention brought to the extraction of geometric primitives from
the point cloud and assembling them for the building of a simple polygonal mesh model.
In this section, our focus is placed mainly on primitive extraction and primitive-based
surface reconstruction.

Primitive extraction. In this part, we aim to achieve the effective segmentation of the
target surface for extracting high-quality primitives. Currently, RANSAC [16] has been
demonstrated as effective in segmenting the surface of buildings and artificial models [4].
In practice, the performance of RANSAC is determined by the probability that the optimal
solution is obtained by a single sampling. It is supposed that there are N points in the
whole set of points and the maximum plane (the best plane) is comprised of n points. Let P
indicate the probability that one sample can be used to obtain the best plane, as shown in
Equation (1).

P =
( n

N

)3
. (1)

That is to say, RANSAC is high efficient in dealing with simple structures. However,
the segmentation of rock mass surface is obviously a more challenging task. Since the rock
surface is rough and unpredictable, the complex surface structure of rock mass and a large
amount of noise information will lead to a significant deterioration in the performance
of RANSAC.

In order to improve the outcome of rock mass segmentation, there have been some novel
methods of rock mass surface segmentation proposed. For example, Riquelme et al. [17]
conducted principal component analysis to determine the coplanarity of adjacent points,
based on which high-precision segmentation was achieved by Hough Transform (DSE).
Leng et al. [18] proposed a multi-scale rock surface detection method based on HT and
Region Growing(HT-RG), which is effective in dealing with the surface structures of dif-
ferent scales. Due to the high computational cost of HT, however, it is difficult to achieve
high-efficiency segmentation using the above two methods. At present, the use of voxel
segmentation to achieve the partial structured of the point cloud is an effective solution
to improve the performance of the algorithm. For instance, Hu et al. [19] put forward an
efficient method of detection, where RANSAC was applied to perform coplanarity detection
locally. The final result was obtained through regional growth. Based on the detection of
local coplanarity, Liu et al. [20] used HT for calculating the main direction to obtain the seed
patch, thus improving the accuracy of regional growth(MOE). However, the coplanarity
detection based on voxels is ineffective in constraining the effective information with a high
degree of dispersion. Consequently, it is difficult to achieve high-precision detection using
these methods.

In the reconstruction process, careful consideration shall be given to both the efficiency
and precision of segmentation. Thus, our focus is placed on filtering the noise inside the
patch and ensuring that the effective information in the point cloud is completely structured
before the global calculation is performed.
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Primitive-based surface reconstruction. The surface structure of the rock mass is
distinctively irregular and unpredictable. For this reason, this article gives consideration
neither to the potential relationship between primitives (such as parallel and orthogonal),
nor to the repetitive structure or composite structure in the point cloud [5,21–25]. The
methods used to assemble planar shapes into a simple mesh can be divided into two
categories, which are the connectivity method and the slicing method.

Connectivity methods can be adopted to achieve model assembly according to the
exact shape of patches and the connectivity relationship between patches. Therefore, this
method is demanding on the shape of planes. Processing and assembling basic primitives
are the two main steps in applying the connectivity method. Schindler et al. [26] proposed a
new method of surface model reconstruction for the artificial environment, with a complete
3D segmentation framework provided. Under this framework, the relationship between
planes was parameterized and classified, while the reconstruction goal was not limited to
the orthogonal relationship. Arikan et al. [27] obtained effective vertices by simplifying
the plane. With the effective vertices in the region paired under the restriction of the
constraint set, the adjacent patches can be closed. For the missing areas in the data, manual
intervention was performed to carry out the repair. Alliez et al. [28] classified the points,
and then preserved the region with special structure in the point cloud(such as the corner)
under Delaunay triangulation. In the meantime, a minimum cut formula combining
structure, geometry, and visibility was proposed to achieve high-quality reconstruction.
Holzmann et al. [29] used dense triangular meshes to repair the missing parts for ensuring
the water-tightness of the constructed model.

Though the existing connectivity methods are capable to achieve efficient building
reconstruction, they can hardly deal with the rock mass in an effective way. Since most rock
mass planes show no regularity in shape, it is difficult to assemble connected primitives
by means of their shape information. In addition, it is also an open problem to obtain
the simplified grid representation of information loss regions. In this study, our focus is
placed on addressing the dependence of the connectivity method on shape information
and ensuring the model is watertight.

Slicing methods ignore the shape information of the plane, since all the points and
boundaries in the output mesh are obtained through the parameter calculation. Thus,
these methods are made more robust to complex data. Chauve et al. [30] were the first to
propose an algorithm intended to automatically achieve concise and idealized 3D repre-
sentation from the unstructured point data of real scenes. When primitives are processed,
the slicing method can be used to address the structure loss caused by occlusion. Similarly,
Verdie et al. [31] performed plane cutting using line segments obtained by point cloud
fitting, which can simplify the contour of the model and solve the simple problem of infor-
mation loss. After the plane contained in the scene was identified, Mura et al. [32] obtained
the 3D complex of the target by means of plane expansion, based on which the volume
reconstruction of the room was realized. Furthermore, a more efficient and robust method
of point cloud lightweight reconstruction was proposed by Nan et al. [4] According to this
method, all planes would be extended freely in the bounding box to obtain several slices.
Then, the output model is constructed by screening all possible models. Coverage rate,
matching rate and model complexity are used to assess the quality of the model. However,
the performance of this method is constrained by its high computation cost when complex
structures are dealt with. In addition, the constructed model might be made erroneous
due to the high corruption of inputted data. On this basis, Bauchet et al. [33] proposed
a dynamic reconstruction method. Rather than decomposing the space completely, it
adopts gradual extension. The extension would be terminated after a collision. Though the
above methods solve the high computing cost incurred by the algorithm effectively, the
reconstruction error caused by the high corruption of the data persists.

During the process of rock mass surface reconstruction, it is common and inevitable
to suffer data damage due to various factors. At the same time, the cumulative error may
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lead to the collision between planes. In the process of rock mass surface reconstruction, the
above problems need to be carefully considered and solved.

3. Methodology

The method proposed in this study involves three main steps. Firstly, plane primitives
are extracted through the surface segmentation of rock point clouds. Then, basic models
are constructed using the edge information of the plane and the connection relationship
between planes. Finally, the missing boundaries in the model are predicted to conduct the
search and reconstruction of information-missing areas.

3.1. Surface Segmentation

Coplanarity detection. At the start of the algorithm, the coplanarity detection method
based on voxel segmentation is adopted, which is effective in distinguishing obvious planes
and discrete information. RANSAC is relied on to carry out a search for the best plane
in each local space. It is worth noting that, in each local space, coplanarity detection
can be performed repeatedly if there are sufficient remaining points. The first obtained
patch is taken as a growth unit, while the rest facets are merged into the adjacent similar
growth units.

Texture information identification. In this paper, the identification of internal texture
information is achieved by determining the position of discrete information. To achieve this
purpose, a virtual region growth is performed for each growth unit to determine whether
the patch can form a potential plane with all adjacent patches. In the case of successful
growth, the growth unit is treated as an internal patch. The discrete information around
the patch will be regarded as texture information rather than structure information, and
will be ignored in the subsequent calculation process. The red area shown in Figure 2 is
made up of the recognized internal patches.

Figure 2. Supervoxel segmentation in the boundary. Supervoxel patches are colored.

Supervoxel segmentation. After the internal noise is filtered, the supervoxel is used
to process the discrete information accurately. More specifically, with each growth unit as a
seed, the surrounding discrete information is incorporated into the seed depending on the
exact judgment conditions including distance and angle. Furthermore, in order to ensure
the effectiveness of the above process, it is necessary to ensure that the parameters of the
growth unit do not change significantly. In this case, an effective growth is required to meet
some additional conditions, as shown in Equation (2).

Pn = arg max
Po

|{p|p ∈ Po,∠(~n(Po),~n(P)) < θ}|, (2)

where Pn represents the final growth result, P denotes the initial patch, and Po refers to the
result after a growth. That is to say, the growth result with the largest number of points is
retained when the angle change falls below the threshold. The above-mentioned process
can be achieved through iterative growth and the updating to growth parameters.
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The essence of supervoxel segmentation is to achieve complete over-segmentation
of surface structure and ensure complete structuring of effective structural information.
Figure 3 shows the significance of structuring point clouds for dealing with complex
surface structures. As more information gets integrated into the structured point cloud, the
performance of the algorithm shows a significant improvement. Due to the achievement
made in the complete over segmentation, there is more detailed information that can
be retained.

(a) (b)

(c) (d)

Figure 3. Segmentation results under different structural degrees. (a) A surface area without clear
boundaries. (b) Unstructured. (c) Semi-structured. (d) Completely structured.

Region Growing. After supervoxel segmentation, the surface segmentation problem
is converted into a patch combination problem. The final result of segmentation is obtained
by combining super voxel patches. Notably, the internal patches can be taken as seeds
preferentially during growth, which lays a solid foundation of growth for the whole process.
The segmentation process and reconstruction process conducted in our method are closely
related to each other. As part of the adaptive adjustment, the setting of growth parameters
will be discussed later(as shown in Section 3.2).

3.2. Basic Model Generation

Boundary reconstruction. Given that the shape information of the primitive con-
tributes little to the initial stage of rock mass reconstruction, the boundaries of a primitive
should be reconstructed. More specifically, these two planes are potentially continuous if
there are only two planes in the local space. In order not to miss all possible potential rela-
tionships, multi-scale voxel division is performed to carry out search repeatedly. Suppose
U is the set of connection relations as obtained by plane P after the i-th search, then the
final connection relation set U f of P can be calculated using Equation (3):

U f = U1 ∪U2 ∪U3...∪Ui. (3)

Suppose Q is an element of U f , then the intersection line of P and Q can be calculated.
By calculating the minimum distance between the plane and the intersection line l, it can
be determined whether the intersection line exists (as shown in Equation (4)).

min
p∈P

d(p, l) < dh

min
q∈Q

d(q, l) < dh,
(4)

where p and q represent points in the plane, and dh refers to the threshold. At the time
of boundary reconstruction, only the intersection line that satisfies Equation (4) can be
retained. Thus, some approximately parallel structures can be excluded.
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Furthermore, the initial length of each intersection line is calculated according to the
edge information of related planes. Let Pl denote the part related to the straight line l in the
edge information of the plane P, which can be expressed as Equation (5).

Pl = {p|d(p, l) < dh, p ∈ P} (5)

Let Pw denote the vertical projection of Pl on l. Similarly, the relevant information Ql
and Qw of patch Q can be obtained as well. Only when Equation (6) is satisfied, can the
connectivity between a set of patches be considered reliable and obvious.

|Pw ∩Qw| > Lh, (6)

where Lh indicates the threshold. In the final boundary set, only the intersection lines
calculated by the clear connection relation are retained, with the effective range of the
intersection lines treated as the coincident part of the projection.

During our process of reconstruction, the assembly of primitives is carried out in the
first place. However, the boundary structure of each plane is made open at present, as
shown in Figure 4b. This problem will be resolved gradually in the follow-up process.

(a) (b) (c)

Figure 4. Basic model generation. (a) The connectivity information of a plane and related edge
information. (b) Boundary reconstruction. (c) Corner calculation. The black circle area in the figure is
closed by adding triangular patches.

Corner calculation. The corner points in the model are obtained by calculating the
common points of the three planes which conform to the connection relationship. Then, one
endpoint of the intersection line is extended to the corner for completing the local closure.
In particular, when the extended distance is made overly long by cumulative error, this
local region is closed by adding a triangular patch. It is worth noting that the local space
created by the selected three endpoints does not contain other structures is the premise of
corner calculation.

In case of an intersection or potential intersection in the boundary set, then the selection
of endpoints will become problematic (as shown in Figure 5a). In this study, all possible
results are retained, which means there are multiple candidate models preserved after
corner calculation (as shown in Figure 6). During subsequent boundary prediction, different
corner selections will lead to the difference of the shape to the final boundary (Figure 5c,d);
this shape information will be used as the basis for screening the optimal reconstruction
results. In practice, an inappropriate endpoint selection can lead to the failure of boundary
prediction in many cases (Figure 5e).
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(a) (b)

(c) (d) (e)

Figure 5. Corner selection. The red point is the corner obtained by calculation. The green dotted
line is the boundary obtained after subsequent boundary prediction. (a) An example of potential
intersection . (b) A potential intersection in a set of boundaries. (c) Let D to perform corner calculation.
(d) Let C to perform corner calculation. (e) A wrong boundary prediction result.

Figure 6. Some basic models generated due to the corner selection. Collision areas are shown in the
red area on the left.

Adaptive adjustment (Collision detection). Due to the impact of cumulative error,
there is a real possibility that collisions occur between planes. After boundary reorgani-
zation, the collision occurring between patches is indicated by the crossing of boundaries.
During actual corner calculation, some collisions can be resolved, but those collisions
failing to meet the conditions of corner calculation must be repaired through adaptive
adjustment. Herein, it is proposed to divide the frequently-used parameter interval of
supervoxel merged into the high-precision initial segmentation interval (used in region
growing) and adaptive interval. The segmentation results obtained using the initial seg-
mentation parameters are referenced to perform the first boundary reconstruction. In the
area of collision, the similarity of the involved planes is calculated through Equation (7).

Ps =

√
(

ma

Mc
)

2
+ (

na

Nc
)

2
, (7)

where ma and na represent the actual angle and distance deviation, while Mc and Nc refer to
the thresholds. Within the range of adaptive threshold, a more similar set of planes should
be merged (as shown in Figure 7). The supervoxel segmentation and division of parameter
interval are purposed to eliminate the risk of under-segmentation from the reconstruction
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process. Therefore, all collision problems encountered in the reconstruction process can be
attributed to over-segmentation.

(a) (b)

Figure 7. Adaptive adjustment. (a) An example of the collision area. (b) The reconstruction result
without collision.

In essence, adaptive adjustment is purposed to adjust the segmentation results ac-
cording to the current state of reconstruction. After the adjustment, the composition of the
plane set and the connection relationship could have changed, which makes it necessary to
recalculate the boundary information of each plane. The effective basic model free from
intersection problems can be constructed by one-off iteration or multiple iterations.

It should be noted that not all collision problems can be solved by adaptive adjustment,
because the rock surface is completely irregular. Thus, when multiple groups of collision
problems exist in a local region, manual intervention is still necessary.

3.3. Model Closure

Boundary prediction. In this section, the missing boundary is predicted according to
the exact shape of the patch and the available model information. For each plane, all of the
non-corner endpoints in the boundary set are extracted and paired, with each pair of points
connected by a line. Among all possible pairings, the pairing results which are completely
connected but with no intersection are retained. Moreover, the final boundary set of P is
determined according to the current state of the point cloud. In this method, there are two
indicators used to assess the quality of a new group of boundary, including coverage rate
and matching rate.

The coverage rate indicates the ability of the area formed by the new boundary to
cover the original data. Let G represent a set of feasible new boundaries as obtained by
boundary prediction and Pn represent the set of points contained in G, then the coverage
rate of Pn can be calculated using Equation (8).

C =
|{p|p ∈ Pn, p ∈ P}|

|{p ∈ P}| , (8)

where p represents the point in the original point set P. In general, the effectiveness of
reconstruction can be ensured by maintaining patch coverage.

Since some boundary sets with high coverage may create some redundant space, it is
worthwhile to consider introducing the matching rate to address this problem. In order for
a fast search of the boundary distant from the original data, all parts of the boundary set
which are tangent or intersect with the point cloud are considered as matching (as shown
in Figure 8). Therefore, the matching rate can be calculated using Equation (9).

M =

{Lm

∣∣∣∣min
p∈P

d(p, Lm) < Lh, Lm ∈ G}

G
, (9)



Remote Sens. 2022, 14, 1200 10 of 22

where Lm represents the matching part of G. In order to calculate Lm, it is necessary to
determine the range of the line segment that matches the data by performing a fixed radius
search of each point in the plane. To simplify the calculation process, the matching length
of a line segment is obtained via equidistant sampling.

Figure 8. Two sets of feasible boundary sets. When the coverage is close, the boundary set that
produces less redundant space will be selected. (Left): M =95.6%,C = 94.9%. (Right): M = 95.1%,
C = 93.4%.

Based on the above information, the integer programming model intended to perform
boundary prediction can be expressed as Equation (10).

min
X

λc · C + λm ·M

s.t.



∑
j∈Pb

xij = 1, ∀i ∈ Pa

d(xij, g) > 0, ∀xij = 1, g ∈ Gl

|Gn| = |P|

xij ∈ {0, 1}, ∀i ∈ Pa, j ∈ Pb,

(10)

where Pa represents the set of non-corner points of a plane. With a point xi in Pa selected,
Pb represents the set of points that are possible to match xi (excluding itself and the points
connected with xi in the original boundary set). ∑

j∈Pb

xij is used to count the number of

times that xi is used in each round of pairing. Gl represents the segment in G that has no
common vertex with segment xij. Gn refers to the set of connected points searched with
any point as the starting point. The hard constraint in the formula is purposed to ensure
that the final boundary set is not in an intersection and closed. Due to the limited number
of non-corner points, the model can be solved quickly without any solver.

After optimization, the best set of boundaries can be obtained for each patch. When
the boundary prediction is completed for all planes, the holes in the point cloud can be
identified (as shown in Figure 9b). It is worth noting that in case of multiple candidate
models, the global coverage and matching rate of each model shall be calculated to screen
out the best outcome of the reconstruction.

Model recovery and triangulation. After boundary prediction, there are some points
in the point cloud that can not be covered by the model (as shown in Figure 9c). Among
them, local information loss is made inevitable if it results from boundary reconstruction
(cut by the red line). On the contrary, the information loss caused by boundary prediction
can be repaired by means of model recovery. The process of repair is simple, just simplify
the outer boundary of the uncovered point set and assemble it on the model. It is obviously
easier to introduce explicit structure into the model than to deal with redundant faces,
which is the reason why the boundary is allowed to appear inside the plane when the
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matching rate is calculated. Finally, the hole is triangulated to ensure that the final model
is watertight.

(a) (b) (c) (d)

Figure 9. Results of boundary prediction. The blue line segment represents the boundary obtained
by prediction.(a) A basic model. (b) The best prediction result. (c) Effectiveness test. Covered points
(green): 255,157. Remaining points (purple): 21,051. (d) The reconstruction result.

4. Results and Discussion

This method was implemented in C++, and the Point Cloud Library [34] was used to
process the point cloud. In this section, there are multiple groups of natural point clouds
used to validate the proposed algorithm. All experiments were carried out on i7-7700,
3.60 Ghz and 4.00 GB ram without any parallel operation.

4.1. Datasets

In this study, seven groups of natural rock mass point clouds are used as experimental
data (as shown in Figure 10). The details of all data sets are shown in Table 1. The first
six groups of data are from Rockbench repository [35], as obtained in Canada using Leica
hds6000 scanner. The seventh group of data comes from the mountain dataset released
by Wuhan University [36], which is collected by Scanstation C5 in the natural mountain.
Specifically, Rock 1 has a complex surface structure, so it is used to test the effectiveness
of the surface segmentation method. The reasons for the loss of surface information in
Rock 2, Rock 3 and Rock 4 are different, so they are used to verify the effectiveness of
the reconstruction method proposed in this paper in various situations. We performed
comparative experiments using Rock 3 and Rock 5. In addition to the loss of a large
amount of surface information, the former also has a more complex surface structure. The
latter has good data quality and relatively simple surface structures. Rock 6 is used to
demonstrate the ability of this method to process large-scale data and clarify the parameter
adjustment required. Finally, Rock 7 is used to verify the effectiveness of the method on the
mountain dataset.

(a) (b) (c) (d) (e)

(f) (g)

Figure 10. Seven datasets. (a) Rock 1. (b) Rock 2. (c) Rock 3. (d) Rock 4. (e) Rock 5. (f) Rock 6.
(g) Rock 7.
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Table 1. Basic infomation of all datasets.

Data Number of Points Bounding Box

Rock1 302, 737 27.13 ∗ 22.91 ∗ 10.38
Rock2 48, 972 10.21 ∗ 19.04 ∗ 6.19
Rock3 312, 659 28.8 ∗ 13.1 ∗ 11.9
Rock4 85, 377 9.5 ∗ 12.75 ∗ 4.66
Rock5 112, 465 23.81 ∗ 19.08 ∗ 6.19
Rock6 178, 550 48.5 ∗ 9.5 ∗ 6.84
Rock7 82, 481 11.6 ∗ 15.1 ∗ 5.1

4.2. Parameter Settings

The main parameters involved in this method are the angle and distance thresholds
used in the surface segmentation process. The valid range of parameters is from local (copla-
narity detection) to neighborhood (supervoxel segmentation) to global (region growing
and adaptive adjustment). Coplanarity detection is a critical step in surface segmentation,
and high-precision parameters must always be used to ensure that surface structures can
be over-segmented. The parameters used for supervoxel segmentation need to be slightly
larger than those used for coplanarity detection, which helps to improve the effective-
ness of surface segmentation (improve recall rate). The complexity of the final generated
model is controlled by the parameters used in the process of region growing. The function
of these parameters is to determine whether two or more supervoxel patches should be
merged. The higher the accuracy of the parameters used for regional growth, the more
complex the generated model will be and the more detailed information will be obtained
(as shown in Figure 11). A simpler model can be obtained by using a larger threshold
parameter. Although some structural information will be lost, the possibility of collision in
the reconstruction process will be reduced. Therefore, it is necessary to use larger region
growing parameters when processing large-scale data (Rock 6) or data with rough surfaces
(Rock 7). The meaning and recommended value range of the main parameters involved in
the method are shown in Table 2.

(a) (b)

Figure 11. Segmentation and reconstruction results obtained using different region growing parame-
ters. (a) growdis = 0.18, growang = 13◦. (b) growdis = 0.23, growang = 18◦.

4.3. Surface Segmentation Results

In this paper, we use Rock 1 to test and verify the surface segmentation method. The
surface structure of Rock 1 is complex. In addition to large and clear structural planes, some
small structural planes and transition planes are also concentrated in the data center. For
quantitative comparison, we marked the surface structure of Rock 1. It is worth noting that
the reference point cloud comprehensively considers the marking results of five researchers
in the field of rock mass engineering and computer vision. In the final reference point
cloud, some transition surface areas (black area) that were more controversial during the
labeling process were not included. Therefore, the final reference point cloud is composed
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of structural surfaces with better planarity. In addition, we verified the structural surfaces
in the reference point cloud using RANSAC to ensure the validity of the reference data. In
the meantime, HT-RG [18], DSE [17], MOE [19] and PCL-RAN [20] (Ransac) were adopted
as comparison methods.

Table 2. Information of parameters.

Stage Parameters Configuration Method Meaning

Surface
segmentation

randis 0.08–0.12 (m) distance threshold of coplanarity detection
ranang 8–12◦ angle threshold of coplanarity detection
superdis 0.13–0.2 (m) distance threshold of supervoxel segmentation
superang 13–20◦ angle threshold of supervoxel segmentation
growdis 0.13–0.23 (m) distance threshold of region growing
growang 13–23◦ angle threshold of region growing

Edge information
calculation

dh 0.1–0.3 (m) radius length of boundary information search
Mc 0.18–0.25 (m) distance threshold of adaptive adjustment
Nc 18–25◦ distance threshold of adaptive adjustment

Model closure Lh 0.1–0.3 (m) distance threshold for matching degree calculation

Figure 12 shows the segmentation results of Rock1 using different methods. Mean-
while, an evaluation system including accuracy, recall, and F1 [19] is employed to quantify
the difference between the results and the reference point cloud. Table 3 lists the quan-
titative evaluation results produced using each method. The experimental results show
that this method has obvious advantages in extracting clear structural planes. Since this
method uses the over-segmentation strategy to segment the surface information, it has less
under-segmentation and boundary problems while obtaining higher detection accuracy. By
observing the segmentation results, it can be found that this method also realizes effective
segmentation for some large transition surface areas (black areas), which can significantly
improve the effectiveness of the method in processing more complex mountain data. Mean-
while, the efficiency of our algorithm (as shown in Table 4) is deemed acceptable. The
reconstruction result of Rock 1 is shown in Figure 9.

(a) (b)
(c)

(d) (e) (f)

Figure 12. Segmentation results. (a) Reference point clouds. (b) Ours. (c) PCL-RAN. (d) DSE.
(e) HTRG. (f) MOE.
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Table 3. Detection Results of Rock 1.

Method Accuracy Recall F1

PCL-RAN 79.5% 83.3% 81.4%
DSE 85.4% 79.5% 83.5%

HTRG 93.2% 89.3% 91.5%
MOE 91.9% 91.6% 91.8%
Ours 94.8% 94.2% 94.5%

Table 4. Execution time for different rocks (s).

Method Name Rock1 Rock2 Rock3

PCL-RAN 47.60 8.17 44.48
DSE 388.76 44.15 341.32

HTRG 198.41 29.17 164.78
MOE 2.13 1.12 2.56
Ours 9.47 3.27 8.15

4.4. Robustness Test

Firstly, we test the ability of this method to process noise data. For quantitative
comparison, we take the reconstruction result and effective region of Rock 2 in the noise-free
state as the reference value. Then, the effective area in the reconstruction results obtained
under different noise conditions is taken as the real value. By calculating the RMSE of the
reference value and the real value, the disturbance of noise to the reconstruction results is
observed. RMSE can be calculated by Equation (11).

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − pi
′)2. (11)

The reconstruction results under different noise conditions are shown in Figure 13. It
can be seen from the figure that under different noise conditions, the main structure of the
reconstruction results is basically the same and will not change significantly due to the noise
data. The calculation results of RMSE under different noise conditions are shown in Table 5.
With the increase of the number and level of noise, the impact of noise on the reconstruction
process will be more obvious, but the error will be maintained in an acceptable range. The
reason why the method proposed in this paper can effectively process noise data is that
RANSAC is used as the local coplanarity detection method, and high-precision parameters
are used for detection, which significantly improves the sensitivity and robustness of this
method to noise.

In addition, we further verify the effectiveness of this method in dealing with data
with poor data quality. There are three main reasons for the poor quality of rock mass point
cloud data. Firstly, there may be some concave structures on the rock mass surface, which
makes some surfaces unable to be obtained due to occlusion. Secondly, the integrity of
the data will be affected by the acquisition location. For example, when collecting data
on the ground, it may be difficult to obtain surface information parallel to the ground.
Finally, when part of the rock mass surface has no planarity, it is difficult to obtain effective
structural information from this area, which will result in incomplete information included
in the surface segmentation results. The above three cases will lead to the loss of surface
information, and the loss of surface information may involve the loss of the whole plane,
rather than the small holes in the plane.
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Figure 13. Noise test. The three types of data in the figure represent the input data (in red), recon-
struction result (in yellow) and effective region (in green).

Table 5. The information of noise test.

Noise Parameters RMSE

20% Gaussian noise
σ = 0.1 2.81e−02
σ = 0.3 2.86e−02
σ = 0.5 2.92e−02

50% Gaussian noise
σ = 0.1 3.71e−02
σ = 0.3 4.24e−02
σ = 0.5 4.32e−02

Therefore, we use Rock 2, Rock 3 and Rock 4 to represent the above three situations
respectively. The boundary prediction results of information loss areas and final recon-
struction results of each point cloud are shown in Figure 14. In this paper, on the basis of
generating the basic model, the boundary prediction method based on an integer program-
ming model is implemented, which can effectively deal with the loss of plane information
caused by occlusion (Rock 2) and acquisition location (Rock 3). For the problem of missing
information in the surface segmentation results caused by surface irregularities (Rock 4),
this method can use a simple triangular mesh representation to repair holes, generate a
closed model, and ensure the effectiveness of surface reconstruction in other areas.
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Figure 14. Tests on datasets with poor data quality. Obvious information loss areas are marked by
black circles.

4.5. Reconstruction Results

In this section, we will show the reconstruction results of multiple sets of data. In
order to better reflect the performance advantages of this method, we have selected three
methods for comparative experiments. Among them, Poisson [12] and SSSR [13] are two
dense surface reconstruction methods. The former is widely used in a large number of
tasks related to 3D reconstruction, while the latter has higher reconstruction efficiency and
good reconstruction accuracy. In addition, since most of the current lightweight surface
reconstruction methods are aimed at artificial target data, we choose Polyfit with strong
generalization ability as the comparison method of lightweight surface reconstruction.
Meanwhile, two sets of rock mass data were used for comparative experiments. Relatively
speaking, Rock 5 has better data quality and simpler surface structure, while Rock 3 has
poor data quality, and contains some smaller structural surfaces and transition surfaces.

Moreover, in order to better evaluate the results of lightweight reconstruction, we
have marked the clear structure information contained in Rock 3 and Rock 5. It should be
noted that the marking results are jointly completed by four researchers in the geotechnical
field and computer vision field, and refer to the detection results of various plane detection
methods, so as to make the topology contained in the marking results as accurate as
possible. In this paper, we use topological accuracy as the main index to evaluate the
results of lightweight reconstruction. The calculation method of topology accuracy is as
follows. Using all corners in the reference point cloud to search the corresponding points
(the nearest point within a certain range) in the reconstruction results. If the two endpoints
of a line segment in the reference point cloud both have points corresponding to them in the
reconstruction results, and the corresponding points have the same connection relationship,
the topology is considered to be matched. Topology accuracy is obtained by calculating
the ratio of the number of matching topologies to the total number of topologies. It should
be noted that the topological accuracy is only for the lightweight surface reconstruction
method. In addition, the data compression ratio is the ratio of the number of points in
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the original point cloud to the number of points in the model. The reconstruction results
of Rock 5 and Rock 3 obtained by each method are shown in Figures 15 and 16. Table 6
summarizes information about reconstruction.

(a) Rock 5 (b) Possion (c) SSSR

(d) Reference point cloud (e) Polyfit (f) Ours

Figure 15. Reconstruction results of Rock 5.

(a) Rock 3 (b) Possion (c) SSSR

(d) Reference point cloud (e) Ours

Figure 16. Reconstruction results of Rock 3.

Table 6. Details of Rock 5 and Rock 3 reconstruction results.

Data Method Number of Points Number of Faces Data Compression
Ratio Is it Closed Time

Consuming
Topological

Accuracy

Rock 5

Possion 69,755 139,133 1.994 No 4.5 s #

SSSR 112,006 223,557 1.004 No 2.8 s #
Polyfit 45 26 2499.222 Yes 14.7 s 47%
Ours 76 52 1479.801 Yes 12.44 s 82.3%

Rock 3

Possion 45,828 91,430 6.821 No 6.8 s #

SSSR 310,740 620,376 1.006 No 3.6 s #

Polyfit # # # # # #
Ours 71 90 4403.647 Yes 17.83 s 82.6%

In general, dense reconstruction methods show high efficiency and the ability to
preserve all details. However, considering that the purpose of surface reconstruction of the
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rock mass is to provide input data for engineering calculations and related simulation tasks,
weak texture information does not need to be preserved in the final reconstruction results.
While the dense reconstruction algorithm obviously does not have the ability to effectively
filter the texture information and retain the effective main structure. It is noteworthy
that, during the collection of the rock-mass point cloud, there is only one side of the
surface information that can be obtained in many cases. The current dense reconstruction
methods and some methods to simplify the dense mesh [37,38] usually do not consider
reconstructing an open point cloud into a watertight model, which further explains why
the models reconstructed by these methods are not suitable for some numerical simulation
methods (key blocks).

The lightweight reconstruction method has good data compression ability, can effec-
tively filter the texture information, and can generate a watertight model, which is more
suitable for the reconstruction task in engineering calculation. By observing the reconstruc-
tion results of Rock 5, it can be found that Polyfit is also an effective solution for areas
with simple structure and good data quality. However, in some concave regions, Polyfit
may lead to inaccurate reconstruction results. The loss of information caused by occlusion
makes Polyfit ineffective in the reconstruction of concave areas, which leads to a significant
reduction in topology accuracy (47%). Unlike Rock 5, Polyfit cannot effectively reconstruct
Rock 3, mainly for the following two reasons. First, the data quality of Rock 3 is much
worse. After performing plane extension and cutting, effective cutting (even wrong cutting)
can not be found in a large number of information missing areas, resulting in the collapse
of the program. In fact, the inability to deal with data corruption caused by various reasons
is the main problem encountered by Polyfit and its improved algorithm [33]. Second, when
the structural plane set contains a large number of structural planes or transition planes
with similar parameters, a large number of cutting planes will be generated in the process
of global expansion, resulting in a sharp increase in the computational cost.

The method proposed in this paper can effectively filter the texture information in
the point cloud under the premise of ensuring high topological accuracy, and generate
a watertight model that can be directly used in engineering calculations and numerical
simulations. Furthermore, the method has significant advantages in handling highly
corrupted data.

In addition, in order to show the performance of the method more comprehensively,
we provide the reconstruction results of the other two groups of data. The reconstruction
result of Rock 6 is shown in Figure 17. When dealing with the rock mass data with large
size or including multiple groups of continuous structural planes (Rock 6), large region
growth parameters should be used to avoid too many collision problems (growdis = 0.21,
growang = 16◦). Therefore, compared with other reconstruction results, the reconstruction
result of Rock 6 may lose some structural information. In fact, if more accurate reconstruc-
tion results are needed, it is suggested to reconstruct large-scale complex data in segments.

Rock 7 is a set of data from the mountain dataset of Wuhan University. Unlike rock
mass data, mountain data usually do not contain a large number of smooth structural
planes. For mountain data with rough surfaces, it is still recommended to use larger
region growing parameters for reconstruction to reduce the complexity of the model
(growdis = 0.23, growang = 18◦). The reconstruction result of Rock 7 is shown in Figure 18.
By observing the input data and reconstruction results of Rock 7, it can be found that
the obvious structural information (surface structure changes) in the input data can be
effectively extracted and finally presented in the model, which proves the effectiveness
of this method in the mountain dataset. The time consumption of all rock mass data
reconstruction and the basic information of each model are shown in Table 7.
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Figure 17. Reconstruction results of Rock 6.

Figure 18. Reconstruction results of Rock 7.

Table 7. Reconstruction information of all rocks.

Data Segmentation Time Reconstruction Time Structural Planes Model Planes

Rock 1 9.47 s 11.4 s 32 64
Rock 2 3.27 s 5.13 s 12 28
Rock 3 8.31 s 9.52 s 32 63
Rock 4 3.51 s 7.76 s 15 43
Rock 5 6.32 s 6.12 s 24 71
Rock 6 8.02 s 9.27 s 20 54
Rock 7 5.11 s 4.12 s 12 26
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4.6. Application

The reconstructed model can be used in the numerical simulation of engineering
calculations, such as slopes and tunnels. In the actual engineering calculation, the model
will be used as the input data of numerical simulation together with the actual engineering
or geological conditions. Figure 19 shows a simple model example of adding a tunnel to
the rock mass. After adding the size information of the tunnel to the rock mass model, the
initial closed model will be further cut to form a new closed block. This information can be
used in the rationality calculation of tunnel design. In addition, by adding fault information
to the rock mass model and further dividing the rock mass model, the whole block can
be cut into several closed sub-blocks (this is why the generated rock mass model needs to
be watertight), then the stability of the rock mass can be analyzed by using block theory
and discontinuous theory. In fact, when large-scale rock engineering calculation is carried
out, minor changes in rock surface structure (surface texture and slight concave–convex
changes) are usually not considered. On the contrary, too complex structures will make
the subsequent further segmentation process difficult to perform. Therefore, in the above
applications, a closed and concise numerical model of rock mass is essential.

(a) (b) (c)

Figure 19. Example of adding tunnel information to rock mass model (a) Input model. (b) Add
tunnel information. (c) Block after cutting.

5. Conclusions

This paper focuses on the efficient lightweight surface reconstruction method of
rock mass point cloud. Different from the man-made target, a large amount of texture
information and inevitable data loss on the surface of rock mass are two difficulties to be
solved during rock-mass point cloud surface reconstruction. Considering the above factors,
this paper proposes a lightweight surface reconstruction method, which can generate a
rock-mass numerical model with concise and accurate surface structure information. The
generated model can be directly used for numerical simulation.

In this paper, seven groups of rock mass data are used to verify the proposed algo-
rithm, and sufficient comparative experiments are carried out. This method can realize
efficient lightweight surface reconstruction of rock-mass point cloud within high topologi-
cal accuracy.It is worth mentioning that we effectively solve the collision problem caused
by accumulated errors during surface reconstruction. In addition, we have analyzed and
tested the problem of data corruption caused by many situations to ensure the effectiveness
of the algorithm in dealing with highly corrupted data.

The proposed method constructs a watertight rock mass model by adding a rectangular
bounding box, which may result in a certain number of redundant faces in the generated
model. These redundant surfaces will not affect the numerical simulation but will bring
some visual differences. In addition, when the outer boundary of the input data is too
irregular, it becomes more difficult to add connectivity information to the bounding box.
Therefore, the related problems involving bounding boxes can be further studied. At the
same time, in order to avoid too many iterations during adaptive adjustment, appropriate
human intervention is still necessary when dealing with some complex data. Finally,
when this method deals with large-scale rock mass data, it is difficult to obtain high-
precision reconstruction results. Therefore, how to reasonably decompose the large-scale
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reconstruction task into several sub-tasks and combine multiple sub-models to obtain
high-precision reconstruction results deserves further study.
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