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Abstract: Monitoring floods is a major issue in water resources management and risk mitigation,
especially in the Global South. Optical and radar observations, even providing a fine spatial resolution,
are still limited by cloud cover interaction or insufficient temporal resolution. On the other hand,
passive microwave (PMW) sensors collect information on a daily frequency with minor cloud cover
interaction, but they have been historically limited in terms of spatial resolution. Here, we evaluate the
capability of an enhanced spatial resolution PMW dataset (3.125 km) in monitoring spatio-temporal
evolution of flood events, focusing on a major flood event that occurred in October 2005 in Bangladesh.
We apply an algorithm aimed to remove the seasonal variability of surface temperature from the
PMW timeseries, exploiting the difference in emissivity between dry and water-covered pixels.
We assess the capability of the algorithm in capturing flood evolution and extension through the
comparison with quantities obtained from optical data collected by the Moderate Resolution Imaging
Spectroradiometer (MODIS) and water level measurements. We also compare the enhanced product
with the historical coarser resolution dataset by means of a variogram-based analysis to evaluate the
improvements in terms of spatial representation. Finally, we evaluate the possibility to extract the
water fraction within a single pixel by using an Advanced Microwave Scanning Radiometer—Earth
Observing System (AMSR-E) emissivity dataset and compare the estimates with MODIS-derived
water fractions. Our results show that the enhanced PMW product outperforms the coarser one
when compared to flood mapped from optical data based on information content, indicating that it is
possible to integrate such a product into the mapping of floods at a global scale on a daily basis.

Keywords: flood detection; passive microwave; Bangladesh; extreme events monitoring

1. Introduction and Background

Flooding is a frequent hydrologic hazard, affecting everyday life and impacting social
and economic systems, especially in the Global South. Structural and non-structural
mitigation measurements should be based on proper knowledge of the spatial and temporal
evolution of such devastating events. In this regard, the increase in the availability of
radar and optical spaceborne data in recent years has allowed monitoring the spatial
distribution and temporal evolution of floods with increased accuracy with respect to the
previous decades [1–3]. Despite this, however, several major issues need to be addressed
for properly capturing the spatio-temporal evolution of floods, especially in regions where
in situ measurements and data infrastructures are not well developed and readily available,
as in the Global South. While optical data are routinely collected at high spatial (~meters or
tens of meters) and temporal (daily) resolutions, the presence of clouds within the acquired
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scene can often obstruct the view of the sensors, especially during floods associated with
hurricanes and heavy rain. On the other hand, radar data are not limited to clear sky
conditions and can collect information during cloudy conditions and without the need
for solar illumination. However, current available radar datasets are characterized by a
relatively coarse temporal resolution (6–12 days in the case of Sentinel-1 sensors depending
on year and location) and short record (~2015–present), introducing strong limitations in
monitoring the short-term evolution of floods. While radars mounted on small satellites
are becoming more popular, they are still cost-prohibitive and not yet currently available
at a daily timestep. Moreover, acquisitions must be tasked, limiting their access to a wide
audience of researchers and utility for flood monitoring.

A complementary approach to optical and radar sensors consists of using passive
microwave (PMW) data. While radars collect information of the scene under observation
in an active way, PMW sensors measure the electromagnetic radiation naturally emitted
by the Earth. Because of their large swath (of the order of a thousand kilometers), PMW
sensors can collect useful information over most of the Earth at high temporal resolution
(daily or even sub-daily, depending on the latitude), representing a strong candidate for
long-term, high temporal resolution detection of floods or their mapping. Building on the
sensitivity of PMW data to dry and wet surfaces [4], several algorithms have been proposed
in the past that aim at mapping floods using PMW data [5–15]. One of the first assessments
of PMW sensors’ capability of monitoring floods was carried out by Allison et al. [11], using
data at 19.3 GHz collected by the Electrically Scanning Microwave Radiometer (ESMR)
Nimbus-5 satellite. However, as we mentioned, there is a temporal gap between the ESMR
data and the next available PMW sensor, the SMMR launched in 1979. Later, Giddings, and
Choudhury [12] used both horizontally and vertically polarized brightness temperatures at
37 GHz collected by the Nimbus-7 SMMR to monitor seasonal inundation in South America
through the so-called polarization difference, defined as the difference between vertically
and horizontally polarized brightness temperatures. Similarly, following Choudhury [13],
Sippel et al. [6] used the polarization difference to assess the inundation area in the Amazon
River floodplain. In the early 2000s, a different methodology was proposed by Galantow-
icz [7] in which the 19 GHz and 37 GHz horizontally polarized brightness temperatures
and a digital elevation model are combined for flood mapping purposes. Prigent et al. [14]
used 37 GHz SSM/I emissivity (obtained removing the influence of the atmosphere, clouds
and rain) together with ERS-1 active microwave scatterometer data (sensitive to vegetation
density) and the AVHRR Normalized Difference Vegetation Index to capture global wetland
dynamics to create the Global Inundation Extent from Multi-Satellites (GIEMS).

If we exclude the Electrically Scanning Microwave Radiometer (ESMR) aboard NOAA’s
Nimbus-5 satellite which was launched in 1972 but was acquiring data only for a short
period, the first satellite to start collecting PMW brightness temperatures without temporal
gaps was launched in 1979, carrying the Scanning Microwave Multichannel Radiometer
(SMMR), followed by the Special Sensor Microwave/Imager (SSM/I, since 1987) and the
Special Sensor Microwave Imager/Sounder (SSMI/S, since 2006) flying on the Defense
Meteorological Program Satellites (DMSP 5D-2/F8, F10, F11, F13, F14, DMSP 5D-3/F15 for
SSM/I and DMSP 5D-3/F16, F17, F18, F19 for SSMI/S). A major limitation of the historical
approaches making use of PMW data consists of the relatively coarse spatial resolution
at which these datasets have been produced and distributed (25 km). In this regard, a
new “spatially enhanced” dataset was recently produced within the framework of a NASA
MeEASUREs Project [16], containing calibrated PMW brightness temperatures at spatial
resolutions of 3.125 km, 6.25 km, 12.5 km, and 25 km for the period 1979–2019 from all
available sensors. The enhancement of the spatial resolution is achieved at the cost of a
potential increase in the noise in the final product. It is, therefore, important to assess the
impact of such noise on the use of the enhanced product in flood detection.

In this paper, we apply the algorithm developed by De Groeve [5] to the enhanced
PMW brightness temperatures at 37 GHz (3.125 km) to assess the skills of the new product
to map floods. To perform our assessment, we focus on an area in Bangladesh during a
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major flood event that occurred in October 2005. For assessing the performance of the
enhanced PMW product to map the spatio-temporal variability of the flood under study, we
compare the results obtained with the enhanced PMW product with those obtained from the
same dataset at the historical, coarser resolution (25 km) and with those obtained from the
analysis of optical data collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS) at the spatial resolution of 500 m over a portion of the study area. Building on
the finer spatial resolution of MODIS data, we also conduct a sensitivity analysis of the
skills of the enhanced PMW product to map the surface water fraction (here defined as the
relative portion of the area pixel where the flood is occurring). Such a comparison is aimed
at quantifying possible improvements related to the enhancement of spatial resolution
of the dataset. We continue evaluating the capability of the PMW algorithm outputs
in describing the temporal evolution of the flood event by comparing them with water
level data measured by a selected hydrometric station. Then, we report the results of a
semi-variograms analysis to study the scale lengths and the spatial autocorrelation of the
PMW and MODIS-based products [17], aiming at evaluating the consistency of the PMW
datasets with respect to the higher resolution MODIS reference. Lastly, we make use of a
global permittivity dataset to retrieve the water fractional area within each PMW pixel and
compare it with that obtained with MODIS.

2. Materials and Methods
2.1. Study Area

Our study area covers Bangladesh and East India, and it is bounded by the following
latitude and longitude values: 20.9905◦N–28.8737◦N and 81.8462◦E–95.0090◦E, for a total
surface area of 1,164,600 km2. The region is confined in the north by the Himalayan
Mountains and in the south by the Bay of Bengal (Figure 1). The three major rivers
draining the Bangladesh basin are Ganges, Brahmaputra, and Meghna. The hydrologic
response of this colossal river system is triggered by monsoon rainfall, meltwater from
the Himalayas, and tides at the delta. Whenever an increment of runoff from the three
tributaries occurs, strong flood events affect the downstream river system [18]. Moreover,
the area is exposed to floods from cyclones, such as the super cyclone Amphan that hit
the area at the beginning of June 2020 and was the strongest cyclone recorded in the area,
with winds reaching ~160 miles per hour. A total of 1.4 billion people inhabit this active
river delta, including the megacity of Dhaka, rural areas with extensive agriculture and
especially rice cropping, and the UNESCO world heritage site of the Sundarbans mangrove
forest. We specifically focus our attention on a flood event that occurred between 3 and
17 October 2005, when dozens of villages were inundated by extreme rainfall, causing
the rivers of northwestern Bangladesh to burst their banks. The flood lasted for at least
20 days, killing 19 people, displacing ~100,000 people, and affecting an estimated area of
~23,000 km2. The flood was associated with late monsoon rains, damaging 200,000 hectares
of crops and leaving 10,000 homeless families in the Rangpur region alone.

2.2. Passive Microwave Data

In this study, we make use of a spatially enhanced resolution product (named simply
“enhanced” in the following), produced and distributed within the framework of a NASA
MEASURES project [16]. The spatial enhancement is achieved through the application of
a radiometer version of the Scatterometer Image Reconstruction technique (rSIR), grid-
ding overlapping swath data by means of the effective measurement response function
(MRF) together with the scan geometry and the integration period [19]. This technique
represents a large improvement when compared with the more basic “drop-in-the-bucket”
gridding method (based on a simple average of all the measurements falling into the pixel)
historically used to generate the coarser resolution dataset. The final spatial resolution at
which the enhanced product is generated is a function of the frequency. Data at 37 and
89 GHz are generated at a resolution of 3.125 km, 19 GHz at 6.125 km, and the remaining
lower frequencies at 12.5 km. A consistent version of the product at a spatial resolution of
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25 km is also produced and distributed (and it is also used in this study). More information
about the spatially enhanced product is available at https://nsidc.org/data/nsidc-0630
(last access 21 February 2022). Here, we use the 37 GHz brightness temperature produced
at 3.125 km because of the high spatial resolution and because it has been proven to be
effective in mapping floods in other studies [5–7,10,12,13]. We excluded the 89 GHz (which
has a similar spatial resolution of the 37 GHz) because of its strong sensitivity to atmo-
spheric processes that would impact our estimates. We report results obtained using the
horizontal polarization, as our analysis (not shown here) indicates that this polarization is
most sensitive to flood events, in agreement with previous studies [5,7]. As an example,
Figure 2 shows the map of brightness temperature at 37 GHz, horizontal polarization,
ascending pass in the case of the enhanced (Figure 2a) and coarse (Figure 2b) resolution for
data collected on 10 October 2005 over the study area during the flood event.
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Figure 1. Original study area considered in this study. Shades of blue show the presence of water
bodies as obtained from the MODIS land use/land cover (LULC) product (https://lpdaac.usgs.
gov/products/mcd12q1v006/, last accesses 21 February 2022). The dashed-line rectangle shows the
location of our Intensive Study Area (ISA). The black star represents the location of the hydrometric
station considered.
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2.3. Passive Microwave Flood Detection Method

Approaches for detecting floods from PMW data build on the contrast between the
emissivity of dry and flooded/wet surfaces. Typically, emissivity values for water are
around 0.5, and for most minerals, values are between 0.75 and 0.95 [20]. Such contrast has
allowed the development of techniques based on PMW data that, under the assumptions
discussed below, allow us to estimate the presence of surface water within the observed
scene. Beside intrinsic limitations of the different algorithms, we point out here that PMW
data can be sensitive to soil moisture and heavy precipitation, depending on the frequency.
In general, the lower the frequency, the higher the sensitivity to soil moisture and lower
to precipitation. In this regard, the 37 GHz channel has been shown to provide optimal
results [12] and, as we will see in the next section, is delivered at an unprecedented spatial
resolution of 3.125 km through a new NASA product.

The method that we apply here is based on the work by De Groeve [5], who proposed
an approach based on the assumption that geographically close pixels have similar land
surface properties (i.e., temperature, roughness, vegetation, etc.). This approach relies
on the selection of a calibration brightness temperature aimed to remove the effect of
the surface temperature from the time series. In the method, the measured brightness
temperature value of an area (Tb,m) is assumed to be expressed as the linear combination
of water-covered (i.e., flooded, Tb,w) and dry brightness temperatures (Tb,d), weighted
through fractional flooded area w as follows:

Tb,m = (1-w)Tb,d + wTb,w = Tm [(1−w) εd + wεw], (1)

where εw and εd are the water and dry land emissivities, respectively, and Tm is the physical
surface temperature of the area within the measurement pixel. In order to detect floods,
brightness temperature values are normalized through a calibration brightness temperature
Tb,c, defined as:

Tb,c = Tb,d = Tcεd, (2)

where Tc is the physical surface temperature of the area within the calibration pixel. If for
nearby pixels we assume,

εd,m ≈ εd,c ≈ εd and Tm ≈ Tc, (3)

then we can define a signal S as the ratio between measurement (M) and calibration (C)
brightness temperature signals:

S = M/C = Tb,m/Tb,c = {Tm [(1−w)εd + wεw]}/Tcεd ≈ 1 − w + w(εw/εd), (4)

According to Equation (4), we can also express the water fraction within each pixel
as follows:

w = (S − 1)/(εw/εd − 1), (5)

For each pixel, we compute the calibration brightness temperature automatically as
the maximum brightness temperature value within a square area of 24 pixels centered at
the specific pixel where flood is being monitored. The number of pixels was selected to
match the original area size used in [5]. A pixel is flagged as flooded when S drops below
a threshold value, computed as the 5th percentile of the time series (adopted here) or a
fixed number of standard deviations from the mean, 2 in the case of regular floods and 4 in
the case of large floods [5]. Figure 3 shows an example of the maps of the calibration (C,
Figure 3a) and measured (M, Figure 3b) brightness temperatures over the test region of
Bangladesh obtained from the enhanced resolution satellite image of 10 October 2005.
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Figure 3. Example of maps of (a) calibration C brightness temperature and (b) signal S over the study
area (10 October 2005).

2.4. MODIS Data and the Normalized Difference Water Index

In order to assess the performances of the PMW algorithm, we collected Moderate
Resolution Imaging Spectroradiometer (MODIS) reflectance data acquired by the TERRA
and AQUA satellites over the area of interest [21]. Images were georeferenced and areas
covered by clouds were removed using the internally provided quality flag. In order
to map inundated areas, we use the Normalized Difference Water Index (NDWI, [21]),
expressed as:

NDWI = (XNIR - XSWIR)/(XNIR + XSWIR), (6)

where XNIR and XSWIR are the near-infrared and short-wave infrared channels, respectively.
Surface water is assumed to be present when NDWI exceeds the value of 0 [22]. As an
example, Figure 4 shows the histogram of NDWI values computed from MODIS at the
spatial resolution of 500 m for 10 October 2005.
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2.5. Water Level Data

As a point-scale indicator of the flood event, we used water level data measured by
the hydrometric stations distributed over the research area. Here, we chose to use the water
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level data in proximity of the selected pixels for the time series analysis. Specifically, we
considered the Mohadebpur station, in the Naogaon district (station ID SW145), located at
24.9158 N and 88.7500 E (Figure 1). We considered the two-month interval centered in the
proximity of the flood event (September and October 2005).

2.6. Spatial Scale analysis and Semi-Variograms

To further investigate the information content associated with the enhanced resolution
of the PMW product with respect to the coarse one, we performed a semi-variogram
analysis to study the spatial scales of the parameters used to characterize flooding (i.e.,
NDWI in the case of MODIS and the signal S in the case of the PMW datasets). A semi-
variogram can be seen as a descriptor of the spatial continuity of the data, describing
the spatial autocorrelation of the elements within the scene. We computed the empirical
semi-variogram as:

γ(h) = (2N(h))−1Σ(i,j)∈N(h) (zi − zj)2, (7)

where N(h) stands for the number of pair observations (i,j) separated by a spatial dis-
tance h [23]. The terms zi and zj are the attribute values of observations i and j, respectively.
Generally, as the distance between observations increases, the semi-variance γ is likely to
increase because near-observations are more likely to be spatially correlated. The semi-
variance is then plotted as a function of the distance h to obtain the so-called experimental
variogram. Lastly, this is fitted with a function to calculate the following three parameters
characterizing the semi-variogram: the nugget, sill, and range. In this study, we used a
spherical function [23] to fit the experimental variorum as it is the function that provided
the best fitting among all considered functions. The nugget represents the small-scale
spatial variations within the fields. This is an indicator of how noisy the spatial structure
is. For instance, inside the fields, there exists some small-scale intrinsic variability, which
accounts for the fact that not all neighbors can be exactly similar. The sill corresponds to
the value when the semi-variances reach a plateau and stabilize. The range is the distance
beyond which observations are no longer spatially correlated. Above the range distance,
observations do not share any relationship, or complementarily, observations within the
range are spatially correlated and share similar drivers and processes [24]. Such information
can describe the spatial coherence of the dataset considered with respect to the reference
dataset (i.e., MODIS).

2.7. AMSR-E Emissivity Data and Water Fraction Extraction

We also address the possibility of retrieving the fraction of the pixel covered by the
flood, w in Equation (5) from the PMW data. In order to solve Equation (5) for w, we
need to assign values to the water and land permittivity values (εwater and εland). As
mentioned, the values can range greatly, and to assess optimal values for the inversion in
our case, we make use of a dataset containing global land emissivity product obtained from
PMW observations collected by the Advanced Microwave Scanning Radiometer—Earth
Observing System (AMSR-E, [25]). As an example, we show the histogram of the monthly
emissivity values estimated at 36.5 GHz over our area of interest for the month of October
2005 (Figure 5) when the flood occurred. From the histogram, we assume the emissivity
in the case of dry pixels to be the peak value of the histogram (0.93) and the emissivity
value in the case of flooded areas to be the 5th percentile of the values (0.58). After selecting
these values, we visually inspected the emissivity map to verify that pixels presenting
such values (0.93 or 0.58) were indeed located over flooded areas or water bodies. We
realize there is room for refinement of these assumptions and improvement of the way
the emissivity can be estimated, but our goal in this study is to provide a first analysis on
the potential of the PMW dataset to extract fractional flooded areas. In order to evaluate
the goodness of such an estimation of water fraction obtained from the PMW datasets, we
compare it with the estimate obtained by resampling the 500 m MODIS flood maps at the
3.125 km and 25 km spatial resolutions.
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3. Results and Discussion
3.1. Spatial Coverage

Because of the novelty of the product and of the new resampling adopted for gen-
erating the enhanced product, we first assessed the coverage of the spatially enhanced
product over our study area. This is important in view of the benefits arising from the
large swath associated with PMW sensors and the possibility of reaching a high temporal
resolution for a near-real-time monitoring of floods. Our results indicate that the coverage
of each sensor considered separately reaches relatively low values (~20% of the total area)
because of the design orbit of the PMW spaceborne sensors, which reduces coverage at
lower latitudes. Nevertheless, the fractional coverage increases considerably (average
97.8%) when considering all sensors. Moreover, the mean coverage increases to 99.7%
when combining ascending and descending passes, with minimum values exceeding 95%.
Such results indicate that the PMW-enhanced dataset is a reliable tool in terms of spatial
and temporal coverage, providing useful data over the area of interest at high temporal
resolution even in the enhanced case.

3.2. Time series Analysis

As a first step, we perform a comparison of time series of NDWI and the microwave
signal S over different regions to better understand the linkages and relationships between
the optical and the PMW datasets used for the flood detection. At this stage, we focus on a
single gauged area strongly inundated in October 2005 to evaluate the temporal evolution
of the flood event. The event was selected because of the availability of optical data that can
be used as a validation dataset and because the flood was extensive enough to be captured
by the relatively coarser spatial resolution of the PMW datasets. Specifically, in Figure 6,
we show the time series of NDWI MODIS (blue, left y-axis) and of the signal S in the case
of enhanced (red line, right y-axis) and coarse (dashed red line, right y-axis) for a location
near the Mohadebpur station, where a major flood event was recorded at the beginning of
October. We selected the coordinates (24.9479◦ N, 88.7714◦ W) for the plotted data based
on the condition that flooding would be present in and on the availability of cloud-free
MODIS images during that period. Threshold values computed for the PMW signals in
the case of either the enhanced or the coarse PMW products are reported in the figure as
dotted (enhanced) and dashed (coarse) horizontal lines.
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Figure 6. Time series of NDWI MODIS (blue, left y-axis) together with the signal S in the case of
enhanced (solid red line, right y-axis) and coarse (dashed red line, right y-axis) for the pixel located at
24.9479◦ N, 88.7714◦ W. Threshold values computed for the PMW signal in the case of both enhanced
and coarse products are reported in the plot, as well. Days when MODIS data are missing (because of
clouds) are reported, when they occur, as gray masked areas.

From Figure 6, we note that on 3 October 2005, the day of the first available MODIS
cloud-free data after the flood began for this specific location, both coarse and enhanced
PMW signals begin to decrease as a consequence of the presence of flooded areas within the
area covered by each pixel, then increase again and reach pre-flood values on 17 October
2005, a day before NDWI values become negative (pointing to the absence of flooded
areas). We also note that the coarse resolution product suggests flooding on 27 October
2005, where both the enhanced product and MODIS do not. In this case, we note that
the signal barely exceeds the selected threshold, and the missing of the flood detection is
intrinsically related to the sensitivity of the algorithm and the threshold selection. With
this in mind, this single-day event could be, eventually, filtered in a post-processing phase
using multi-temporal analysis or considering a range of thresholds with which to build
a composite or an ensemble of outputs that could define the probability of flooding to be
occurring from PMW data. Such analysis confirms the strong dependence of the PMW
signal on the presence of water on the observed surface.

The comparison with MODIS data presented in Figure 6 exploits the coherence of the
PMW signal with optical observations and highlights the limitation of optical data in case
of cloud cover. However, a comparison with ground observations is needed to evaluate
the capability of PMW sensors in capturing the hydrologic response to the flood event. By
looking at the measured water level data at the Mohadebpur station, we evaluated the
sensitivity of the M/C ratio to the flood event evolution. For this purpose, we considered
the period September–October 2005, temporally embracing the flood event that occurred at
the beginning of October. In Figure 7a, we show the water level measured for the period
January 2004–February 2007. The gray shaded area indicates our period of interest. From
the station time series, we see that the flood event we selected for this study shows the
highest water level over the three-year period, overcoming the danger level (i.e., the water
level at which the government expect damages in the nearby area) for seven consecutive
days after 4 October 2005. In Figure 7b, we present the scatter plot obtained by comparing
the measured water level at Mohadebpur station and the M/C ratio obtained from the
enhanced resolution pixel reported in Figure 6, for the September–October period. Linear
and quadratic regressions show, as expected, the decreasing relationship between the two
considered variables. These results, similarly to what has been found in [5,7], point to
the capability of the PMW signal to follow the hydrologic evolution of the flood event,
capturing both low and high flow phases, with the quadratic model better fitting the data
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points (R2 = 0.51) than the linear model (R2 = 0.43). A similar relationship has been found
in [10], where the fractional flooded area has been linked with the M/C signal.
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Figure 7. (a) Time series of water level (black dots) measured at the SW145 station, together with the
danger level for that specific location (solid red line). The shaded gray area highlights September
and October 2005 (i.e., the months before and after the flood event). (b) Scatter plot of water level
measured in September–October 2005 and M/C ratio evaluated for the same time period. Linear
(red, R2 = 0.43) and quadratic (blue, R2 = 0.51) fitting models are also reported, together with the
respective equations.

3.3. Commission, Omission, and Matching Analysis

We compute the matching, omission, and commission errors between the results
obtained with the PMW and MODIS over the Intensive Study Area as follows. Matching is
calculated as the percentage of pixels that were correctly classified as flooded by the PMW
product with respect to those obtained from MODIS; omission is defined as the percentage
of the number of pixels that are classified as flooded from MODIS but not by the PMW
product (complementary to matching); and lastly, commission error is estimated as the
percentage of the pixels classified as flooded by the microwave product but not by the
reference dataset. The results of these errors integrated over the Intensive Study Area are
reported in Figure 8 as a function of the water fraction, computed as the fraction of the
area within each PMW pixel (e.g., 3.125 km or 25 km) covered by water according to the
MODIS analysis and fixed as the threshold for the analysis. In other words, the matching,
commission, and omission errors are computed over the area presenting a flooded fractional
area larger than the threshold value reported on the x-axis in Figure 8. In the table, we
show the results for both enhanced and coarse resolution products when comparing data
from the same day when flooding is detected and when flooding occurs for 3 days in a
row for all sensors. We performed this analysis to study the sensitivity of the results of the
PMW-based approach to the persistency of the flood.

The results in Figure 8 indicate that, overall, the commission error is not as sensitive as
the matching to the water fraction, suggesting that the commission error might be related to
intrinsic limitations of the PMW algorithm. This is likely because the PMW algorithm was
not developed to directly map flood extent but rather to estimate the probability of a pixel
to be flooded. Moreover, differently from the NDWI, PMW data can be sensitive to soil
moisture and heavy precipitation, suggesting the presence of flooded regions where it might
not actually be occurring and leading to over prediction. Lastly, the relatively larger pixel
size (of either the gridded product and the original instantaneous field of view of the sensor)
might be integrating information content from the regions surrounding the area where the
comparison between the optical and PMW data is performed, hence introducing potential
biases and differences. In this regard, the relatively high values of matching between the
reference dataset and the results obtained with the spatially enhanced dataset results are
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encouraging, as they highlight the potential of the enhanced product for detecting floods
with improved accuracy compared to previous microwave products. These results point
out the limitations of using PMW data as a standalone product. A possible way to control
the problems of overestimation/underestimation linked to the sensitivity to surrounding
areas is to adopt a data fusion methodology, possibly using high-resolution data (e.g.,
optical and/or radar) together with topographical and hydrographical information (e.g.,
digital elevation model and river network).
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Figure 8. Matching (blue), omission (red), and commission (black) errors between the flood extent
obtained from the NDWI MODIS analysis and the enhanced (solid line) and coarse (dotted line)
PMW estimates using the approach by De Groeve [5]. Results are reported (a) when considering
same-day overlap (i.e., comparing data from the same day when flooding is detected) and (b) when
flooding occurs for 3 days in a row for all sensors.

The matching (M) systematically increases in all cases as the water fraction increases.
This is not unexpected, as the larger the area covered by the flood, the stronger is the
integrated effect on the brightness temperatures. Maximum values for the matching are
reached in the case of the enhanced product for the flooded fraction area ranging between
0.9 and 1, showing best performances in areas strongly inundated or of permanent surface
water. The commission error (C) in the case of the enhanced product is the lowest, ranging
from 17.3% in the case of the 0–0.1 flood fraction to 9.8% in the case of the 0.9–1 flooded
fraction area range. The enhanced product outperforms (both in terms of matching and
commission error) the coarser product, with the matching in the case of the coarse product
being lower than in the case of the enhanced product by 20–40% (e.g., relative change
in the case of the coarse product with respect to the results obtained in the case of the
enhanced product). The commission error also reaches relatively high values in the case of
the coarse product, peaking to 32.2% and averaging 23.8% (1 day) and 24.7% (3 days) versus
average values in the case of the enhanced product of 14.7% (1 day) and 15.1% (3 days).
The commission error does not show sensitivity to the flooded fractional area, suggesting a
possible intrinsic bias of the PMW data, in agreement with the results found in [5]. Another
issue might be related to soil moisture, slightly affecting the 37 GHz, as described in [13]. A
hydrological soil model including evapotranspiration in combination with a soil emission
model could better quantify this issue. The scores computed in the case of 0 flood fraction
confirm the limitations in using the PMW product over the whole study area, suggesting
the possibility to limit the application in the nearest area to the surface water bodies.

The results of the comparison between PMW and optical data are also impacted by
the different spatial scales at which the different sensors “see” the scene under observation.
In order to partially investigate this aspect, we degraded the original MODIS data from
the spatial resolution of 500 m to the 3.125 km and 25 km spatial resolution and computed
the flooded area using the spatially degraded products. Our results are summarized in
Figure 9, showing two examples of NDWI maps for 10 October (a,c,e) and 24 October (b,d,f)
obtained from MODIS data at the original 500 m spatial resolution (a,b), at 3.125 km (c,d)
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and 25 km (e,f). The results obtained for the two dates are consistent and indicate that the
flooded area estimated through the NDWI decreases by ~20% (with respect to the original
500 m MODIS resolution) when degrading the resolution from 500 m to 3.125 km and by
a further ~10% when degrading it to 25 km. The results shown in Figure 9 suggest that
a systematic bias of ~20% in the case of the enhanced product and ~30% in the case of
the coarse product might need to be considered because of the differences in the spatial
resolution of the original datasets.
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Figure 9. Examples of maps of NDWI for 10 October (a,c,e) and 24 October (b,d,f) obtained from
MODIS data at the original 500 m spatial resolution (a,b), at 3.125 km (c,d) and 25 km (e,f). Note
that the MODIS data were first degraded to the coarser spatial resolution and then the NDWI value
was computed. The surface area covered by water, obtained from the criterion that water bodies are
present when NDWI > 0, is reported in the white insets.

3.4. Spatial Autocorrelation Analysis

To investigate the information content of the enhanced product, we performed a
spatial autocorrelation analysis following the approach proposed in [17], where a similar
analysis is also performed on the enhanced PMW product. Examples of semi-variograms
computed for the NDWI and the signal S in the case of the enhanced and coarse PMW
data for 10 October 2005 over the Intensive Study Area are reported in Figure 10. The
semi-variogram in the case of the NDWI dataset (Figure 10a) indicates that NDWI data
have a range of ~37 km (meaning that the NDWI values within that distance are spatially
autocorrelated and suggesting that, similarly, the processes driving the variability for
NDWI are occurring below that spatial scale). On the other hand, the range computed
in the case of the enhanced product is ~71 km (Figure 10b), against a value of 232 km
(Figure 10c) in the case of the coarse product. The value of the spatial autocorrelation
length in the case of the enhanced product indicates that it is more sensitive to the processes
driving the spatial variability of the flood than the coarser product, highlighting the benefits
associated with the enhanced product.
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Figure 10. Experimental semi-variograms (dots) and fitted spherical functions (blue line) computed
for the (a) NDWI and the signal S in the case of (b) the enhanced and (c) coarse PMW data for
10 October 2005 over the Intensive Study Area. Vertical lines indicate the computed value for the
range.

3.5. Water Fraction Estimation

Lastly, we performed the estimate of water fraction (w) according to Equation (5),
obtaining the estimates of permittivity values for land (εw) and water (εd) from the AMSR-E
surface permittivity dataset, in the case of both the enhanced and coarse products. We
evaluate such an estimate by comparing the spatial distribution of the fractional flooded
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area within each pixel with that obtained from the 500 m MODIS binary when resampling
it to the 3.125 and 25 km spatial resolutions. In the case of the MODIS degraded products,
each pixel contains the percentage of pixels classified as flooded with respect to the total
number of the 500 m pixels falling within the 3.125 km (or 25 km) pixel. The maps of the
differences between the fraction of flooded area estimated from the two PMW products
and from the optical data are reported in Figure 11b (enhanced) and 11d (coarse). In
general, both products tend to overestimate the fraction of flooded area estimated through
MODIS. However, the enhanced product is capable of providing more details of the spatial
distribution of the flood, with a mean error of −0.04 and a standard deviation of 0.28 (vs.
a mean of −0.12 and a standard deviation of 0.38 of the coarse product). The enhanced
product underestimates flood extent, for example, along major rivers. This might be due
to the “spilling” effect of the pixels surrounding those containing the river which, in turn,
occupies only a relatively small fraction of the 3.125 km (or 25 km) pixel. On the other
hand, the overestimation of the fraction of flooded area by the PMW as one moves away
from the river might be due to the sensitivity of the PMW to soil moisture that is, however,
not detectable by optical data. A comparison with water level measurements and modeled
inundation maps might shed light on this in future research, together with extending this
analysis to other dates.
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Figure 11. Scatter plot and linear regression model for MODIS-retrieved water fraction and PMW-
retrieved water fraction from (a) the enhanced and (c) coarse resolution datasets. Maps represent the
difference between the PMW-retrieved water fraction and the MODIS-retrieved water fraction in case
of enhanced (b) and coarse (d) PMW data.

We also investigated the relationship between the fraction of flooded area derived
from MODIS and from the PMW products through a linear regression analysis. To reduce
the noise of the datasets, we grouped the values of the mapped fraction of flooded area
into 10 bins ranging between 0 and 1 (step 0.1) in which the value of the fraction was
obtained from the average within that range of the mapped values. Figure 11a,c show the
fraction of flooded area estimated from the enhanced (Figure 10a) and coarse (Figure 11c)
products as a function of the one estimated from MODIS. As noticed, the PMW products
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tend to overestimate the values obtained with MODIS (as discussed above concerning soil
moisture), but there is a promising relationship between the two datasets that suggests
the possibility of using the microwave products after refinements (e.g., improvements
in terms of data aggregation from different sensors or signal smoothing). To investigate
the sensitivity of the PMW retrieval to the choice of the permittivity values, we also
computed the values of fractional area using two sets of values for the water and land
permittivity of (0.95, 0.5) and (0.9, 0.6). The estimated values are the lines bonding the
gray area in Figure 11a,c. This analysis confirms the strong information content of the
PMW data to the percentage of the sensed area covered by water, similarly to the results
obtained in [10], where a quadratic relationship between M/C ratio and surface water
fraction was found. Certainly, such a simple evaluation of the fractional flooded area
cannot be used as an indicator for operational applications or directly applied for flood
index insurance. This method has been designed and previously applied to the 25 km
resolution PMW dataset to monitor large-scale flood events [5] where a minimum flood
extent of 1000 km2 was detected. In [10], a quadratic relationship between fractional flood
extent and M/C signal was found, with minimum water fraction captured by the M/C
signal of about 0.1%, suggesting a decreasing sensitivity for decreasing water fraction. This
aspect is also suggested by the intercept of the linear regression curve obtained, with a
PMW-derived water fraction showing an overestimation for small MODIS-derived water
fraction values. The commission, omission, and matching analyses confirm this issue.
However, the sensitivity to the presence of water of the PMW sensors in general and the
improved spatial representation introduced by the enhanced resolution dataset open the
door to the development of downscaling algorithms.

4. Conclusions

We investigated the application of spatially enhanced spaceborne PMW brightness
temperatures to map a flood over an area in Bangladesh that occurred in October 2005. We
compared maps of flooded areas obtained with the enhanced product with those obtained
from the coarse (i.e., 25 km) PMW product and from optical data collected by the MODIS
sensor at a spatial resolution of 500 m. As one of the major advantages of using PMW data
is the high temporal frequency and spatial coverage, and given the novel nature of the
enhanced product used here, we first estimated the percentage of our study area that was
covered by the enhanced PMW data on a daily basis. We found that, when considering all
sensors and orbits (e.g., ascending and descending), the coverage of the area interest exceeds
99% on a daily basis. This aspect is important as it offers the possibility of using such a
dataset for operational purposes (e.g., near-real-time monitoring, insurance applications,
etc.). The comparison between the extent of the flood obtained with the enhanced and the
coarse products indicates that the noise introduced by the spatial enhancement (e.g., [16])
does not appear to be a limit for the application of the product to flood mapping with
respect to the coarser product.

Overall, we found that flood mapping derived from the enhanced resolution PMW bet-
ter agrees with the one obtained from MODIS than the one obtained with coarse resolution
data. One aspect that we investigated is the sensitivity of the results to the spatial resolution.
We found that the enhanced product appears to be more sensitive to the presence of a flood
than the coarse one and we suggest this is due to the improved spatial resolution which
allows better separation of dry from wet regions. Overall, the best results were obtained
when the relative fraction of flooded area within each PMW pixel was high (e.g., >0.9), with
the matching between the optical and PMW data degrading as the fraction of flooded area
decreases. This is not unexpected, given the nature of the PMW data which “integrates”
the effects of the features within each pixel and, therefore, becomes less and less sensitive
to floods as the fraction of flooded area decreases. However, high commission errors for
low values of water fraction were found, indicating over prediction in some areas where
the soil might be just a little moist.
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On spatial resolution and information content, we also investigated the spatial auto-
correlation of the three datasets (two PMW and one optical) through a semi-variogram
analysis. We found that, also in this case, the spatially enhanced product outperforms the
coarse product, as the scale breaks in the case of the enhanced product are much closer
to those obtained with MODIS. This complements the results obtained in terms of match-
ing, discussed above, and indicates that the enhanced product is more coherent with the
higher-resolution MODIS dataset in capturing flooding than the coarser product.

Lastly, our estimate of water fraction obtained using PMW data and AMSR-E permit-
tivity to solve Equation (5) confirms the strong information content of PMW data, opening
the possibility for future developments and operational applications. In conclusion, our
analysis shows the capability of the enhanced resolution dataset to detect large-scale flood
events. The error analysis confirms that the improvements in terms of spatial resolution
of the historical dataset led to improvements in terms of flood detection sensitivity. More-
over, the variogram analysis confirmed the better representation of the spatial scale by the
enhanced product with respect to the coarse one.

Given the capability of the PMW sensors to collect data in all weather conditions
and, consequently, the availability of a long time series of daily maps, the PMW dataset
can be considered a potential input to a machine learning algorithm. A combination of
PMW imagery, higher resolution remote sensing data (e.g., MODIS and/or Sentinel), and
topographic and hydrographic information (such as distance from rivers, distance from
the coast, slope, etc.) can be used as an ensemble of features for training and testing a
supervised algorithm using, for example, the high-resolution flood dataset published by
Bonfilia et al. (2020) [26]. Considering the possibility of having a daily and continuous
acquisition of the PMW data, there is potential for developing a high-resolution, near-real-
time flood mapping system to be provided to decision makers or insurance companies,
as proposed in [5], improving the current PMW tools [27] in terms of spatial resolution.
Moreover, considering the long-term coverage of the PMW dataset (since 1979), it would be
possible to create a historical flood map dataset, opening the possibility to build a stronger
knowledge of the flood event return period, not only in terms of precipitation or stage level
but also in terms of actual inundated areas.
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