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Abstract: Monitoring deformation of architectural heritage sites is important for the quantitative
evaluation of their stability. However, deformation monitoring of sites in mountainous areas remains
challenging whether utilizing global navigation satellite system (GNSS) or interferometric synthetic
aperture radar (InSAR) techniques. In this study, we improved the small baseline subset (SBAS)
approach by introducing the pseudo-baseline combination strategy to avoid the errors caused by
inaccurate external DEM, resulting in robust deformation estimations in mountainous areas where
the architectural heritage site of the Great Wall is located. First, a simulated dataset and a real dataset
were used to verify the reliability and effectiveness of the algorithm, respectively. Subsequently, the
algorithm was applied in the landscape deformation monitoring of the Shanhaiguan section of the
Great Wall using 51 Sentinel-1 scenes acquired from 2016 to 2018. A thematic stability map of the
Shanhaiguan Great Wall corridor was generated, revealing that the landscape was generally stable
save for local instabilities due to to unstable rocks and wall monuments. This study demonstrated
the capabilities of adaptive multitemporal InSAR (MTInSAR) approaches in the preventive landscape
deformation monitoring of large-scale architectural heritage sites in complex terrain.

Keywords: InSAR; architectural heritage; pseudo-combination; residual topography

1. Introduction

Using satellites as platforms, spaceborne remote sensing technologies can gather large-
scale ground information without contacting the targets, which is both cost-effective and
labor-saving [1,2]. As one branch of active spaceborne remote sensing, spaceborne synthetic
aperture radar (SAR) uses microwaves to acquire ground surface information and can work
night and day and in all weather conditions [3,4]. Based on the phase information of SAR
signals, interferometry synthetic aperture radar (InSAR) has the ability to monitor ground
deformation with millimeter accuracy [5]. To date, InSAR has been widely used in land
surface deformation monitoring, including landslide monitoring, urban surface settlement
monitoring, and infrastructure (e.g., railways and bridges) deformation monitoring [6–10].

Our architectural heritage is an important cultural and spiritual symbol of our an-
cestors and has immeasurable value. However, due to the combined impacts of natural
erosion and anthropogenic activities, a substantial number of cultural heritage structures
exhibit health problems [11–14]. Therefore, reliable deformation monitoring of heritage
structures and their surroundings is important for health assessments and stability mon-
itoring of these historical properties [15–18]. Traditional geodetic measurements such
as those from global navigation satellite systems (GNSS) and leveling, and other on-site
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observations [19,20] can detect subtle changes in position, but they have certain limitations
(i.e., sparse measurements in space and time- and labor-intensive) and are mainly used for
deformation detection at a single-monument scale. Thus, a geodetic technology capable of
monitoring deformation of an extended area while providing density measurements can
be a powerful tool for the conservation of heritage sites over larger areas [21].

In the past decade, studies have demonstrated the power of InSAR as a tool for the
deformation monitoring of cultural heritage structures, which can complement traditional
geodetic measurements [21–25]. Since the topography phase and deformation phase are
mixed in the InSAR signal [26], it is necessary to introduce external digital elevation models
(DEM) in the differential operation of InSAR to mitigate the topography-related phase [27].
However, the error of external DEM can introduce the residual topographic phase in the
differential interferograms, especially in mountainous areas [28–30]. This interferes with the
acquisition of fine-scale deformation measurements of large-scale heritage sites, especially
in mountainous areas (e.g., the Great Wall).

To solve the aforementioned problem, the residual topography phase is normally
modeled as a parameter and estimated simultaneously alongside the deformation phase in
MTInSAR [31,32]. However, this approach relies on there being a suitable distribution of
baselines, and its performance is limited [28]. Samsonov provided two different methods
for the estimation of the InSAR DEM error [33], which is useful when the perpendicular
baselines of SAR data are large and variable (e.g., L-band ALOS PALSAR data); Fattahi and
Amelung [34] estimated the residual topography in the InSAR time domain, but this method
relies on an empirical temporal deformation. Furthermore, in some InSAR applications
in smaller areas, high-precision DEM had to be generated in advance to mitigate the
topography effect caused by inaccurate external DEM [26], but generating high-resolution
DEM data is costly and increases the complexity of data processing. Recently, Zhang
et al. proposed the pseudo-baseline combination algorithm, wherein interferograms were
combined twice based on the perpendicular baseline before being used for deformation
estimation with the temporarily coherent points (TCP) technology [35]. This approach
effectively mitigated the unexpected heights phase caused by skyscrapers in urban areas,
but the density of candidate points is limited in applications in mountainous areas.

In this study, we proposed an improved small baseline subset (SBAS) algorithm based
on a pseudo-baseline combination strategy to reduce the residual topography effect in
mountainous areas caused by inaccurate external DEM. Separate tests using simulated
and measured datasets were used to verify the reliability and effectiveness of the ap-
proach. After verification, this approach was applied to the Shanhaiguan Great Wall and
its surroundings in China, producing a robust landscape deformation estimation in a
mountainous region.

2. Methods

The workflow of the pseudo-combination SBAS method is illustrated in Figure 1. First,
pairs of input SAR images with small spatio-temporal baseline thresholds were selected
to ensure the coherence of the interferograms. Then, the SAR pairs were preprocessed,
including coregistration, interferometry, multilooking, and filtering. Subsequently, the
unwrapped interferograms were combined twice based on their perpendicular baselines
to generate pseudo-baseline interferograms with vertical baselines close to 0; thus, the
residual topography phase was suppressed. Finally, the deformations in time series were
solved based on the pseudo-baseline interferograms. Note that the interferograms were
unwrapped before the pseudo-baseline combination; thus, the pseudo-combination SBAS
method does not introduce extra error in unwrapping step. The details of this method are
introduced in the following sections.
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Assuming N + 1 SAR images covering the same area are obtained, their spatio-
temporal baselines are estimated, and the images are coregistered before the SAR pairs
can be selected according to the spatio-temporal baseline thresholds. The number of
interferograms (M) can be expressed by the following inequality [32]:

N + 1
2
≤ M ≤ N

(
N + 1

2

)
(1)

After the generation of differential interferograms, multilooking [36] and filtering are
applied to the interferograms to reduce noise and improve image coherence. Subsequently,
the interferograms are unwrapped to retrieve the relative phase of adjacent points from the
wrapped phase. The relationship between the theoretical deformation phase (φ) and the
differential interference phase of SAR images (δφ) can be established as follows:

Aφ = δφ

A =


1 0 0 −1 · · ·
0 1 −1 0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

 (2)

where A is an M × N coefficient matrix that shows the combined integers of the original
SAR data.

Normally, the deformation field could then be estimated either by the least squares
method or singular-value decomposition method [32]. However, due to the limitations
of DEM accuracy and coregistration accuracy, residual topography error may exist in the
differential phase of interferograms when implementing two-pass differential interferome-
try [37]. Taking the widely used SRTM data as an example, the elevation error at 90% of the
sampling points was within 7.4 m, and this error will increase in mountainous areas [38],
which can introduce a residual topographic phase into the interferograms.

The relationship between residual topography (ε) and its phase in interferograms
(φtopo_err) can be expressed as follows:

φtopo_err = −
4π

λ

B⊥ε

ρ sin θ
(3)

where B⊥ denotes the perpendicular baseline; ρ denotes the slant range between satellite
and ground objects; and θ is the incidence angle of the SAR signal. According to the
formula, residual topography phase is mainly determined by the perpendicular baseline
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and DEM error. Since the DEM error is certain, decreases in the perpendicular baseline can
lead to decreases in the residual topography phase.

By combining the differential interferograms twice, the pseudo-baseline combination
technology generates pseudo-baseline interferograms with vertical baselines close to 0;
thus, the residual topography phase can be ignored during the following InSAR process.
This strategy effectively mitigates the topography-related noise in the InSAR deformation
field [35].

φpseudo = a · φn + b · φm (4)

where φpseudo is the phase of the pseudo-combined interferograms; φn and φm are the
differential phases of the two input interferograms; and a and b are the corresponding
integer combination coefficients. With the combined interferograms, the residual topog-
raphy can be safely ignored in the following process. Unlike the approach proposed by
Zhang et al. [35], the coefficients (i.e., a and b) are not limited to integers in our pseudo-
combination SBAS method, and the perpendicular baseline of the pseudo-combined inter-
ferograms can approach 0 through the noninteger combination of interferograms. This is
because phase unwrapping is completed before the interferograms are combined. How-
ever, in this study, the combination coefficients are still limited to integers to simplify
the calculation.

The relationship between InSAR phase and deformation can be expressed using
Equation (5) [35]:

φpseudo = −
4π

λ

a
IPm

∑
m=ISm

tmvm +
IPp

∑
p=ISp

tpvp

 (5)

where tm and tp are the time intervals of the two respective input interferograms; vm and
vp are the corresponding surface deformation rates to be solved; IPm and ISm are the
indexes of primary and secondary SAR images in mth interferogram, respectively; and
IPp and ISp are the indexes of primary and secondary SAR images in pth interferogram,
respectively. Assuming the number of input SAR images covering the same area is N + 1,
the deformation velocity vector (V) can be expressed as follows:

V = [v1, . . . vN ] (6)

Thus, the relationship between the pseudo-combined phase vector φpseudo and the
deformation velocity vector V can be expressed as a linear equation:

φpseudo = BV (7)

where B is the coefficient matrix. For specific pseudo-baseline combination thresholds and
sensor parameters, matrix B is fixed. Thus, the unknown matrix A can be solved directly
using the least squares method. Considering the potential ill-conditioned problem of the
function [35], ridge estimation was introduced in this study to ensure the robustness of the
deformation estimations.

3. Performance Verification

In this section, deformations were estimated using simulated data and real data
from Sentinel-1 covering Beijing to assess the performance of the pseudo-combination
SBAS algorithm.

3.1. Performance Verification Using Simulated Data

Since the phase components in the interferometric phase are complex, the residual
topography phase may be mixed with the atmosphere phase and thermal noise phase,
which increases the complexity of the performance verification of the pseudo-combination
SBAS algorithm. Data simulations can control each phase component in the interferograms,
which makes them effective for testing the algorithm. In this subsection, a set of simulation
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interferograms were constructed based on the simulated deformation and DEM residuals.
Note that, other noise such as atmospheric noise and thermal noise was not included in the
simulated data in order verify the performance of the algorithm in separating deformation
phase and terrain error phase.

The simulated deformation data were constructed using Kriging interpolation in
ArcGIS, and a deformation field with a maximum settlement of 10 mm/year was generated
(Figure 2a). In terms of DEM residual simulation, since the calculation of each pixel in
the pseudo-combination SBAS algorithm is independent, the distribution of residual DEM
does not affect the estimation accuracy [28]. To make the simulated data more realistic, the
SRTM [39] and ASTER GDEM [40] DEM data covering the same area were acquired and
the differences between the two DEM datasets were calculated (Figure 2b). The height of
the simulated DEM residual map ranged from −94 m to 107 m.
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Figure 2. Simulated data. (a) Simulated deformation data and (b) simulated DEM residual error data.

Additional satellite sensor parameters (e.g., incident angle and baseline) were required
to construct the simulated differential interferograms. In this study, parameters from
a Sentinel-1 dataset covering Beijing, China, were introduced. This Sentinel-1 dataset
contained 28 scenes spanning from May 2017 to May 2018. With a 50-day temporal baseline
threshold and a 150 m spatial baseline threshold, 92 differential interferograms were
constructed. The spatial-temporal baselines of the interferograms are illustrated in Figure 3,
where the maximum perpendicular baseline is 146 m.
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Based on the 92 simulated interferograms, 90 pseudo-baseline combinations were
generated using a 2 m pseudo-baseline threshold. Subsequently, the combined interfer-
ograms were processed by the pseudo-combination SBAS algorithm, and the estimated
deformation field (Figure 4e) was obtained. The results show that the artifact related
to residual DEM was effectively mitigated by this approach. The maximum difference
between the simulated deformation field (Figure 4a) and the calculated deformation field
(Figure 4e) was approximately 0.3 mm/year, and the standard deviation of the difference
was approximately 0.02 mm/year.
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To further verify the performance of the pseudo-combination SBAS algorithm, a classic
SBAS algorithm [32] was used to process the simulated data for comparison. The SBAS algo-
rithm was executed twice in this study: in the first implementation the residual topography
was ignored, while in the second implementation it was modeled as a parameter of SBAS.
The results of the two deformation solutions are shown in Figure 5a,b. The deformation
time series of a typical point (point of interest, POI), marked by a red circle, is shown in
Figure 5d, which was known to be stable with a deformation equal to 0 during the study
period. The linear deformation result of the first implementation shows an obvious terrain-
related artifact, and the deformation time series of the POI showed an oscillatory error,
which was caused by the residual topography error and could lead to a maximum error of
−5.2 mm/year. Furthermore, the second implementation showed little improvement over
the first in this study; the estimated deformation rate at the POI was only 0.3 mm/year
lower than that without a DEM estimation, which may be attributed to the short perpendic-
ular baselines of Sentinel-1 data. In contrast, the residual DEM-related error was effectively
mitigated in the deformation field estimated by the pseudo-combination SBAS algorithm.
The deformation time series calculated by the proposed pseudo-combination method was
close to zero during the whole period, and the estimated linear deformation at the POI was
about −0.18 mm/year, which is close to the input deformation value (0 mm/year).
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deformation time series calculated by different algorithms.

The deformation fields time series derived from the SBAS (with DEM estimation)
and pseudo-combination SBAS algorithms are shown in Figures 6 and 7, respectively. In
the deformation results from the SBAS algorithm, the deformation fields over different
time intervals were disturbed by DEM residual signals to varying degrees. The maximum
deformation error generated by the terrain noise reached 29.9 mm, which would interfere
with the interpretation of deformation results. In contrast, the deformation fields derived
from the pseudo-combination SBAS algorithm were free of terrain-related artifacts in all
time intervals, and the maximum deformation error caused by DEM residuals was 0.5 mm.
It is worth noting that although the simulation tests were carried out using data from
Sentinel-1, the proposed pseudo-combination SBAS algorithm was also effective for other
SAR data such as TerraSAR-X.



Remote Sens. 2022, 14, 1178 8 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

Sentinel-1, the proposed pseudo-combination SBAS algorithm was also effective for other 
SAR data such as TerraSAR-X. 

 
Figure 6. Time series deformation fields calculated by the SBAS algorithm. 

 
Figure 7. Time series deformation fields calculated by the pseudo-combination SBAS algorithm. 

Figure 6. Time series deformation fields calculated by the SBAS algorithm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

Sentinel-1, the proposed pseudo-combination SBAS algorithm was also effective for other 
SAR data such as TerraSAR-X. 

 
Figure 6. Time series deformation fields calculated by the SBAS algorithm. 

 
Figure 7. Time series deformation fields calculated by the pseudo-combination SBAS algorithm. Figure 7. Time series deformation fields calculated by the pseudo-combination SBAS algorithm.



Remote Sens. 2022, 14, 1178 9 of 21

3.2. Performance Verification on Real Data

Compared with the simulated data, the phase composition in the real interferogram
was more complex and included incoherent noise, atmospheric phase, unwrapping error,
etc. This makes it especially necessary to further verify the performance of the pseudo-
combination SBAS algorithm using real data. The land subsidence in Beijing is typical and
has been studied for years [41–43]. Thus, Beijing was selected as a test area, and the SBAS
algorithm and the pseudo-combination SBAS algorithm were both implemented based on
a set of Sentinel-1 images covering Beijing.

The Sentinel-1 dataset consisted of 28 scenes acquired from May 2017 to May 2018.
After image coregistration and the other preprocessing steps, 92 interferograms were
generated using a 150 m spatial baseline threshold and a 50-day temporal baseline threshold.
The spatio-temporal baseline distribution of the interferograms is illustrated in Figure 3.
Subsequently, SRTM data were introduced to differentiate the topography phase, and a
multilook factor of 10 (in range):2 (in azimuth) was applied for smoothing the differential
interferograms. In addition, the reference phase area was Tiananmen Square, for which the
SAR images were properly cropped (11,000 columns in range and 5000 rows in the azimuth
direction) in advance to improve the efficiency of data processing.

The SBAS and pseudo-combination SBAS algorithms were both applied to the Sentinel-
1 data covering Beijing, and the corresponding deformation results are shown in Figure 8a,b,
respectively. It was obvious that the deformation fields detected by the two algorithms were
highly consistent and that the settlement patten was consistent with the settlement results
obtained by Zhou et al. [44], which were derived using the Tomo-PSInSAR algorithm.
The above qualitative analysis provided a preliminary verification of the consistency of
the SBAS pseudo-baseline combination algorithm and the SBAS algorithm in detecting
settlement in a plain area.
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To quantitatively analyze the deformation results derived from the two different
algorithms, the deformation fields of a subregion (rectangles in Figure 8) was clipped from
Figure 8, and the deformation rates of the two algorithms were compared (Figure 9). The
deformation rates ranged from −10 to 120 mm/year during the SAR observation period,
and the correlation coefficient between the two measurements was 0.994. In addition, the
deformation information time series of three typical points (P1, P2, and P3 in Figure 9a)
are illustrated in Figure 9d, wherein the deformation time series of the two algorithms
can also be seen to be in agreement. The precise position of the settlement funnel and
the high consistency between the two calculations demonstrated the reliability of the
pseudo-combination SBAS algorithm in a plain area.
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4. Application to Mountain Area
4.1. Study Site

The Great Wall was designated a world cultural heritage site in 1987 due to its ir-
replaceable cultural and historical value [45]. However, long-term natural erosion and
anthropogenic activities have imposed challenges to the maintenance and sustainable de-
velopment of the Great Wall [46–48], and the condition of the Great Wall shows high spatial
heterogeneity due to the differences in construction materials and driving forces along the
long span of its heritage [25]. In this study, a representative section of the Great Wall located
in Shanhaiguan City and its surroundings were investigated with the InSAR technique to
locate any deformation anomalies in the landscape surrounding this heritage site.

The 27 km-long Shanhaiguan section of the Great Wall is the start of the Ming Great
Wall and is located to the northeast of Qinghuangdao City, Hebei Province [11]. This section
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of the Great Wall can be taken as representative of the Ming Great Wall and can be divided
into mountain, plain, and coastal sections according to the terrain features. However,
the Shanhaiguan section of the Great Wall is seriously damaged, and its foundation is
sinking, causing cracking in the wall [49], and some parts of the wall have even collapsed
(Figure 10).
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Figure 10. On-site photos of the Shanhaiguan section of the Great Wall.

4.2. Data

A descending C-band Sentinel-1 dataset (51 scenes) in Terrain Observation with
Progressive Scan (TOPS) mode was collected from October 2016 to August 2018 and
applied to measure deformation in the research area. The central incidence angle of the
SAR imaging was 39.3◦, and the range and azimuth pixel spacing of the SAR dataset were
approximately 2.33 m and 13.95 m, respectively. The coverage of the SAR data is shown
in Figure 11a by the yellow rectangle, and the study area clipped from the SAR images
is highlighted by the red rectangle. The spatio-temporal baseline of the data is shown in
Figure 12.
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4.3. Data Processing

Before the deformation inversion of InSAR, the SAR images needed to be prepro-
cessed via image coregistration, cropping, small baseline subset selection, and differential
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interferogram generation. In this study, the SAR images were coregistered using the am-
plitude correlation method [50], which achieves an accuracy better than 1/10 of a pixel
and avoids any decorrelation caused by coregistration errors. Subsequently, the SAR im-
ages were cropped to improve processing efficiency and a subgraph covering the research
area (3500 rows in azimuth and 9500 columns in range) was generated (red rectangle in
Figure 11a). Then, a 120 m spatial baseline threshold and a 50-day temporal baseline
threshold were applied to select the interferograms with small baselines. Finally, 165 inter-
ferograms that met the restriction of coherence threshold were generated (Figure 12). Next,
the multilooking, filtering, and unwrapping processes were implemented on the generated
interferograms. It is worth noting that terrain-related atmospheric noise in large-scale
mountainous areas cannot be ignored. Thus, an atmospheric correction technology was
applied to the unwrapped interferograms [51].

Based on the unwrapped interferograms, the SBAS and pseudo-combination SBAS
algorithms were applied to characterize the deformation field of the research area. For SBAS
processing, an average coherence coefficient threshold of 0.2 was used as the threshold
to mask uncoherent points, and a coherence point located in the southern part of the
research area was selected as the reference point (pink pentagram mark in Figure 13a).
Based on the parameters of the SBAS algorithm, a 3 m vertical baseline combination
threshold was used for the pseudo-combination SBAS processing, and 283 pseudo-baseline
combined interferograms were obtained. The deformation fields obtained by SBAS and
pseudo-combination SBAS algorithms are shown in Figure 13a,b.
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Figure 13. The deformation fields of Shanhaiguan calculated by different algorithms. (a) Deformation
field calculated by the SBAS algorithm; (b) deformation field calculated by the pseudo-combination
SBAS algorithm; and (c,d) scatter plots for the slopes and standard deviation of the respective algorithms.
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4.4. Deformation Interpretation

In this study, due to the lack of high-precision elevation data for the Shanhaiguan
area, the error of the external DEM (SRTM) could not be determined, so the performance
of the pseudo-combination SBAS algorithm could not be directly verified. Nevertheless,
the errors in the SRTM data were correlated with the surface slopes [38,52], with higher
surface slopes resulting in higher absolute values of SRTM error, resulting in a slope-related
error in the deformation time series of the InSAR results. Thus, the performance of the
pseudo-combination SBAS algorithm in the Shanhaiguan research area was evaluated
based on the correlation between the surface slope and the standard deviation of the InSAR
time series results.

Specifically, the surface slope and standard deviation of the deformation were com-
pared at each coherence point within the yellow rectangle (mountainous area) in Figure 13a,
and two scatter plots were generated (Figure 13c,d). Because the standard deviations and
surface slopes were inconsistent, their values were normalized in advance. According
to the scatter plot of the SBAS algorithm (Figure 13c), there was an obvious correlation
between the slope and the standard deviation values. With increasing slope, the standard
deviation of the deformation time series tended to increase gradually, and the correla-
tion coefficient (r) was 0.16. However, the correlation coefficient in the scatter plot of
the pseudo-combination SBAS algorithm was only 0.07 (Figure 13d). Furthermore, the
mean value of the standard deviation decreased from 3.69 mm in SBAS to 2.36 mm in the
pseudo-combination SBAS algorithm. The decrease in the correlation coefficient and the
mean value of the standard deviation verified the effectiveness of the pseudo-combination
SBAS algorithm in the removal of elevation residuals in mountainous areas.

Since the motion velocity distribution of the pseudo-combination SBAS could be
considered normal distribution at all points (Figure 14), the “Standard Deviation Clas-
sification method” was used to classify the points as stable and unstable. This clas-
sification method finds the mean value of the observations, then classify the data by
the defined standard deviation, which is a commonly used tool in ArcGIS software
(https://www.esri.com/en-us/arcgis/about-arcgis/ (accessed on 10 October 2021)). Specif-
ically, the points with motion velocity greater than 1 standard deviation (8.3 mm/year)
were considered as unstable points, while the other points were considered as stable, since
their deformation was too small to be detected by our InSAR method. Next, a 500 m
buffer along the Great Wall was generated to evaluate the stability of the Shanhaiguan
Great Wall corridor, and a thematic stability map of Shanhaiguan Great Wall corridor was
obtained (Figure 15). The plain section of the Great Wall corridor in the southeast of the
study area maintained high stability during the InSAR monitoring period. In contrast,
local deformation anomalies were detected in the mountainous areas in the central and
northern parts of the Great Wall corridor. According to the field investigation, although the
plain section of the Great Wall in the southeast passes through the urban area of the city of
Shanhaiguan, it has been preserved by the local government during the urban construction
process; thus, it has not been significantly disturbed by human activities. In the central and
northern areas of the study area, the mountainous areas, the Great Wall was assembled
using stones, which are prone to falling off or collapsing due to the combined effects of the
mountain slope and natural erosion.

https://www.esri.com/en-us/arcgis/about-arcgis/
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5. Discussion

The above experimental results have demonstrated the advantages of the proposed
pseudo-combination SBAS method, which can effectively reduce the residual topography
effect introduced by the inaccurate external DEM in a mountainous area. This section
focuses on the discussion of the improvements and limitations of the proposed method.

This study adopted the idea of pseudo-baseline combination proposed by Zhang et al. [35],
but the application scenarios of the two algorithms are quite different: Zhang’s method
mainly solves the elevation underestimation problem in urban areas based on TCP-InSAR,
while the SBAS pseudo-baseline combined algorithm developed from the SBAS method is
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not sensitive to the height of single buildings due to multilooking and filtering processing,
and it is more applicable to deformation monitoring in large-scale mountainous areas.

Compared with the method proposed by Zhang et al. [35], the interferograms were
unwrapped before the pseudo-baseline combination. Since the decorrelation noise of
InSAR is additive, the double combination of interferogram will increase the noise, which
means the noise level of the pseudo-combination interferogram will always be higher than
that of the two input interferograms (Figure 16). Unwrapping is one of most complicated
steps in InSAR processing, and it is sensitive to the noise level of the input interferogram.
Therefore, we chose to unwrap the interferograms before the double combination of the
interferograms to mitigate unwrapping error, which further improved the accuracy of the
pseudo-combination SBAS result.
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shows the typical noise propagation phenomenon.

On the other hand, the pseudo-combination SBAS method proposed in this study still
had certain limitations that may affect the construction and interpretation of the derived
deformation. The first limitation was the absence of InSAR measurements for vegetated
areas. This means that the measurement density of the pseudo-combination SBAS method
is still limited throughout mountainous areas. Parts of the region in the study area may have
suffered from serious temporal decorrelations due to the growth of vegetation, resulting
in blank areas in the InSAR measurements. As illustrated by the red circles in Figure 17,
there were clear gaps in the InSAR measurements along the Great Wall. Thus, a more
flexible point selection algorithm should be introduced to increase the point density in
mountainous areas. Furthermore, since the InSAR method may fail in densely vegetated
areas, it may be possible to apply optical remote sensing methods to complement the
InSAR measurements and enable comprehensive deformation monitoring along the Great
Wall corridor.
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The second limitation was that the spatial resolution of the applied Sentinel-1 data was
relatively coarse. The original spatial resolution of the Sentinel-1 data was approximately
5 m in the range direction and 20 m in the azimuth direction, but the resolution became
even coarser after the multilooking and filtering processes (i.e., 50 m in the range direction
and 40 m in the azimuth direction), which made it unsuitable for monitoring structural
deformation of the Great Wall itself. Thus, this study only monitored the stability of the
landscape surrounding the Great Wall corridor. However, when protecting architecture
heritage structures, we should not be limited to monitoring the surrounding landscape and
should utilize datasets that allow monitoring of the heritage sites themselves. Therefore,
SAR data with a higher resolution (i.e., TerraSAR-X data in Spotlight mode) should be
applied to acquire more detailed structural deformation monitoring of the Great Wall to fa-
cilitate adaptive protection of this heritage site. Specifically, in the following work, hotspots
along the Great Wall with motion anomalous will first be identified using the Sentinel-1
data with the proposed pseudo-combination SBAS method. The detected hotspots will be
further investigated with the high-resolution TerraSAR-X data.

The third limitation was that atmospheric noise was amplified in the pseudo-combined
interferograms. The double combination process for generating interferograms can increase
the noise levels of the phase images [35]. Figure 18 shows the atmospheric-related noise
did accumulate in the combined images. To address this, a linear fitting algorithm [51]
was applied to mitigate the atmospheric-related noise within the interferogram. As illus-
trated in Figure 19, the linear trends in atmospheric phase and the topography-correlated
atmospheric phase were mitigated in the interferograms. However, the spatially varying
turbulence atmospheric phase was not fully resolved in this study (Figure 18a), and this
noise signal was amplified in the pseudo-combined interferograms (Figure 18c), which
may have affected the stability of the InSAR solution. Therefore, the noise level, espe-
cially the turbulence atmospheric phase, should be carefully considered to improve the
pseudo-combination SBAS method in subsequent studies.
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6. Conclusions and Prospects

In this study, the SBAS approach was improved by adopting the pseudo-baseline
combination strategy to avoid estimation errors linked to the usage of inaccurate digi-
tal elevation models (DEM), and an MTInSAR algorithm suitable for a complex terrain
environment was proposed.

Firstly, the effectiveness of the proposed algorithm was sequentially tested using a
simulated dataset and a real dataset consisting of 28 scenes from Sentinel-1 images covering
Beijing. In the experiments using simulated data, the maximum deformation velocity error
and maximum deformation error were 5.2 mm/year and 29.9 mm, respectively, while the
corresponding errors in the pseudo-combination SBAS results were only 0.3 mm/year and
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0.5 mm. In the experiment using real data from the Beijing area, the motion rates obtained
by the SBAS and pseudo-combination SBAS algorithms were consistent, and the correlation
coefficient between the two deformation velocities was as high as 0.994. Subsequently,
the verified pseudo-combination SBAS algorithm was applied to the Shanhaiguan section
of the Great Wall and its surroundings, and a thematic map was generated to show the
stability of the landscape of the Great Wall corridor. The deformation calculation results
reveal that the landscape around the Shanhaiguan section of the Great Wall was generally
stable, but local instabilities were detected in some mountainous areas. Combined with the
field investigation, the deformation anomalies may have been related to the distributed,
unstable rock in the mountainous area.

This study revealed the potential of the proposed pseudo-combination SBAS algorithm
in stability monitoring and risk assessment of the landscape of architectural heritage sites
in mountainous areas. In future research, we will focus on overcoming the limitations of
the pseudo-combination SBAS algorithm and improving its adaptability in deformation
monitoring in mountainous areas by taking the following measures: First, Sentienl-1 data
will be incorporated with other high-resolution SAR data [53–55] to facilitate a coarse to
fine deformation monitoring strategy for the detailed motion monitoring of heritage sites
on complex topography; Then, in order to optimize the method, the coherent scatterers
(CS)-based InSAR algorithm [56,57] will be introduced to improve the density of InSAR
measurements in mountainous areas; thereafter, a more comprehensive atmospheric cor-
rection strategy (e.g., GAOCS method [58] and spatially variable power law method [59])
will be applied to deal with local microclimate effects (turbulence) to complement the
modeling-based atmospheric correction method used in this study.
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