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Abstract: Domestic gardens provide residents with immediate access to landscape amenities and 
numerous ecological provisions. These ecological provisions have been proven to be largely deter-
mined by greenspace composition and landscape, but the fragmentation and heterogeneity of gar-
den environments present challenges to greenspace mapping. Here, we first developed a recogni-
tion method to create a garden parcel data set in the medieval Leuven city of Belgium, based on the 
land use layers and agricultural land parcels. Then, we applied multi-sourced satellite imagery to 
evaluate the added value of spatial resolution, plant phenology and 3D structure in identifying four 
vegetation types. Finally, we characterized the greenspace landscapes in garden parcels. Compared 
with single ALOS-2 imagery, SPOT-7 imagery and Pleiades-1A imagery increased the overall accu-
racy by 4% and 8%, respectively. The accuracy improvement (21%) produced from multi-temporal 
stereo Pleiades-1A imagery strongly verified the significance of plant phenology and 3D structure 
in garden mapping. The average greenspace cover in garden parcels was 71% but varied from 56% 
in urban gardens to 82% in rural gardens. The garden greenspace landscape is fragmented by the 
artificial structures in urban areas but has a more aggregated size and less complex shapes in rural 
areas. This study calls for greater attention to be paid to gardens, and for multi-disciplinary studies 
conducted in collaboration with urban ecologists and landscape designers to maximize the benefits 
to residents of both immediate landscape amenities and ecological provisions, in the face of global 
environmental changes and public health risks. 

Keywords: domestic gardens; greenspace mapping; garden landscapes; multi-temporal stereo  
imagery; vegetation types 
 

1. Introduction 
Expanding cities worldwide have pledged to increase urban green infrastructure 

(UGI) [1] and maintain an extensive UGI network [2], as it provides numerous ecosystem 
services contributing to human well-being and sustainable urban development. Domestic 
gardens are the most promising places to carry out these long-term urban development 
plans [3], as they comprise more than one-third of the overall urban area in many cities 
[4,5]. However, domestic gardens have received comparatively less attention from schol-
ars, likely due to the small parcel size and the lack of regulation. Furthermore, the majority 
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of the general public is unaware of the environmental value of their own gardens and how 
best to improve their ecological provisions. Homeowners’ preferences in individual gar-
dens increase the diversity and heterogeneity in pattern and landscape, which presents 
challenges to accurate greenspace mapping. Therefore, quantifying UGI composition and 
landscapes at the garden scale would be a valuable asset for understanding the current 
status of domestic gardens.  

Factors relating to UGI composition, such as type and species, are imperative for eco-
logical provision evaluation and rigorous ecological modeling. For instance, urban trees 
are more efficient in mitigating urban heat than grass [6,7]. Needle-leaf species generally 
capture and immobilize more air particles than broad-leaf species [8,9]. The significance 
of vegetation composition demands more powerful classification methods and data sets 
for UGI mapping, in particular for small-size domestic gardens. In recent decades, the 
increasing availability of very high-resolution satellite imagery and advanced remote 
sensing techniques has encouraged increasing numbers of attempts to use instant satellite 
imagery to deal with the heterogeneous UGI composition. Existing evidence verified that 
UGI mapping performance depends on study location [10,11], imagery properties [12,13], 
classification methods [14,15] and produced vegetation classes [16,17]. Mathieu et al. [16] 
combined IKONOS images and an object-based classification method to identify large-
scale vegetation communities in urban areas of Dunedin City, New Zealand, and the over-
all accuracy ranged from 64% to 77%. Pu and Landry [12] produced an overall accuracy 
ranging from 66% to 67% when identifying six tree species/groups using WorldView-2 
image in Tampa, Florida, USA. Li et al. [14] showed that a single worldview satellite image 
produces relatively low accuracies (45–83%) for five tree species in Beijing, China. These 
relatively low accuracies and erratic performances suggest the insufficiency of instant im-
agery in recognizing vegetation types, or even plant species.  

Elvidge and Portigal [18] observed dramatic spectral changes in grasslands but 
slightly spectral changes in evergreen species from time-series AVIRIS images in 1990. 
Since then, multi-temporal satellite imagery reflecting plant phenology has been used to 
produce more accurate identification of vegetation types. Wolter et al. [19] applied a time-
series of Landsat TM and MSS imagery acquired from 1980 to 1992 to identify forest types 
in northern Wisconsin, US. Hemmerling et al. [20] applied a Sentinel-2A/B time series for 
mapping 17 tree species at a regional scale in a temperate forest region of Central Europe. 
The majority of multi-temporal studies have focused on natural forests based on me-
dium/low spatial resolution satellite imagery [21–23]. Meanwhile, Light Detection and 
Range (LiDAR) has been considered an effective solution to depict UGI structure and 
height. For example, Terryn et al. [24] identified five tree species using structural traits 
from terrestrial laser scanning in Oxford, UK, with a success rate of 80%. Dalponte et al. 
[25] investigated the classification setups of hyperspectral images, multispectral satellite 
images, and airborne LiDAR data for identifying seven tree species in mountain forests. 
Pu and Landry [26] evaluated the abilities of multi-temporal Pleiades satellite images with 
airborne LiDAR data for classifying seven urban tree species. However, the widespread 
applications of LiDAR have been largely limited by their availability and costs.  

Essentially, multi-sourced data sets improve UGI mapping with their more abundant 
spatial and temporal information. The introduce of multi-sourced data set may increase 
uncertainties caused by systematic and non-systematic factors, whereas, with the devel-
opment of remote sensed techniques, increasing satellites capture a greater variety of im-
age products, like multi-temporal and stereoscopic images. These images from the same 
satellite platform reduced the uncertainties of combining applications. In addition, more 
effective image processing methods are also developed to deal with application issues that 
may raise uncertainties. Among remote sensed products, multi-temporal stereo imagery, 
which holds the advantages of being able to assess both plant phenology and 3D structure, 
provides great potential to facilitate UGI mapping [27–29]. While the general and public 
UGI have received intensive attention, UGI mapping in domestic gardens has been less 
studied [30,31]. Moreover, the land management practices of domestic gardens are diverse 
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among stakeholders and lack regulation. Some quantitative studies have suggested a gen-
eral declining UGI trend in domestic gardens [32–34]. Therefore, the large-scale green-
space monitoring in domestic gardens will enable local authorities to assess the UGI ben-
efits of urban domestic gardens. 

Here, we first developed an approach to derive garden parcel data sets based on 
available spatial data sets, and then we demonstrated the UGI composition and landscape 
at garden scale by applying multi-temporal stereo imagery to UGI mapping in domestic 
gardens. During the UGI mapping, we developed classification schemes based on ALOS-
2, SPOT-7 and Pleiades imagery. These were designed to (1) evaluate the added value of 
increased spatial resolution, plant phenology and 3D structure for identifying vegetation 
types, and (2) demonstrate the composition and landscape variations of domestic gardens 
in the compact European city of Leuven, Belgium. Our case study exemplified an appli-
cation of garden monitoring and called for greater attention from both local authorities 
and stakeholders to garden management and ecological provisions.  

2. Materials and Data Sets 
2.1. Study Area 

Leuven is an integrative part of the “Flemish Diamond”, which locates in the heart 
of western Europe and consists of four agglomerations taking up four corners of an ab-
stract diamond shape (Brussels-Ghent-Antwerp-Leuven). The urban domestic gardens 
can be given a highly important role in Flanders, and 73% of the houses have a domestic 
garden. Most areas of Flanders can be interpreted as urban sprawl filled with a maze of 
garden complexes. The greenspace in Leuven is mainly urban parks, agricultural lands 
and natural forests. The average greenspace coverage of domestic gardens is only 57% 
with an average size of 366 m2. Although the total greenspace covers 65% of prefectural 
Leuven city (37.13 of 56.63 Km2; Federal Ministry of Home Affairs, 2018), the greenspace 
is unevenly spatially distributed across the city. The city area outside the “ring road” is 
featured by lower building density but larger-size agricultural lands, whereas the com-
pact urban area circled by the “ring road” is characterized by higher building density and 
smaller-size private garden mosaics (Figure 1). The developed urban area of Leuven has 
expanded eastwards, presenting an urban–rural continuum. Therefore, the small medie-
val town of Leuven with various functional zones and landscapes features would be an 
ideal place to evaluate greenspace mapping. 
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Figure 1. The study area demonstrated by satellite imagery in true color. (a) ALOS-2, (b) SPOT-7 
imagery, (c) Pleiades-1A imagery. 

2.2. Remotely Sensed Imagery 
ALOS-2 (Advanced Land Observation Satellite) imagery, SPOT-7 (Satellite pour 

l’Observation de la Terre) imagery and Pleiades-1A imagery (Table 1) were employed in 
this case study. ALOS-2 imagery (Figure 1a) acquired on 16 May 2019, and SPOT-7 im-
agery (Figure 1b) acquired on 22 July 2019. ALOS-2 senses the Earth’s surface at a spatial 
resolution of 2.5 m for panchromatic and 10m for multi-spectral (MS) bands. The SPOT-7 
satellite can image the earth with a spatial resolution of 1.5 m at the panchromatic band 
and 6 m at the multi-spectral bands. Pleiades-1A satellite imagery (Figure 1c) acquired on 
4 December 2019 (Figure 2a), March 7, 2020 (Figure 2b) and 31 July 2020 (Figure 2c,d) were 
also employed in this study. The Pleiades-1A satellite offers a spatial resolution of 0.5 m 
for the panchromatic (480–830 nm) and 2m for the multispectral bands (Blue: 430–550 nm; 
Green: 490–610 nm; Red: 600–720nm; Near-Infrared: 750–950 nm). The summertime Plei-
ades-1A imagery (31 July 2020) is a stereo image, which provides almost simultaneous 
images from two different views (forward scanning in Figure 2c; backward scanning in 
Figure 2d) for the same area at the same spatial resolution. In general, a stereo-image (for-
ward and backward looking) can produce a better accuracy of digital ground models in 
gentle terrain areas, while a tri-stereo-image (nadir, forward and backward looking) can 
be used for most terrains (Pleiades Imagery User Guide, 2020).  
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Table 1. The basic features of satellite imagery used in classification. 

Satellite  Acquisition Date Spatial Resolution Multi-Spectral Band Stereo Image 

ALOS-2 16 May 2019 2.5 m 

Blue: 420–500 nm;  
Green: 520–600 nm;  
Red: 610–690 nm;  

Near-Infrared: 760–890 nm 

No 

SPOT-7 22 July 2019 1.5 m 

Blue: 455–525 nm;  
Green: 530–590 nm;  
Red: 625–695 nm;  

Near-Infrared: 760–890 nm 

No 

Pleiades-1A 4 December 2019 0.5 m 

Blue: 430–550 nm;  
Green: 490–610 nm;  
Red: 600–720 nm;  

Near Infrared: 750–950 nm 

No 

 7 March 2020 0.5 m  No 
 31 July 2020 0.5 m  Yes 

These satellite imagery data were orthographic calibration-ready standard products 
obtained under cloudless conditions. A series of preprocessing steps were performed by 
the vendor (Airbus Defence and Space, 2020), including internal sensor geometry correc-
tion, removal of optical distortions and line-rate variations, and band registration. After-
ward, we applied the Gramm–Schmidt algorithm [35] to pan-sharpening the multi-spec-
tral bands, as the Gramm–Schmidt algorithm produces better spectral quality and main-
tains original spectrum of imagery [36]. Finally, we performed the geometric corrections 
by manually selecting more than 100 pairs of tie-points across Leuven city and controlling 
the root mean square under 0.5 using the aerial photography of summer 2018 as the ref-
erence map. The aerial photography was collected in the summer flying season during 
June to July of 2018, and subsequently the production of an Orthophoto with a ground 
resolution of 25 cm (https://download.vlaanderen.be/, accessed on: 31 May, 2020). 

 
Figure 2. The examples of multi-temporal stereo Pleiades-1A satellite imagery. (a) winter image 
acquired in December 2019; (b) spring image acquired in March 2020; (c) summer image acquired 
at 10:58:23.4 of 31 July 2020 (along-track incidence of 15.41°); (d) summer image acquired at 
10:59:10.6 of 31 July 2020 (along-track incidence of −10.22°). 

2.3. Thematic Layers 
2.3.1. Plant Phenology (PP) 

Multi-temporal imagery offers seasonal changes in plant physical and chemical char-
acteristics. The variations of seasonal change among different plants contribute to the sep-
aration of vegetation types and even tree species. Evergreen plants are essentially un-
changed in coloration and foliation across seasons, but most deciduous species show 
strong variation between the growing season and the non-growing season. In addition, 
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plant phenological characteristics might vary greatly among functional types or plant spe-
cies. For example, native populous trees usually sprout out in early spring and wither 
away in early fall, while the exotic populous trees introduced from warmer regions re-
quire a higher accumulated temperature to sprout out and fade away at a later time point. 
As the NDVI [37] is the most common index to reflect plant phenological changes, we 
calculated a plant phenology index (PP) based on NDVI values of multi-temporal Pleia-
des-1A imagery. In our case study, the non-growing season, growing season and the tran-
sition stage were represented by the imagery of December, July and March, respectively. 
For a ground object, if the NDVI of the December image (NDVI_Dec) was greater than 
that of the March image (NDVI_Mar), then PP = NDVI_Jul–NDVI_Dec. Otherwise, PP = 
NDVI_Jul–NDVI_Mar.  

2.3.2. Normalized Digital Surface Model (nDSM) 
An nDSM represents the absolute height of objects above the ground surface, such as 

buildings and trees [38]. It can usually be created by subtracting a Digital Terrain Model 
(DTM) from a Digital Surface Model (DSM). A DSM represents the surface of the earth, 
including vegetation, buildings and other artificial features. A DTM only includes the el-
evation of the ground surface removing vegetation, buildings, and other artificial features, 
but roads and bridges are retained. Herein we generated an nDSM layer from stereo Plei-
ades-1A satellite imagery acquired in 31 July 2020. 

The nDSM generation was performed in PCI Geomatica software (Geomatica Ortho-
Engine). First, we selected the rational function for the optical satellite modeling method 
according to the data set type and platform. As the stereo satellite images are Orthoready 
standard products (ESPG:31370) and well-aligned to each other, we skipped the GCP/TP 
collection. Subsequently, we generated epipolar pairs between two stereoscopic images 
and automatically extracted the geocoded DSM (Figure 3a) using semi-global matching 
methods at a spatial resolution of 0.5m. In PCI Geomatica, there are two primary tools to 
convert a DSM to a DTM (Figure 3c). The DEM editing tool is a manual method of con-
version, while the DSM2DTM algorithm provides an automated capability. In this project, 
we chose the manual DEM editing tool. During the conversion, several filter methods (ter-
rain filters; bump and pit filters; median filters; clamp filters; manual touch-up) can be 
repeatedly applied by order until we produce a satisfying result. 

 
Figure 3. The digital models produced from stereo Pleiades-1A satellite imagery. (a) Digital Surface 
Model (DSM); (b) normalized Digital Surface Model (nDSM); (c) Digital Terrain Model (DTM). 
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2.3.3. Garden Parcels  
Informatie Vlaanderen Agency (EODaS) developed a workflow to automatically de-

lineate garden parcels from official governmental spatial data layers. Taking into account 
various garden definitions [30,39], we defined the ‘garden parcel’ in the present analysis 
as places that are covered with cultivated greenspace to provide enjoyment. Therefore, a 
garden can be residential (e.g., backyards), public (e.g., city parks), industrial (e.g., park-
ing lots) or semi-public greenspace (e.g., hospitals). Following this definition, the garden 
parcels were modified based on the large-scale reference file (GRB, https://overheid.vlaan-
deren.be/GRB-Wat-is-het-GRB, accessed on: 31 May, 2020) and the Agricultural Land Par-
cel Registration (LBPC, https://lv.vlaanderen.be/en, accessed on: 31 May, 2020). The GRB 
file contains geographical and characteristic information of well-definable, conventionally 
accepted reference data, including buildings, administrative parcels, roads, waterways, 
railways and so on. The LBPC contains parcels in agricultural use for the Department of 
Agriculture and Fisheries to fulfill their mission: ‘contribution to the development of fu-
ture-oriented agricultural and fisheries policies and quality service to the Flemish agro-
food sector’. A garden parcel in our case study is an administrative parcel that 
1. does not overlap with an agricultural parcel or a railroad; 
2. contains at least one main buildings;  
3. or contains one or more side buildings, which share a border with an administrative 

parcel that contains one or more main buildings;  
4. or does not contain a building but overlaps with a building block that contains more 

than 60% administrative parcels with one or more main buildings;  
5. has been cut by roads, main buildings, and buildings > 20 m2; 
6. has been cleaned from slivers. 

The above procedures produced more than 15,000 garden parcels in study area. 

2.3.4. Field Inventory 
To obtain inclusive ground samples, we conducted extensive field campaigns in var-

ious local climate zones (LCZs) (Table 2) over the entirety of Leuven city. The classification 
scheme of LCZs was adopted from Stewart and Oke [40], which was based on (i) building 
height, (ii) building density and (iii) greenspace coverage at an analytical unit of 100 m × 
100 m grid cell (Table 2). In summer 2019, 203 gardens across Leuven city (20–30 gardens 
for each LCZ depending on voluntary applicants, Figure 4a) were selected and investi-
gated. In the field (Figure 4b), field experts manually drew all ground objects in a garden 
parcel on a printed copy of an aerial photograph, and recorded the land use type for each 
object, e.g., trees, shrubs, grass, farm plantings, buildings, roads, water, etc. All objects 
were digitalized into vector layers in QGIS (version 3.10) based on the field campaigns 
(Figure 4c). Finally, 3624 ground objects from 203 gardens were collected, and 3081 of 
them were vegetated objects. 
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Figure 4. The garden objects in the field inventory. (a) distribution of investigated gardens; (b) gar-
den parcels; (c) manually delineated garden objects. 

Table 2. The classification of LCZs, * class is absent in study area. 

Building Density Building Height Greenspace Coverage LCZ Class 
≥0.25 ≥8 m ≥67% 111 * 

  34−67% 112 
  ≤34% 113 
 <8 m ≥67% 121 * 
  34−67% 122 
  ≤34% 123 

<0.25 ≥8 m ≥67% 211 * 
  34%−67% 212 
  ≤34% 213 
 <8 m ≥67% 221 
  34−67% 222 
  ≤34% 213 

3. Greenspace Mapping in Gardens  
3.1. Classification Designs 

This case study involved six classification schemes to evaluate the contribution of 
spatial resolution, plant phenology and 3D structure to UGI monitoring (Figure 5). First, 
we conducted a classification based on ALOS-2 imagery (referred to as scheme a), SPOT-
7 imagery (referred to as scheme b) and summer Pleiades-1A imagery (referred to as 
scheme c), to examine the mapping capacity of instant satellite imagery. Subsequently, we 
performed further classification schemes by introducing seasonal Pleiades-1A imagery 
(referred to as scheme d) and stereo Pleiades-1A imagery (referred to as scheme e) to 
scheme c. For scheme d, the plant phenology (PP) derived from multi-temporal Pleiades 
imagery was applied to separate deciduous and evergreen plants, while for scheme e, the 
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nDSM derived from stereo Pleiades imagery was applied to identify plant height. For 
scheme e, we introduced both plant phenology and nDSM to scheme c (referred to as 
scheme f).  

An Object-Based Image Analysis (OBIA) [41,42] was conducted to produce four veg-
etation functional types: High Deciduous (HD), Low Deciduous (LD), High Evergreen 
(HE) and Low Evergreen (LE). OBIA can accurately delineate ground object boundaries 
and introduces many more spectral and spatial features than the pixel-based approach, 
especially for very high spatial resolution remotely sensed imagery [43]. An OBIA nor-
mally includes three procedures: image segmentation, sample training and classifier ap-
plication. In present classifications, a multi-resolution segmentation (MRS) algorithm was 
applied to produce image objects at hierarchical levels. The ground samples were trained 
using Classification and Regression Tree (CART) to generate features and thresholds for 
separating vegetation types. A ruleset classification based on CART results was estab-
lished and applied to produce a greenspace map. 

 
Figure 5. The conceptual diagram of classification designs. scheme a-Classification using ALOS-2 
imagery; scheme b-Classification using SPOT-7 imagery; scheme c-Classification using Pleiades-1A 
imagery; scheme d-Classification using stereo Pleiades-1A imagery; scheme e-Classification using 
multi-temporal Pleiades-1A imagery; scheme f-Classification using multi-temporal stereo Pleiades-
1A imagery. 

3.2. Image Segmentation 
Generating accurate image segments as identical as the ground-truth objects is a cru-

cial precondition for a high-quality OBIA. The MRS algorithm embedded in eCognition 
Developer was applied to the segmentation. MRS is a bottom-up segmentation which con-
secutively merges pixels or existing image objects into bigger objects based on a relative 
homogeneity criterion [41]. The homogeneity criterion measures how homogeneous an 
image object is. Three parameters (scale, shape and compactness) can be modified to con-
trol homogeneity criterion [42]. A larger scale parameter possibly causes “under-segmen-
tation” through generating image objects with mixed land covers, whereas a smaller scale 
parameter leads to “over-segmentation” of a fragmented landscape. Following the scale 
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parameter, the color and shape were modified to refine the shape of the segments. The 
value of the shape, which equals one minus that of the color, determines how much 
weight (0–1) was placed on the shape when generating segmented objects. The parameter 
compactness is a shape-related factor, which determines the compactness or smoothness 
of segmented objects.  

Compared with the commonly used visual inspection or the “trial and error ap-
proach”, the Estimation of Scale Parameter (ESP) [44] is more efficient and objective. ESP 
produces multiple segmentations of the same image by constantly increasing the scale 
parameter and calculating local variance at the scene level for each scale to identify that 
which produces the highest spatial independence of segmented objects (Figure 6). In one 
ESP practice, several scale parameters can be indicated for different land covers, e.g., 
greenspace, water and buildings. Concerning the comparability of the final classification 
results, we have to produce identical image objects for all the six different schemes (Figure 
5). We conducted the MRS based on all 20 multi-spectral bands of satellite imagery in 
Table 1. These multi-spectral bands were equally weighted in segmentation, and the pro-
duced image objects were communal for classification schemes. ESP results suggest three 
potential scale parameters (25, 55 and 90; Figure 6) targeting different classes: scale 25 for 
greenspace, 55 for vegetation types and 90 for water and impervious surfaces. Most pre-
vious studies found that more meaningful objects would be extracted with a higher 
weight for the color criterion [45]. Therefore, we produced three-level hierarchical image 
objects with 25, 55 and 90 as the scale parameters, 0.2 as the shape and 0.5 as the compact-
ness. 

 
Figure 6. The results of ESP and produced image objects. 

3.3. Classification Procedures 
All segmented image objects were firstly separated into shaded objects and unshaded 

objects using thresholds of mean brightness and mean red band (Table 3). Subsequently, 
the vegetated objects, indicated by NDVI and mean blue band, were separately extracted 
from unshaded and shaded objects. Here, we applied the same features but different 
thresholds to recognize vegetated objects among unshaded and shaded objects. For in-
stance, the NDVI threshold for vegetated objects in unshaded objects was 0.24, while in 
unshaded objects was 0.13 (Table 3). For recognized vegetation objects, different classifi-
cation procedures among classification schemes were subsequently performed to separa-
tion of functional types (HD, LD, HE, LE).  

3.3.1. Classification Using Single Satellite Imagery (Schemes a to c) 
For vegetated objects on single ALOS-2, SPOT-7 and Pleiades imagery, we first ap-

plied the Tree-Grass Difference Index (TDGI, expression = −Log(canny)+Brightness) [46] 
to separate high vegetation (trees and shrub) and low vegetation (grass). Subsequently, 
CART produced features and thresholds to differentiate deciduous and evergreen in high 
vegetation and low vegetation, respectively. CART is a non-parametric classification 
method which makes no assumptions regarding the underlying distribution of the pre-
dictor variables and identifies splitting variables based on an exhaustive search of all pos-
sibilities [47]. CART usually produces straightforward rules and clear information on the 
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importance of features. For a classification with few land cover classes, the CART only 
needs limited computational effort but produces reasonable accuracy [48]. Two-thirds of 
garden vegetation samples were randomly selected as training samples and were ex-
ported into CART to produce decision trees for separating vegetation types (Figure 7). For 
shaded areas, we divided them into vegetation shadow (shadow caused by trees and 
shrubs) and building shadow (shadow caused by buildings), as the two types of shadow 
are too distinct in spectrum and shape characteristics to apply the same thresholds when 
identifying vegetation types under them. For instance, building shadow is generally 
darker and larger than vegetation shadow. Therefore, the shaded objects with an area 
greater than 400 pixels (100 m2) and brightness lower than 24 were classified as building 
shadow, and the rest were vegetation shadow. In addition, the more boundaries of an 
object shared with vegetated objects, the higher the possibility that the object is vegetation. 
Then, shaded vegetation was recognized from the shadow by combining NDVI (0.13 for 
tree shadow, 0.08 for building shadow) with a border relative to vegetation objects (0.5). 
Afterward, the vegetation types in shaded objects were separated using the same features 
as in unshaded vegetation but with different thresholds (Table 3). 

 
Figure 7. The decision trees resulted from CART. (a) Decision tree for high deciduous and high 
evergreen; (b) Decision tree for low deciduous and low evergreen. The green square indicates the 
targeting class, while the red square indicates the other class. 
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Table 3. Features and thresholds for classifications. 

Class Name  
(Object Level) 

Feature  
(Threshold) 

Class Name  
(Object Level) 

Feature 
(Threshold) 

Unshaded area  
(25) Brightness(36); Mean Red (387) 

Shaded area  
(25) Brightness(36); Mean Red (387) 

  Tree & Building  
shadow (55) 

Area(100 m2); Brightness(24) 
Relative border to green (0.5) 

Unshaded green  
(25) NDVI (0.24); Mean Blue (445) 

Shaded green  
(55) 

NDVI (0.13) in tree shadow 
NDVI (0.08) in building show  

High & low green 
(55) 

−Log(canny_NIR)+Brightness 
(51.24) 

High & low green 
(55) 

−Log(canny_NIR)+Brightness 
(36.81) 

Deciduous 
& evergreen (55) 

Mean NIR (236); Ratio G/R(1.34);  
Hue-R_G_B (0.21) 

Deciduous 
& evergreen (55) 

Mean NIR (197); Ratio G/R(1.15);  
Hue-R_G_B (0.16) 

High deciduous 
& evergreen (55) 

Ratio G/R(1.52); GLCM-
H_NIR(0.14); 

GLCM-H_G(0.19); Hue-R_G_B 
(0.31) 

High deciduous 
& evergreen (55) 

Ratio G/R(1.29); GLCM-
H_NIR(0.06); 

GLCM-H_G(0.12); Hue-R_G_B 
(0.22) 

Low deciduous  
& evergreen (55) 

Mean NIR (279); Ratio R/NIR 
(0.56);  

Hue-G_R_NIR (0.23); GLCM-
H_NIR (0.1) 

Low deciduous & ev-
ergreen (55) 

Mean NIR (234); Ratio R/NIR (0.46); 
Hue-G_R_NIR (0.14); GLCM-

H_NIR (0.08) 

Plant Phenology 
(55) 

0.17; 0.25 Plant phenology (55) 0.12; 0.21 

nDSM (55) 5 m nDSM (55) 5 m 

3.3.2. Classification Integrating Multi-Temporal Stereo Satellite Imagery (Schemes d to f) 
With respect to classification schemes d and e, Plant phenology (from seasonal Plei-

ades imagery) and nDSM (from stereo Pleiades imagery) were separately introduced into 
summer Pleiades-1A imagery classification (scheme c) as an auxiliary layer. For scheme 
d, we first divided the vegetated objects into three groups (deciduous, mixed vegetation, 
evergreen) according to PP values. Vegetated objects were classified as evergreen when 
PP < 0.17 for unshaded objects (0.12 for shaded objects), and as deciduous when PP > 0.25 
for unshaded objects (0.21 for shaded objects). Vegetated objects with 0.17 < PP < 0.25 for 
unshaded objects (0.12 < PP < 0.21 for shaded objects) were classified as mixed vegetation 
and were further classified into deciduous and evergreen vegetation using the features 
and thresholds listed in Table 3. In addition, the obtained deciduous and evergreen vege-
tation was further classified as high vegetation or low vegetation using TDGI. In contrast, 
high vegetation and low vegetation were first identified by nDSM at a break point of 5 m 
in scheme e and then separated into deciduous and evergreen vegetation using the fea-
tures and thresholds listed in Table 3. For scheme f, we applied nDSM to separate high 
and low vegetation, and PP to separate deciduous and evergreen using the features and 
thresholds in scheme d and e to ensure the validity of classification comparisons.  
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3.4. Accuracy Assessment  
We applied two validation methods, “point validation” and “polygon validation”, to 

assess the classification schemes. The “point validation” was conducted to confirm the 
classification accuracy on a ground point. We performed point validation on 800 valida-
tion sites randomly selected from the whole study area. We then generated their confusion 
matrixes and calculated Kappa coefficients for vegetation functional types. In contrast, the 
“polygon validation” was performed at garden scale within the 203 gardens in which con-
ducted the field investigations and manual delineations. We compared the percentage 
coverage of both garden greenspace and vegetation types in a garden between produced 
greenspace map and the greenspace objects observed during the garden survey. The pol-
ygon validation was performed at three spatial scales: statistical sector, building block, 
and garden parcel. A statistical sector of Belgium (2019 version) is the basic territorial unit 
resulting from the subdivision of the territory of municipalities for the dissemination of 
its statistics at a finer level than the municipal level (accessed online by https://down-
load.vlaanderen.be/, accessed on: 31 May, 2020). A city block is the smallest group of 
buildings that is surrounded by streets, not counting any type of thoroughfare within the 
area of a building or comparable object. The garden parcel map was developed by EODoS 
as described in Section 2.3. 

4. Results and Discussion  
4.1. Validation of Thematic Layers 
4.1.1. nDSM Layer 

To evaluate the nDSM layer generated from stereo Pleiades-1A imagery (referred to 
as nDSM_P), we here introduced an nDSM derived from LiDAR altitude data (Digital 
Altitude Model Flanders II, DHMV II, https://overheid.vlaanderen.be/dhm-dhmv-ii-
brondata, accessed on: 31 May, 2020) as the reference map (referred to as nDSM_R). The 
DHMV II was collected in summer 2015 by Aerodata Surveys Neder-land BV 
(https://www.geobusiness.nl/leden/aerodata, accessed on: 31 May, 2020) featuring an av-
erage point density of 15 points/m2. The processing procedures in LAStools software in-
clude the detection and removal of noisy returns, the detection of ground returns, the 
creation of DTM through interpolation, the derivation of all non-ground returns and the 
creation of a CHM by extracting the maximum height for each cell. More processing de-
tails can be found in Degerickx et al. [49]. A total of 200 validation points were randomly 
selected across the study area (Figure 3b). The height from nDSM layers showed a clear 
linear relationship (R2 = 0.976, Figure 8a). The nDSM produced from stereo Pleiades-1A 
imagery overestimated the object height by 0.92m on average (Figure 8b). 

 
Figure 8. The nDSM validation.. (a) comparison of nDSM layers from stereo Pleiades satellite im-
agery (nDSM_P) and LiDAR (nDSM_R); (b) the differences between two nDSM layers. 
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4.1.2. Garden Parcels 
The garden parcel map in Section 2.3.3 was evaluated by 400 randomly selected gar-

den parcels, 200 garden parcels and 200 non-garden parcels. The overall accuracy of the 
garden parcel map was 90%. The misclassified gardens were generally agricultural lands. 
We further categorized all gardens parcels into three groups (urban gardens; suburban 
gardens; and exurban gardens) by equally dividing the value range of building density at 
the statistical sector scale (Figure 9a). The building density of a corresponding statistical 
sector is the ratio of the overall floor area of buildings to the area of the Belgian statistical 
sector where the garden parcel is located (Figure 9b). A garden parcel (Figure 9c) was 
classified as urban garden if the corresponding statistical sector had higher building den-
sities, and likewise for suburban garden parcels and exurban garden parcels. 

 
Figure 9. The spatial scale of study area: (a) statistical sector; (b) building block; (c) garden parcel. 

4.1.3. Image Objects 
No segmentation result is fully convincing if it does not satisfy human eyes. There-

fore, we evaluated the image segments through comparison with round-truth objects. We 
randomly selected 100 image objects and overlapped the image segments with manually 
delineated objects (Figure 10). Statistics suggested that the image segments were likely to 
be over-segmented for the patches over 2500 m2 (Figure 11a) and under-segmented when 
the patch size was less than 2500 m2 (Figure 11b). In addition, the image segments ob-
tained similar sizes to the delineated objects, with an average overlap ratio of 91.75 ± 4.12% 
(Figure 11c). Considering that the image objects were produced on the basis of 20 multi-
spectral bands of used satellite imagery, the reasonable accuracies verified the accurate 
segmentation and provided a reliable basis for the following classification procedures. 
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Figure 10. The comparisons of image objects produced by manual delineations and object-based 
segmentations. 

 
Figure 11. The differences between segmented and manually delineated objects. (a) 100 random 
selected objects; (b) the image objects less than 2500 m2; (c) the overlap percentages of selected ob-
jects; the gray dash line is 1:1 line. 

4.2. A Higher Spatial Resolution Improves Greenspace Mapping in Gardens 
The overall accuracy of UGI mapping in domestic gardens (Figure 12; Table 4) in-

creased from 71.13% for ALOS-2 imagery (scheme a) to 76.38% for SPOT-7 imagery 
(scheme b), and further to 79.25% for Pleiades-1A imagery (scheme c). The remotely 
sensed classifications identified 7–12% (12.06% for ALOS imagery to 7.63% for Pleiades 
imagery) less greenspace coverage than in situ investigations. These improvements in 
overall accuracy (4.25% vs. 3.87%) and coverage differences (2.24% vs. 2.09%) verified the 
contributions of the spatial resolution of satellite imagery. Similar positive effects are sup-
ported by existing studies [10,50,51]. Li et al. [14] suggested that the overall accuracy from 
WorldView-3 imagery (1.2 m for MS band) was 2–4% higher than that from WorldView-
2 imagery (2 m for MS band) when identifying tree species in Beijing urban areas. Pu and 
Landry [12] showed a 3–7% increment in the overall accuracy of urban tree species/groups 
when applying IKONOS imagery (4m for MS bands) and WorldView-2 imagery (2 m for 
MS band). Together with existing studies, we have exemplified that the very high spatial 
resolution of remote sensing products is a precondition for fine-scale UGI mapping, alt-
hough it may depend on study regions, classification approaches, etc. [15,52]. 
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Table 4. The confusion matrixes of greenspace maps. 

 
Scheme a-  

ALOS-2 Imagery 
Scheme b-  

SPOT-7 Imagery 
Scheme c-  

Pleiades-1A Imagery 
OA 71.13 75.38 79.25 

Kappa 0.634 0.688 0.735 

 
Reference 

HD HE LD LE NV UA HD HE LD LE NV UA HD HE LD LE NV UA 

C
lassified 

HD 152 11 19 16 7 74.15 163 11 15 11 8 78.37 171 8 13 12 7 81.04 
HE 17 60 13 10 3 58.25 13 69 14 9 4 63.3 11 73 11 7 2 70.19 
LD 22 9 82 13 5 62.6 19 7 88 12 6 66.67 15 9 97 9 5 71.85 
LE 16 12 12 131 5 74.29 15 8 10 138 1 80.23 13 7 7 145 3 82.86 
OT 14 9 10 8 144 77.84 11 6 9 8 145 81.01 11 4 8 5 147 84.57 
PA 68.78 59.41 60.29 73.6 87.8  73.76 68.32 64.71 77.53 88.41  77.38 72.28 71.32 81.46 90.24  

 

 Scheme d-  
Multi-Temporal Pleiades Imagery 

Scheme e-  
Stereo Pleiades Imagery 

Scheme f-  
Multi-Temporal Stereo Pleiades 

Imagery 
OA 84.5 86.13 92.75 

Kappa 0.803 0.822 0.908 

 
Reference 

HD HE LD LE NV UA HD HE LD LE NV UA HD HE LD LE NV UA 

C
lassified 

HD 184 5 6 11 6 86.79 188 12 6 7 4 87.50 203 3 6 3 3 93.12 
HE 7 81 10 5 1 77.88 15 84 3 3 1 80.77 7 95 2 2 0 89.62 
LD 15 6 107 4 3 79.26 5 2 111 13 4 83.46 5 1 121 4 2 90.98 
LE 9 4 8 150 0 87.72 6 3 12 152 2 87.36 3 1 5 166 2 93.79 
OT 6 5 5 8 154 86.52 8 3 6 3 153 88.44 3 1 2 3 157 94.58 
PA 83.26 80.20 78.68 84.27 93.90  85.52 83.17 81.62 85.39 93.29  91.86 94.06 88.97 93.26 95.73  

OA—Overall Accuracy; UA—User’s Accuracy; PA—Producer’s Accuracy; HD—Higher Decidu-
ous; HE—High Evergreen; LD—Low Deciduous; LE—Low Evergreen; NV—Non-Vegetation. 

High evergreen obtained the lowest accuracy, while low evergreen (slightly better 
than high deciduous) obtained the highest accuracy, as suggested by the confusion ma-
trixes (Table 4). For classifications based on single satellite imagery (schemes a–c), the mis-
classified confusions generally present a nearly random pattern among vegetation types. 
Compared with field investigation, remotely sensed recognition underestimated high de-
ciduous vegetation by 14.18% to 18.55% and low deciduous by 22.43% to 25.19%, but it 
overestimated low evergreen vegetation by 12.79% to 15.12% and high evergreen by 
20.09% to 23.36% (Table 5). These results indicated that single satellite imagery has limited 
capacity in capturing either plant morphology or height structure in urban environments. 

Table 5. The average percentage of the cover difference between produced greenspace map and the 
observed greenspace in 203 investigated gardens during the field campaign. 

Greenspace Type Scheme a Scheme b Scheme c Scheme d Scheme e Scheme f 

Greenspace −12.06 ± 5.25 −9.72 ± 4.47 −7.63 ± 4.36 −5.44 ± 2.58 −5.29 ± 2.45 −3.53 ± 2.12 

High Deciduous −18.55 ± 7.31 −16.87 ± 5.52 −14.18 ± 5.89 −11.32 ± 4.57 −10.15 ± 3.96 −7.06 ± 2.85 

High Evergreen 23.36 ± 8.39 20.08 ± 7.12 17.57 ± 7.24 14.34 ± 5.63 13.48 ± 5.02 10.63 ± 3.79 

Low Deciduous −25.19 ± 9.75 −22.43 ± 7.65 −19.83 ± 8.09 −15.92 ± 5.18 −15.36 ± 4.97 −11.19 ± 4.01 
Low Evergreen 15.12 ± 6.36 12.79 ± 5.21 11.37 ± 4.74 8.16 ± 3.86 7.53 ± 3.03 5.22 ± 2.17 
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Aside from spatial resolution, imaging properties also impact UGI mapping, espe-
cially in enclosed places such as domestic gardens. First, the capturing swath width (20 
km for Pleiades satellite, 60 km for SPOT-7 satellite, and 70 km for ALOS satellite) is re-
lated to shadow coverage and texture. The fragmented and heterogeneous urban environ-
ments mostly consist of interlaced built-up and greenspace mosaics. Leuven is a medieval 
old town with high compactness which significantly increases the challenges of UGI map-
ping. Consequently, the shadow treatment of satellite imagery is critical for urban land 
cover mapping, as these shaded areas significantly minimize the spectral signature of land 
cover [53,54]. Second, the Pleiades satellite covers more panchromatic and multi-temporal 
bands (in wavelength) than the other two, especially for the vegetation-sensitive red band 
and near-infrared band. Similarly, Pu and Landry [12] demonstrated that the additional 
four multi-spectral bands (especially the red edge band) of WorldView-2 imagery can im-
prove the average accuracy by 6–9% for recognizing six tree species/groups in Florida, US, 
therefore proving that very high-resolution imagery is a premise for accurate urban map-
ping. Compared with SPOT-7 and ALOS-2 imagery, Pleiades-1A imagery has a clearer 
view from orbit to ground surface, which produces fewer shaded areas but a more abun-
dant spectrum, eventually improving UGI mapping using Pleiades imagery.  

 
Figure 12. The classification result from multi-temporal stereo Pleiades-1A imagery. 

4.3. Time-Series and Stereo Imagery Improve Greenspace Mapping in Gardens 
Compared with single Pleiades imagery (scheme c), multi-temporal imagery (scheme 

d) and stereo imagery (scheme e) significantly improved the classification accuracy by 
5.25% and 6.88%, respectively. The accuracy was improved up to 13% when combining 
multi-temporal and stereo Pleiades imagery (scheme f). These improvements indicated 
that plant phenology and nDSM are a remarkable addition to single satellite imagery for 
UGI mapping. Moreover, the stereo imagery was slightly more influential than multi-
temporal imagery (86.13% vs. 84.5%) in recognizing vegetation types (Table 4). The 
slightly lower accuracy from multi-temporal imagery was possibly caused by the desyn-
chronized phenology of plant species and the blurred boundaries of spectral reflectance 
between evergreen and deciduous plants. 

In UGI mappings, the nDSM is generally applied to separate plant heights. Its per-
formance mostly depends on the spatial resolution of the original data source, e.g., point 
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cloud density. Zhou and Qiu [55] applied WorldView-2 imagery and waveform LiDAR 
to identify trees and grass in Dallas, US, and found that the accuracy produced from fused 
data was 7–8% higher than that from WorldView-2 imagery. Liu et al. [56] concluded that 
LiDAR contributed 10% more accuracy than hyperspectral imagery in tree species recog-
nition and achieved a nearly 20% higher accuracy when combining LiDAR and hyper-
spectral imagery in the greater Vancouver area, Canada. Currently, satellites are becom-
ing increasingly capable of imaging (tri-)stereo images, but the majority of existing nDSM 
layers are still produced from LiDAR. In this study, the nDSM generated from stereo Plei-
ades-1A satellite imagery showed an equivalent efficacy to nDSM produced from a Li-
DAR source (R2 = 0.98, RMSE = 1.18). This may partly be because the flat terrain of the 
study area is favored by stereo imagery, but the greater ability of tri-stereo imagery in 
dealing with various terrains would be a relief in the absence of the LiDAR data set. 

Differing from nDSM, the performance of plant phenology is largely determined by 
synergistic effects, e.g., satellite platform, spatial resolution, observation time, and also 
frequency. The deciduous species generally start to wither and decolorize in the late fall 
or early winter, which leads to yellow reflections after the reduction in chlorophyll and 
the increment in cancroid within plant leaves [45]. Some evergreen plants de-colorize dur-
ing the non-growing season, but to a much lesser degree than deciduous plants. Therefore, 
the observation time of satellite imagery is a vital feature to discriminate deciduous and 
evergreen species [57]. Tigges et al. [52] showed that a larger number of sensed images 
contribute to more accurate landcover dynamic observations. In our study, the three Plei-
ades-1A satellite images acquired from March, July and December might fail to capture 
phenological changes completely, as January is possibly the optimal timing point for the 
study area to discriminate deciduous and evergreen plants.  

In contrast to the randomly distributed confusions from classifications using single 
imagery, classifications integrating multi-sourced imagery presented aggregated confu-
sion patterns. A large fraction of misclassifications occurred between high and low vege-
tation when using multi-temporal imagery, but confusions often occurred between decid-
uous and evergreen when using stereo imagery (Table 4). Evergreen species were always 
“over-classified” while deciduous species were “under-classified” (Table 5). These con-
fusing patterns were the result of multiple effects. Low deciduous (5.21%) was the least 
covered vegetation type, followed by high evergreen, with a coverage of 6.93% in the 
study area. Moreover, these vegetation types were fragmented and scattered, and spec-
trally affected by the surrounding environment, especially in enclosed gardens. Further-
more, the compact medieval city of Leuven contains much shading and many obscured 
areas. The evergreen species are typically pine and fir trees, generally dark in color, which 
limits the availability of spectral and textural features. Therefore, for these vegetation 
types, it is difficult to collect high-level training samples and sufficient spectral signatures 
to meet the requisite of rational recognition accuracy.  

4.4. Greenspace Landscapes in Gardens Parcels 
The study area had more than 15,000 garden parcels (as defined in Section 2.3.3) and 

covered 30.85% of the study area (24.13 of 78.21 Km2, Figures 4 and 12) with an average 
size of 474 m2. This forms the landscape view, in that the large area of urban sprawl is 
filled with a maze of garden mosaics. The garden parcels contain 18.82 Km2 of greenspace 
and much more vegetation than the other land use types (77.95% vs. 46.32%) across the 
study area. The average greenspace coverage was 51.05% in statistical sectors, 31.48% in 
building blocks, and 70.98% in garden parcels (Figure 13; Table 6). This variable coverage 
at different scales implies that the domestic gardens contribute the majority of urban 
greenspace [16,30]. At the broad scale of the Flemish region of Belgium, approximately 
73% of houses have a domestic garden [58], which take up 8.3% of the total area. The 
garden coverage of 30.85% in our study area makes sense, because the “diamond region” 
is the most populated region in Belgium.  
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Figure 13. The spatial variations of greenspace at scales. (a) Statistical sector; (b) building block; (c) 
garden parcel. Figures share the legend. 

Global observations revealed that, in populated cities, UGI landscapes are generally 
small-sized and inlaid in a matrix of artificial structures in the urban core area but are 
more aggregated in rural areas [59]. Although medieval Leuven is a small city by interna-
tional standards, its compactness results in a similar greenspace landscape to populated 
cities, which implies a demand for smart greening strategies [60]. For example, the exur-
ban gardens (1017.83 m2) are significantly larger than the other gardens (637.97 m2 of sub-
urban gardens, and 258.59 m2 of urban gardens), and the greenspace within gardens de-
creased in mean patch size (153.48 to 21.35 m2) but increased in patch density (65.09 to 
425.32/ha). Specifically, the townhouses and city apartments of Leuven city are usually 
associated with small backyards, which constrains the patch size of garden greenspace 
but increases fragmentation and shape complexity [61]. In contrast, detached houses and 
single-family houses in rural areas generally contain a large amount of vegetated area, 
which would aggrandize greenspace coverage and mean patch size (Table 6).  

Table 6. The landscape characteristics of garden greenspace. 

  TA (ha) PC (%) PD (/ha) ED (/ha) LPI (%) MPS (m2) 

Garden 

Green space 1881.74 70.98 227.86 1402.33 78.45 92.93 
High evergreen 174.31 6.93 102.91 441.43 7.27 12.24 
High deciduous 694.12 23.46 637.28 1860.27 26.42 29.81 
Low evergreen 859.97 35.38 298.03 1103.72 40.13 55.58 
Low deciduous 153.34 5.21 79.45 386.09 4.63 17.11 

Urban 
garden  

Green space 122.03 56.46 425.32 2049.57 60.69 21.35 
High evergreen 19.14 8.56 152.28 461.68 7.55 8.72 
High deciduous 47.65 20.43 855.94 2387.14 23.61 15.19 
Low evergreen 42.84 22.29 573.6 1778.39 25.83 23.08 
Low deciduous 12.40 5.18 130.46 424.91 3.74 7.43 

Suburban 
garden  

Green space 926.18 70.85 146.83 1236.06 75.41 86.16 
High evergreen 89.46 7.75 108.43 463.04 6.48 11.36 
High deciduous 318.59 25.79 542.74 1296.98 25.35 25.42 
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Low evergreen 441.11 31.51 314.56 982.95 38.52 44.91 
Low deciduous 77.02 5.8 89.77 372.63 5.06 14.28 

Exurban 
garden  

Green space 833.54 82.43 65.09 591.15 94.37 153.48 
High evergreen 67.93 6.67 59.58 437.28 7.96 16.7 
High deciduous 295.54 29.41 251.34 883.51 29.13 41.05 
Low evergreen 406.62 40.12 115.67 601.73 51.47 73.19 
Low deciduous 63.45 6.23 50.02 359.42 5.85 23.96 

Existing urban ecological studies have revealed that greenspace landscapes (i.e., com-
positions and configurations) could provide numerous ecosystem services contributing to 
urban sustainability and human well-being. For example, trees were more efficient in mit-
igating urban heat islands than grass [7]. Nevertheless, low evergreen (grassland) was the 
most vegetated type (35.34%) across studied gardens, which makes these gardens more 
vulnerable to urban heat risks or other environmental hazards than the city parks contain-
ing many woods. In addition, the greenspace coverage, patch size and shape complexity 
are also positively related to their cooling effects [6]. In study area, the urban heat intensity 
is 2.8–4.7 °C and the discomfort index is 3.4–4.3 higher in urban areas than in rural areas 
during the summer. However, the greenspace in downtown gardens (6925 parcels) con-
stitutes only a small fraction of total garden greenspace (1.22 of 18.82 Km2 at an average 
coverage of 56.46%), whereas rural gardens (9128 parcels) provide a considerable propor-
tion of total garden greenspace, 8.33 of 18.82 Km2 at an average coverage of 82.43%. This 
striking contrast leads to large imbalances in ecosystem provisions and demands between 
urban gardens and rural areas. Therefore, it is worth emphasizing the pressing needs of 
interdisciplinary studies conducted in collaboration with landscape designers and urban 
ecologists. Such studies would provide better insight for landscape designers when they 
are balancing ecological functions and landscape amenities in garden regulations.  

4.5. Applicability and Limitation 
We valued the applicability very much when designing the methodology in the first 

place. A methodology derived from one place generally are difficult to transfer to other 
places of the world. There are several factors may improve the applicability of our study. 
First, the study area is a typical region, that represents heterogeneous garden environment 
and abundant vegetation resources, to test the methodology. Second, we selected the 
widely used satellite imagery that has potentially contributions to our classification. 
Third, we evaluated the capacity of stereo-imagery in constructing 3D structure, concern-
ing the less availability and accessibility of LiDAR data set in many regions. Finally, we 
present a straightforward methodology design, which is easy to understand, including 
segmentation validation, feature selection and classifier application. Those designs facili-
tated the applicability and replication of our analysis in other cities and regions. 

Our case study exemplified the application of multi-sourced satellite imagery in 
quantifying composition and landscape in the less concerned gardens. This study could 
be improved in following aspects: (a) the plant phenologies in study area vary among 
vegetation types and species, so a bigger number of temporal images (in present we only 
have 3 images) can offer more variations of plant phenology; (b) the Pleiades imagery 
used in our study are stereoscopic imagery, a tri-stereoscopic imagery would produce 
more accurate 3D structure than stereo-image, in particular the north-western part of 
study region are hilly areas; and (c) we chose CART as the classification method, but many 
other classification methods like SVM, RF and CNN also produce reliable performances. 
Further studies may compare these classification methods to identify the most potential 
one for UGI mapping in domestic gardens. 
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5. Conclusions  
Domestic gardens comprise more than one-third of urban areas in many cities but 

have been the focus of less study due to their small size and lack of regulation. Here, we 
developed an approach to derive garden parcels and evaluated the added values of multi-
sourced satellite imagery in garden mapping in the medieval European city. Our results 
have proved the significant contributions of increased spatial resolution to vegetation type 
recognition in domestic gardens. The improvements were generally related to their spatial 
resolution increments. Application of multi-temporal stereo Pleiades-1A imagery im-
proved the overall accuracy by 13% and greenspace coverage by 8.53% contrasting to clas-
sification of single Pleiades-1A imagery. The garden greenspace covers 30.85% of total 
garden parcels, and the average greenspace coverage is 70.98%. Along with the urban-
rural continuum, the average garden size increased from 258.59 m2 for urban gardens to 
1017.83 m2 for rural gardens, while the average greenspace coverage increased from 
56.46% to 82.43%. Additionally, the aggregated greenspace mosaics in rural gardens indi-
cated by the largest patch index led to the increased mean patch size and reduced green-
space fragmentation and shape complexity. 

City residents are less educated with regard to the ecological provisions of urban 
gardens, and how they could improve their function. Studies such as this one call for mul-
tidisciplinary collaborations between urban ecologists, landscape designers, and the local 
community. These studies and collaborations offer residents an opportunity to under-
stand the environmental value of their gardens and enlighten decision makers with regard 
to greenspace planning to optimize ecosystem services and landscape amenities. 
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