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Abstract: Domestic gardens provide residents with immediate access to landscape amenities and
numerous ecological provisions. These ecological provisions have been proven to be largely deter-
mined by greenspace composition and landscape, but the fragmentation and heterogeneity of garden
environments present challenges to greenspace mapping. Here, we first developed a recognition
method to create a garden parcel data set in the medieval Leuven city of Belgium, based on the land
use layers and agricultural land parcels. Then, we applied multi-sourced satellite imagery to evaluate
the added value of spatial resolution, plant phenology and 3D structure in identifying four vegetation
types. Finally, we characterized the greenspace landscapes in garden parcels. Compared with single
ALOS-2 imagery, SPOT-7 imagery and Pleiades-1A imagery increased the overall accuracy by 4% and
8%, respectively. The accuracy improvement (21%) produced from multi-temporal stereo Pleiades-1A
imagery strongly verified the significance of plant phenology and 3D structure in garden mapping.
The average greenspace cover in garden parcels was 71% but varied from 56% in urban gardens to
82% in rural gardens. The garden greenspace landscape is fragmented by the artificial structures
in urban areas but has a more aggregated size and less complex shapes in rural areas. This study
calls for greater attention to be paid to gardens, and for multi-disciplinary studies conducted in
collaboration with urban ecologists and landscape designers to maximize the benefits to residents of
both immediate landscape amenities and ecological provisions, in the face of global environmental
changes and public health risks.

Keywords: domestic gardens; greenspace mapping; garden landscapes; multi-temporal stereo im-
agery; vegetation types

1. Introduction

Expanding cities worldwide have pledged to increase urban green infrastructure
(UGI) [1] and maintain an extensive UGI network [2], as it provides numerous ecosystem
services contributing to human well-being and sustainable urban development. Domestic
gardens are the most promising places to carry out these long-term urban development
plans [3], as they comprise more than one-third of the overall urban area in many cities [4,5].
However, domestic gardens have received comparatively less attention from scholars,
likely due to the small parcel size and the lack of regulation. Furthermore, the majority
of the general public is unaware of the environmental value of their own gardens and
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how best to improve their ecological provisions. Homeowners’ preferences in individual
gardens increase the diversity and heterogeneity in pattern and landscape, which presents
challenges to accurate greenspace mapping. Therefore, quantifying UGI composition and
landscapes at the garden scale would be a valuable asset for understanding the current
status of domestic gardens.

Factors relating to UGI composition, such as type and species, are imperative for
ecological provision evaluation and rigorous ecological modeling. For instance, urban
trees are more efficient in mitigating urban heat than grass [6,7]. Needle-leaf species
generally capture and immobilize more air particles than broad-leaf species [8,9]. The
significance of vegetation composition demands more powerful classification methods and
data sets for UGI mapping, in particular for small-size domestic gardens. In recent decades,
the increasing availability of very high-resolution satellite imagery and advanced remote
sensing techniques has encouraged increasing numbers of attempts to use instant satellite
imagery to deal with the heterogeneous UGI composition. Existing evidence verified that
UGI mapping performance depends on study location [10,11], imagery properties [12,13],
classification methods [14,15] and produced vegetation classes [16,17]. Mathieu et al. [16]
combined IKONOS images and an object-based classification method to identify large-scale
vegetation communities in urban areas of Dunedin City, New Zealand, and the overall
accuracy ranged from 64% to 77%. Pu and Landry [12] produced an overall accuracy
ranging from 66% to 67% when identifying six tree species/groups using WorldView-2
image in Tampa, Florida, USA. Li et al. [14] showed that a single worldview satellite image
produces relatively low accuracies (45–83%) for five tree species in Beijing, China. These
relatively low accuracies and erratic performances suggest the insufficiency of instant
imagery in recognizing vegetation types, or even plant species.

Elvidge and Portigal [18] observed dramatic spectral changes in grasslands but slightly
spectral changes in evergreen species from time-series AVIRIS images in 1990. Since then,
multi-temporal satellite imagery reflecting plant phenology has been used to produce
more accurate identification of vegetation types. Wolter et al. [19] applied a time-series
of Landsat TM and MSS imagery acquired from 1980 to 1992 to identify forest types
in northern Wisconsin, US. Hemmerling et al. [20] applied a Sentinel-2A/B time series
for mapping 17 tree species at a regional scale in a temperate forest region of Central
Europe. The majority of multi-temporal studies have focused on natural forests based
on medium/low spatial resolution satellite imagery [21–23]. Meanwhile, Light Detection
and Range (LiDAR) has been considered an effective solution to depict UGI structure and
height. For example, Terryn et al. [24] identified five tree species using structural traits from
terrestrial laser scanning in Oxford, UK, with a success rate of 80%. Dalponte et al. [25]
investigated the classification setups of hyperspectral images, multispectral satellite images,
and airborne LiDAR data for identifying seven tree species in mountain forests. Pu and
Landry [26] evaluated the abilities of multi-temporal Pleiades satellite images with airborne
LiDAR data for classifying seven urban tree species. However, the widespread applications
of LiDAR have been largely limited by their availability and costs.

Essentially, multi-sourced data sets improve UGI mapping with their more abundant
spatial and temporal information. The introduce of multi-sourced data set may increase
uncertainties caused by systematic and non-systematic factors, whereas, with the devel-
opment of remote sensed techniques, increasing satellites capture a greater variety of
image products, like multi-temporal and stereoscopic images. These images from the same
satellite platform reduced the uncertainties of combining applications. In addition, more
effective image processing methods are also developed to deal with application issues that
may raise uncertainties. Among remote sensed products, multi-temporal stereo imagery,
which holds the advantages of being able to assess both plant phenology and 3D structure,
provides great potential to facilitate UGI mapping [27–29]. While the general and public
UGI have received intensive attention, UGI mapping in domestic gardens has been less
studied [30,31]. Moreover, the land management practices of domestic gardens are diverse
among stakeholders and lack regulation. Some quantitative studies have suggested a gen-
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eral declining UGI trend in domestic gardens [32–34]. Therefore, the large-scale greenspace
monitoring in domestic gardens will enable local authorities to assess the UGI benefits of
urban domestic gardens.

Here, we first developed an approach to derive garden parcel data sets based on
available spatial data sets, and then we demonstrated the UGI composition and landscape
at garden scale by applying multi-temporal stereo imagery to UGI mapping in domestic
gardens. During the UGI mapping, we developed classification schemes based on ALOS-2,
SPOT-7 and Pleiades imagery. These were designed to (1) evaluate the added value of
increased spatial resolution, plant phenology and 3D structure for identifying vegetation
types, and (2) demonstrate the composition and landscape variations of domestic gardens in
the compact European city of Leuven, Belgium. Our case study exemplified an application
of garden monitoring and called for greater attention from both local authorities and
stakeholders to garden management and ecological provisions.

2. Materials and Data Sets
2.1. Study Area

Leuven is an integrative part of the “Flemish Diamond”, which locates in the heart of
western Europe and consists of four agglomerations taking up four corners of an abstract
diamond shape (Brussels-Ghent-Antwerp-Leuven). The urban domestic gardens can be
given a highly important role in Flanders, and 73% of the houses have a domestic garden.
Most areas of Flanders can be interpreted as urban sprawl filled with a maze of garden
complexes. The greenspace in Leuven is mainly urban parks, agricultural lands and natural
forests. The average greenspace coverage of domestic gardens is only 57% with an average
size of 366 m2. Although the total greenspace covers 65% of prefectural Leuven city (37.13 of
56.63 Km2; Federal Ministry of Home Affairs, 2018), the greenspace is unevenly spatially
distributed across the city. The city area outside the “ring road” is featured by lower
building density but larger-size agricultural lands, whereas the compact urban area circled
by the “ring road” is characterized by higher building density and smaller-size private
garden mosaics (Figure 1). The developed urban area of Leuven has expanded eastwards,
presenting an urban–rural continuum. Therefore, the small medieval town of Leuven
with various functional zones and landscapes features would be an ideal place to evaluate
greenspace mapping.

2.2. Remotely Sensed Imagery

ALOS-2 (Advanced Land Observation Satellite) imagery, SPOT-7 (Satellite pour
l’Observation de la Terre) imagery and Pleiades-1A imagery (Table 1) were employed
in this case study. ALOS-2 imagery (Figure 1a) acquired on 16 May 2019, and SPOT-7
imagery (Figure 1b) acquired on 22 July 2019. ALOS-2 senses the Earth’s surface at a spatial
resolution of 2.5 m for panchromatic and 10 m for multi-spectral (MS) bands. The SPOT-7
satellite can image the earth with a spatial resolution of 1.5 m at the panchromatic band
and 6 m at the multi-spectral bands. Pleiades-1A satellite imagery (Figure 1c) acquired on
4 December 2019 (Figure 2a), 7 March 2020 (Figure 2b) and 31 July 2020 (Figure 2c,d) were
also employed in this study. The Pleiades-1A satellite offers a spatial resolution of 0.5 m
for the panchromatic (480–830 nm) and 2 m for the multispectral bands (Blue: 430–550 nm;
Green: 490–610 nm; Red: 600–720nm; Near-Infrared: 750–950 nm). The summertime
Pleiades-1A imagery (31 July 2020) is a stereo image, which provides almost simultaneous
images from two different views (forward scanning in Figure 2c; backward scanning in
Figure 2d) for the same area at the same spatial resolution. In general, a stereo-image
(forward and backward looking) can produce a better accuracy of digital ground models in
gentle terrain areas, while a tri-stereo-image (nadir, forward and backward looking) can be
used for most terrains (Pleiades Imagery User Guide, 2020).
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Figure 1. The study area demonstrated by satellite imagery in true color. (a) ALOS-2, (b) SPOT-7
imagery, (c) Pleiades-1A imagery.

Table 1. The basic features of satellite imagery used in classification.

Satellite Acquisition
Date

Spatial
Resolution Multi-Spectral Band Stereo Image

ALOS-2 16 May 2019 2.5 m

Blue: 420–500 nm;
Green: 520–600 nm;
Red: 610–690 nm;

Near-Infrared: 760–890 nm

No

SPOT-7 22 July 2019 1.5 m

Blue: 455–525 nm;
Green: 530–590 nm;
Red: 625–695 nm;

Near-Infrared: 760–890 nm

No

Pleiades-1A 4 December 2019 0.5 m

Blue: 430–550 nm;
Green: 490–610 nm;
Red: 600–720 nm;

Near Infrared: 750–950 nm

No

7 March 2020 0.5 m No

31 July 2020 0.5 m Yes

These satellite imagery data were orthographic calibration-ready standard products
obtained under cloudless conditions. A series of preprocessing steps were performed by the
vendor (Airbus Defence and Space, 2020), including internal sensor geometry correction,
removal of optical distortions and line-rate variations, and band registration. Afterward,
we applied the Gramm–Schmidt algorithm [35] to pan-sharpening the multi-spectral bands,
as the Gramm–Schmidt algorithm produces better spectral quality and maintains original
spectrum of imagery [36]. Finally, we performed the geometric corrections by manually
selecting more than 100 pairs of tie-points across Leuven city and controlling the root mean
square under 0.5 using the aerial photography of summer 2018 as the reference map. The
aerial photography was collected in the summer flying season during June to July of 2018,
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and subsequently the production of an Orthophoto with a ground resolution of 25 cm
(https://download.vlaanderen.be/, accessed on: 31 May 2020).

Figure 2. The examples of multi-temporal stereo Pleiades-1A satellite imagery. (a) winter image
acquired in December 2019; (b) spring image acquired in March 2020; (c) summer image acquired at
10:58:23.4 of 31 July 2020 (along-track incidence of 15.41◦); (d) summer image acquired at 10:59:10.6
of 31 July 2020 (along-track incidence of −10.22◦).

2.3. Thematic Layers
2.3.1. Plant Phenology (PP)

Multi-temporal imagery offers seasonal changes in plant physical and chemical char-
acteristics. The variations of seasonal change among different plants contribute to the
separation of vegetation types and even tree species. Evergreen plants are essentially un-
changed in coloration and foliation across seasons, but most deciduous species show strong
variation between the growing season and the non-growing season. In addition, plant
phenological characteristics might vary greatly among functional types or plant species.
For example, native populous trees usually sprout out in early spring and wither away
in early fall, while the exotic populous trees introduced from warmer regions require a
higher accumulated temperature to sprout out and fade away at a later time point. As the
NDVI [37] is the most common index to reflect plant phenological changes, we calculated a
plant phenology index (PP) based on NDVI values of multi-temporal Pleiades-1A imagery.
In our case study, the non-growing season, growing season and the transition stage were
represented by the imagery of December, July and March, respectively. For a ground object,
if the NDVI of the December image (NDVI_Dec) was greater than that of the March image
(NDVI_Mar), then PP = NDVI_Jul–NDVI_Dec. Otherwise, PP = NDVI_Jul–NDVI_Mar.

2.3.2. Normalized Digital Surface Model (nDSM)

An nDSM represents the absolute height of objects above the ground surface, such as
buildings and trees [38]. It can usually be created by subtracting a Digital Terrain Model
(DTM) from a Digital Surface Model (DSM). A DSM represents the surface of the earth,
including vegetation, buildings and other artificial features. A DTM only includes the
elevation of the ground surface removing vegetation, buildings, and other artificial features,
but roads and bridges are retained. Herein we generated an nDSM layer from stereo
Pleiades-1A satellite imagery acquired in 31 July 2020.

The nDSM generation was performed in PCI Geomatica software (Geomatica Ortho-
Engine). First, we selected the rational function for the optical satellite modeling method
according to the data set type and platform. As the stereo satellite images are Orthoready
standard products (ESPG:31370) and well-aligned to each other, we skipped the GCP/TP
collection. Subsequently, we generated epipolar pairs between two stereoscopic images
and automatically extracted the geocoded DSM (Figure 3a) using semi-global matching
methods at a spatial resolution of 0.5 m. In PCI Geomatica, there are two primary tools to
convert a DSM to a DTM (Figure 3c). The DEM editing tool is a manual method of con-
version, while the DSM2DTM algorithm provides an automated capability. In this project,

https://download.vlaanderen.be/
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we chose the manual DEM editing tool. During the conversion, several filter methods
(terrain filters; bump and pit filters; median filters; clamp filters; manual touch-up) can be
repeatedly applied by order until we produce a satisfying result.

Figure 3. The digital models produced from stereo Pleiades-1A satellite imagery. (a) Digital Surface
Model (DSM); (b) normalized Digital Surface Model (nDSM); (c) Digital Terrain Model (DTM).

2.3.3. Garden Parcels

Informatie Vlaanderen Agency (EODaS) developed a workflow to automatically de-
lineate garden parcels from official governmental spatial data layers. Taking into ac-
count various garden definitions [30,39], we defined the ‘garden parcel’ in the present
analysis as places that are covered with cultivated greenspace to provide enjoyment.
Therefore, a garden can be residential (e.g., backyards), public (e.g., city parks), indus-
trial (e.g., parking lots) or semi-public greenspace (e.g., hospitals). Following this def-
inition, the garden parcels were modified based on the large-scale reference file (GRB,
https://overheid.vlaanderen.be/GRB-Wat-is-het-GRB, accessed on: 31 May 2020) and
the Agricultural Land Parcel Registration (LBPC, https://lv.vlaanderen.be/en, accessed
on: 31 May 2020). The GRB file contains geographical and characteristic information of
well-definable, conventionally accepted reference data, including buildings, administrative
parcels, roads, waterways, railways and so on. The LBPC contains parcels in agricultural
use for the Department of Agriculture and Fisheries to fulfill their mission: ‘contribution to
the development of future-oriented agricultural and fisheries policies and quality service
to the Flemish agro-food sector’. A garden parcel in our case study is an administrative
parcel that

1. does not overlap with an agricultural parcel or a railroad;
2. contains at least one main buildings;
3. or contains one or more side buildings, which share a border with an administrative

parcel that contains one or more main buildings;
4. or does not contain a building but overlaps with a building block that contains more

than 60% administrative parcels with one or more main buildings;
5. has been cut by roads, main buildings, and buildings > 20 m2;
6. has been cleaned from slivers.
7. The above procedures produced more than 15,000 garden parcels in study area.

2.3.4. Field Inventory

To obtain inclusive ground samples, we conducted extensive field campaigns in
various local climate zones (LCZs) (Table 2) over the entirety of Leuven city. The classi-
fication scheme of LCZs was adopted from Stewart and Oke [40], which was based on
(i) building height, (ii) building density and (iii) greenspace coverage at an analytical unit
of 100 m × 100 m grid cell (Table 2). In summer 2019, 203 gardens across Leuven city
(20–30 gardens for each LCZ depending on voluntary applicants, Figure 4a) were selected

https://overheid.vlaanderen.be/GRB-Wat-is-het-GRB
https://lv.vlaanderen.be/en
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and investigated. In the field (Figure 4b), field experts manually drew all ground objects
in a garden parcel on a printed copy of an aerial photograph, and recorded the land use
type for each object, e.g., trees, shrubs, grass, farm plantings, buildings, roads, water, etc.
All objects were digitalized into vector layers in QGIS (version 3.10) based on the field
campaigns (Figure 4c). Finally, 3624 ground objects from 203 gardens were collected, and
3081 of them were vegetated objects.

Table 2. The classification of LCZs, * class is absent in study area.

Building Density Building Height Greenspace Coverage LCZ Class

≥0.25 ≥8 m ≥67% 111 *
34−67% 112
≤34% 113

<8 m ≥67% 121 *
34−67% 122
≤34% 123

<0.25 ≥8 m ≥67% 211 *
34%−67% 212
≤34% 213

<8 m ≥67% 221
34−67% 222
≤34% 213

Figure 4. The garden objects in the field inventory. (a) distribution of investigated gardens; (b) garden
parcels; (c) manually delineated garden objects.

3. Greenspace Mapping in Gardens
3.1. Classification Designs

This case study involved six classification schemes to evaluate the contribution of
spatial resolution, plant phenology and 3D structure to UGI monitoring (Figure 5). First,
we conducted a classification based on ALOS-2 imagery (referred to as scheme a), SPOT-
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7 imagery (referred to as scheme b) and summer Pleiades-1A imagery (referred to as
scheme c), to examine the mapping capacity of instant satellite imagery. Subsequently,
we performed further classification schemes by introducing seasonal Pleiades-1A imagery
(referred to as scheme d) and stereo Pleiades-1A imagery (referred to as scheme e) to scheme
c. For scheme d, the plant phenology (PP) derived from multi-temporal Pleiades imagery
was applied to separate deciduous and evergreen plants, while for scheme e, the nDSM
derived from stereo Pleiades imagery was applied to identify plant height. For scheme e,
we introduced both plant phenology and nDSM to scheme c (referred to as scheme f).

Figure 5. The conceptual diagram of classification designs. scheme a-Classification using ALOS-2
imagery; scheme b-Classification using SPOT-7 imagery; scheme c-Classification using Pleiades-
1A imagery; scheme d-Classification using stereo Pleiades-1A imagery; scheme e-Classification
using multi-temporal Pleiades-1A imagery; scheme f-Classification using multi-temporal stereo
Pleiades-1A imagery.

An Object-Based Image Analysis (OBIA) [41,42] was conducted to produce four veg-
etation functional types: High Deciduous (HD), Low Deciduous (LD), High Evergreen
(HE) and Low Evergreen (LE). OBIA can accurately delineate ground object boundaries
and introduces many more spectral and spatial features than the pixel-based approach,
especially for very high spatial resolution remotely sensed imagery [43]. An OBIA normally
includes three procedures: image segmentation, sample training and classifier application.
In present classifications, a multi-resolution segmentation (MRS) algorithm was applied
to produce image objects at hierarchical levels. The ground samples were trained using
Classification and Regression Tree (CART) to generate features and thresholds for separat-
ing vegetation types. A ruleset classification based on CART results was established and
applied to produce a greenspace map.

3.2. Image Segmentation

Generating accurate image segments as identical as the ground-truth objects is a
crucial precondition for a high-quality OBIA. The MRS algorithm embedded in eCognition
Developer was applied to the segmentation. MRS is a bottom-up segmentation which
consecutively merges pixels or existing image objects into bigger objects based on a relative
homogeneity criterion [41]. The homogeneity criterion measures how homogeneous an
image object is. Three parameters (scale, shape and compactness) can be modified to
control homogeneity criterion [42]. A larger scale parameter possibly causes “under-
segmentation” through generating image objects with mixed land covers, whereas a smaller
scale parameter leads to “over-segmentation” of a fragmented landscape. Following the
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scale parameter, the color and shape were modified to refine the shape of the segments.
The value of the shape, which equals one minus that of the color, determines how much
weight (0–1) was placed on the shape when generating segmented objects. The parameter
compactness is a shape-related factor, which determines the compactness or smoothness of
segmented objects.

Compared with the commonly used visual inspection or the “trial and error approach”,
the Estimation of Scale Parameter (ESP) [44] is more efficient and objective. ESP produces
multiple segmentations of the same image by constantly increasing the scale parameter
and calculating local variance at the scene level for each scale to identify that which
produces the highest spatial independence of segmented objects (Figure 6). In one ESP
practice, several scale parameters can be indicated for different land covers, e.g., greenspace,
water and buildings. Concerning the comparability of the final classification results, we
have to produce identical image objects for all the six different schemes (Figure 5). We
conducted the MRS based on all 20 multi-spectral bands of satellite imagery in Table 1.
These multi-spectral bands were equally weighted in segmentation, and the produced
image objects were communal for classification schemes. ESP results suggest three potential
scale parameters (25, 55 and 90; Figure 6) targeting different classes: scale 25 for greenspace,
55 for vegetation types and 90 for water and impervious surfaces. Most previous studies
found that more meaningful objects would be extracted with a higher weight for the color
criterion [45]. Therefore, we produced three-level hierarchical image objects with 25, 55 and
90 as the scale parameters, 0.2 as the shape and 0.5 as the compactness.

1 
 

 

Figure 6. The results of ESP and produced image objects.
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3.3. Classification Procedures

All segmented image objects were firstly separated into shaded objects and unshaded
objects using thresholds of mean brightness and mean red band (Table 3). Subsequently, the
vegetated objects, indicated by NDVI and mean blue band, were separately extracted from
unshaded and shaded objects. Here, we applied the same features but different thresholds
to recognize vegetated objects among unshaded and shaded objects. For instance, the NDVI
threshold for vegetated objects in unshaded objects was 0.24, while in unshaded objects
was 0.13 (Table 3). For recognized vegetation objects, different classification procedures
among classification schemes were subsequently performed to separation of functional
types (HD, LD, HE, LE).

3.3.1. Classification Using Single Satellite Imagery (Schemes a to c)

For vegetated objects on single ALOS-2, SPOT-7 and Pleiades imagery, we first applied
the Tree-Grass Difference Index (TDGI, expression = −Log(canny)+Brightness) [46] to
separate high vegetation (trees and shrub) and low vegetation (grass). Subsequently, CART
produced features and thresholds to differentiate deciduous and evergreen in high vege-
tation and low vegetation, respectively. CART is a non-parametric classification method
which makes no assumptions regarding the underlying distribution of the predictor vari-
ables and identifies splitting variables based on an exhaustive search of all possibilities [47].
CART usually produces straightforward rules and clear information on the importance of
features. For a classification with few land cover classes, the CART only needs limited com-
putational effort but produces reasonable accuracy [48]. Two-thirds of garden vegetation
samples were randomly selected as training samples and were ex-ported into CART to pro-
duce decision trees for separating vegetation types (Figure 7). For shaded areas, we divided
them into vegetation shadow (shadow caused by trees and shrubs) and building shadow
(shadow caused by buildings), as the two types of shadow are too distinct in spectrum and
shape characteristics to apply the same thresholds when identifying vegetation types under
them. For instance, building shadow is generally darker and larger than vegetation shadow.
Therefore, the shaded objects with an area greater than 400 pixels (100 m2) and brightness
lower than 24 were classified as building shadow, and the rest were vegetation shadow. In
addition, the more boundaries of an object shared with vegetated objects, the higher the
possibility that the object is vegetation. Then, shaded vegetation was recognized from the
shadow by combining NDVI (0.13 for tree shadow, 0.08 for building shadow) with a border
relative to vegetation objects (0.5). Afterward, the vegetation types in shaded objects were
separated using the same features as in unshaded vegetation but with different thresholds
(Table 3).

3.3.2. Classification Integrating Multi-Temporal Stereo Satellite Imagery (Schemes d to f)

With respect to classification schemes d and e, Plant phenology (from seasonal Pleiades
imagery) and nDSM (from stereo Pleiades imagery) were separately introduced into sum-
mer Pleiades-1A imagery classification (scheme c) as an auxiliary layer. For scheme d,
we first divided the vegetated objects into three groups (deciduous, mixed vegetation,
evergreen) according to PP values. Vegetated objects were classified as evergreen when
PP < 0.17 for unshaded objects (0.12 for shaded objects), and as deciduous when PP > 0.25
for unshaded objects (0.21 for shaded objects). Vegetated objects with 0.17 < PP < 0.25 for
unshaded objects (0.12 < PP < 0.21 for shaded objects) were classified as mixed vegetation
and were further classified into deciduous and evergreen vegetation using the features and
thresholds listed in Table 3. In addition, the obtained deciduous and evergreen vegetation
was further classified as high vegetation or low vegetation using TDGI. In contrast, high
vegetation and low vegetation were first identified by nDSM at a break point of 5 m in
scheme e and then separated into deciduous and evergreen vegetation using the features
and thresholds listed in Table 3. For scheme f, we applied nDSM to separate high and low
vegetation, and PP to separate deciduous and evergreen using the features and thresholds
in scheme d and e to ensure the validity of classification comparisons.
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Table 3. Features and thresholds for classifications.

Class Name
(Object Level)

Feature
(Threshold)

Class Name
(Object Level)

Feature
(Threshold)

Unshaded area
(25) Brightness (36); Mean Red (387) Shaded area

(25) Brightness (36); Mean Red (387)

Tree & Building
shadow (55)

Area (100 m2); Brightness (24)
Relative border to green (0.5)

Unshaded green
(25) NDVI (0.24); Mean Blue (445) Shaded green

(55)
NDVI (0.13) in tree shadow

NDVI (0.08) in building show
High & low green

(55) −Log(canny_NIR) + Brightness (51.24) High & low green
(55) −Log(canny_NIR)+Brightness (36.81)

Deciduous
& evergreen (55)

Mean NIR (236); Ratio G/R(1.34);
Hue-R_G_B (0.21)

Deciduous
& evergreen (55)

Mean NIR (197); Ratio G/R (1.15);
Hue-R_G_B (0.16)

High deciduous
& evergreen (55)

Ratio G/R (1.52); GLCM-H_NIR (0.14);
GLCM-H_G (0.19); Hue-R_G_B (0.31)

High deciduous
& evergreen (55)

Ratio G/R (1.29); GLCM-H_NIR (0.06);
GLCM-H_G (0.12); Hue-R_G_B (0.22)

Low deciduous
& evergreen (55)

Mean NIR (279); Ratio R/NIR (0.56);
Hue-G_R_NIR (0.23);
GLCM-H_NIR (0.1)

Low deciduous &
evergreen (55)

Mean NIR (234); Ratio R/NIR (0.46);
Hue-G_R_NIR (0.14);
GLCM-H_NIR (0.08)

Plant Phenology (55) 0.17; 0.25 Plant phenology (55) 0.12; 0.21
nDSM (55) 5 m nDSM (55) 5 m

Figure 7. The decision trees resulted from CART. (a) Decision tree for high deciduous and high
evergreen; (b) Decision tree for low deciduous and low evergreen. The green square indicates the
targeting class, while the red square indicates the other class.

3.4. Accuracy Assessment

We applied two validation methods, “point validation” and “polygon validation”, to
assess the classification schemes. The “point validation” was conducted to confirm the
classification accuracy on a ground point. We performed point validation on 800 validation
sites randomly selected from the whole study area. We then generated their confusion
matrixes and calculated Kappa coefficients for vegetation functional types. In contrast,
the “polygon validation” was performed at garden scale within the 203 gardens in which
conducted the field investigations and manual delineations. We compared the percentage
coverage of both garden greenspace and vegetation types in a garden between produced
greenspace map and the greenspace objects observed during the garden survey. The
polygon validation was performed at three spatial scales: statistical sector, building block,
and garden parcel. A statistical sector of Belgium (2019 version) is the basic territorial unit
resulting from the subdivision of the territory of municipalities for the dissemination of its
statistics at a finer level than the municipal level (accessed online by https://download.
vlaanderen.be/, accessed on 31 May 2020). A city block is the smallest group of buildings
that is surrounded by streets, not counting any type of thoroughfare within the area of
a building or comparable object. The garden parcel map was developed by EODoS as
described in Section 2.3.

https://download.vlaanderen.be/
https://download.vlaanderen.be/
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4. Results and Discussion
4.1. Validation of Thematic Layers
4.1.1. nDSM Layer

To evaluate the nDSM layer generated from stereo Pleiades-1A imagery (referred to as
nDSM_P), we here introduced an nDSM derived from LiDAR altitude data (Digital Altitude
Model Flanders II, DHMV II, https://overheid.vlaanderen.be/dhm-dhmv-ii-brondata,
accessed on 31 May 2020) as the reference map (referred to as nDSM_R). The DHMV
II was collected in summer 2015 by Aerodata Surveys Neder-land BV (https://www.
geobusiness.nl/leden/aerodata, accessed on 31 May 2020) featuring an average point
density of 15 points/m2. The processing procedures in LAStools software include the
detection and removal of noisy returns, the detection of ground returns, the creation of
DTM through interpolation, the derivation of all non-ground returns and the creation of
a CHM by extracting the maximum height for each cell. More processing details can be
found in Degerickx et al. [49]. A total of 200 validation points were randomly selected
across the study area (Figure 3b). The height from nDSM layers showed a clear linear
relationship (R2 = 0.976, Figure 8a). The nDSM produced from stereo Pleiades-1A imagery
overestimated the object height by 0.92m on average (Figure 8b).

Figure 8. The nDSM validation. (a) comparison of nDSM layers from stereo Pleiades satellite imagery
(nDSM_P) and LiDAR (nDSM_R); (b) the differences between two nDSM layers.

4.1.2. Garden Parcels

The garden parcel map in Section 2.3.3 was evaluated by 400 randomly selected garden
parcels, 200 garden parcels and 200 non-garden parcels. The overall accuracy of the garden
parcel map was 90%. The misclassified gardens were generally agricultural lands. We
further categorized all gardens parcels into three groups (urban gardens; suburban gardens;
and exurban gardens) by equally dividing the value range of building density at the
statistical sector scale (Figure 9a). The building density of a corresponding statistical sector
is the ratio of the overall floor area of buildings to the area of the Belgian statistical sector
where the garden parcel is located (Figure 9b). A garden parcel (Figure 9c) was classified
as urban garden if the corresponding statistical sector had higher building densities, and
likewise for suburban garden parcels and exurban garden parcels.

https://overheid.vlaanderen.be/dhm-dhmv-ii-brondata
https://www.geobusiness.nl/leden/aerodata
https://www.geobusiness.nl/leden/aerodata
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Figure 9. The spatial scale of study area: (a) statistical sector; (b) building block; (c) garden parcel.

4.1.3. Image Objects

No segmentation result is fully convincing if it does not satisfy human eyes. Therefore,
we evaluated the image segments through comparison with round-truth objects. We
randomly selected 100 image objects and overlapped the image segments with manually
delineated objects (Figure 10). Statistics suggested that the image segments were likely to
be over-segmented for the patches over 2500 m2 (Figure 11a) and under-segmented when
the patch size was less than 2500 m2 (Figure 11b). In addition, the image segments obtained
similar sizes to the delineated objects, with an average overlap ratio of 91.75 ± 4.12%
(Figure 11c). Considering that the image objects were produced on the basis of 20 multi-
spectral bands of used satellite imagery, the reasonable accuracies verified the accurate
segmentation and provided a reliable basis for the following classification procedures.

Figure 10. The comparisons of image objects produced by manual delineations and object-based
segmentations.
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Figure 11. The differences between segmented and manually delineated objects. (a) 100 random
selected objects; (b) the image objects less than 2500 m2; (c) the overlap percentages of selected objects;
the gray dash line is 1:1 line.

4.2. A Higher Spatial Resolution Improves Greenspace Mapping in Gardens

The overall accuracy of UGI mapping in domestic gardens (Figure 12; Table 4) in-
creased from 71.13% for ALOS-2 imagery (scheme a) to 76.38% for SPOT-7 imagery
(scheme b), and further to 79.25% for Pleiades-1A imagery (scheme c). The remotely
sensed classifications identified 7–12% (12.06% for ALOS imagery to 7.63% for Pleiades
imagery) less greenspace coverage than in situ investigations. These improvements in
overall accuracy (4.25% vs. 3.87%) and coverage differences (2.24% vs. 2.09%) verified
the contributions of the spatial resolution of satellite imagery. Similar positive effects
are supported by existing studies [10,50,51]. Li et al. [14] suggested that the overall ac-
curacy from WorldView-3 imagery (1.2 m for MS band) was 2–4% higher than that from
WorldView-2 imagery (2 m for MS band) when identifying tree species in Beijing urban
areas. Pu and Landry [12] showed a 3–7% increment in the overall accuracy of urban tree
species/groups when applying IKONOS imagery (4m for MS bands) and WorldView-2
imagery (2 m for MS band). Together with existing studies, we have exemplified that the
very high spatial resolution of remote sensing products is a precondition for fine-scale UGI
mapping, although it may depend on study regions, classification approaches, etc. [15,52].

Figure 12. The classification result from multi-temporal stereo Pleiades-1A imagery.
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Table 4. The confusion matrixes of greenspace maps.

Scheme a-
ALOS-2 Imagery

Scheme b-
SPOT-7 Imagery

Scheme c-
Pleiades-1A Imagery

OA 71.13 75.38 79.25
Kappa 0.634 0.688 0.735

Reference

HD HE LD LE NV UA HD HE LD LE NV UA HD HE LD LE NV UA

C
la

ss
ifi

ed

HD 152 11 19 16 7 74.15 163 11 15 11 8 78.37 171 8 13 12 7 81.04
HE 17 60 13 10 3 58.25 13 69 14 9 4 63.3 11 73 11 7 2 70.19
LD 22 9 82 13 5 62.6 19 7 88 12 6 66.67 15 9 97 9 5 71.85
LE 16 12 12 131 5 74.29 15 8 10 138 1 80.23 13 7 7 145 3 82.86
OT 14 9 10 8 144 77.84 11 6 9 8 145 81.01 11 4 8 5 147 84.57
PA 68.78 59.41 60.29 73.6 87.8 73.76 68.32 64.71 77.53 88.41 77.38 72.28 71.32 81.46 90.24

Scheme d-
Multi-Temporal Pleiades Imagery

Scheme e-
Stereo Pleiades Imagery

Scheme f-
Multi-Temporal Stereo Pleiades Imagery

OA 84.5 86.13 92.75

Kappa 0.803 0.822 0.908

Reference

HD HE LD LE NV UA HD HE LD LE NV UA HD HE LD LE NV UA

C
la

ss
ifi

ed

HD 184 5 6 11 6 86.79 188 12 6 7 4 87.50 203 3 6 3 3 93.12
HE 7 81 10 5 1 77.88 15 84 3 3 1 80.77 7 95 2 2 0 89.62
LD 15 6 107 4 3 79.26 5 2 111 13 4 83.46 5 1 121 4 2 90.98
LE 9 4 8 150 0 87.72 6 3 12 152 2 87.36 3 1 5 166 2 93.79
OT 6 5 5 8 154 86.52 8 3 6 3 153 88.44 3 1 2 3 157 94.58
PA 83.26 80.20 78.68 84.27 93.90 85.52 83.17 81.62 85.39 93.29 91.86 94.06 88.97 93.26 95.73

OA—Overall Accuracy; UA—User’s Accuracy; PA—Producer’s Accuracy; HD—Higher Deciduous; HE—High
Evergreen; LD—Low Deciduous; LE—Low Evergreen; NV—Non-Vegetation.

High evergreen obtained the lowest accuracy, while low evergreen (slightly better
than high deciduous) obtained the highest accuracy, as suggested by the confusion ma-
trixes (Table 4). For classifications based on single satellite imagery (schemes a–c), the
misclassified confusions generally present a nearly random pattern among vegetation
types. Compared with field investigation, remotely sensed recognition underestimated
high deciduous vegetation by 14.18% to 18.55% and low deciduous by 22.43% to 25.19%,
but it overestimated low evergreen vegetation by 12.79% to 15.12% and high evergreen by
20.09% to 23.36% (Table 5). These results indicated that single satellite imagery has limited
capacity in capturing either plant morphology or height structure in urban environments.

Table 5. The average percentage of the cover difference between produced greenspace map and the
observed greenspace in 203 investigated gardens during the field campaign.

Greenspace Type Scheme a Scheme b Scheme c Scheme d Scheme e Scheme f

Greenspace −12.06 ± 5.25 −9.72 ± 4.47 −7.63 ± 4.36 −5.44 ± 2.58 −5.29 ± 2.45 −3.53 ± 2.12
High Deciduous −18.55 ± 7.31 −16.87 ± 5.52 −14.18 ± 5.89 −11.32 ± 4.57 −10.15 ± 3.96 −7.06 ± 2.85
High Evergreen 23.36 ± 8.39 20.08 ± 7.12 17.57 ± 7.24 14.34 ± 5.63 13.48 ± 5.02 10.63 ± 3.79
Low Deciduous −25.19 ± 9.75 −22.43 ± 7.65 −19.83 ± 8.09 −15.92 ± 5.18 −15.36 ± 4.97 −11.19 ± 4.01
Low Evergreen 15.12 ± 6.36 12.79 ± 5.21 11.37 ± 4.74 8.16 ± 3.86 7.53 ± 3.03 5.22 ± 2.17

Aside from spatial resolution, imaging properties also impact UGI mapping, especially
in enclosed places such as domestic gardens. First, the capturing swath width (20 km for
Pleiades satellite, 60 km for SPOT-7 satellite, and 70 km for ALOS satellite) is related to
shadow coverage and texture. The fragmented and heterogeneous urban environments
mostly consist of interlaced built-up and greenspace mosaics. Leuven is a medieval old
town with high compactness which significantly increases the challenges of UGI mapping.
Consequently, the shadow treatment of satellite imagery is critical for urban land cover
mapping, as these shaded areas significantly minimize the spectral signature of land
cover [53,54]. Second, the Pleiades satellite covers more panchromatic and multi-temporal
bands (in wavelength) than the other two, especially for the vegetation-sensitive red band
and near-infrared band. Similarly, Pu and Landry [12] demonstrated that the additional
four multi-spectral bands (especially the red edge band) of WorldView-2 imagery can
improve the average accuracy by 6–9% for recognizing six tree species/groups in Florida,
US, therefore proving that very high-resolution imagery is a premise for accurate urban
mapping. Compared with SPOT-7 and ALOS-2 imagery, Pleiades-1A imagery has a clearer
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view from orbit to ground surface, which produces fewer shaded areas but a more abundant
spectrum, eventually improving UGI mapping using Pleiades imagery.

4.3. Time-Series and Stereo Imagery Improve Greenspace Mapping in Gardens

Compared with single Pleiades imagery (scheme c), multi-temporal imagery (scheme
d) and stereo imagery (scheme e) significantly improved the classification accuracy by
5.25% and 6.88%, respectively. The accuracy was improved up to 13% when combining
multi-temporal and stereo Pleiades imagery (scheme f). These improvements indicated
that plant phenology and nDSM are a remarkable addition to single satellite imagery for
UGI mapping. Moreover, the stereo imagery was slightly more influential than multi-
temporal imagery (86.13% vs. 84.5%) in recognizing vegetation types (Table 4). The slightly
lower accuracy from multi-temporal imagery was possibly caused by the desynchronized
phenology of plant species and the blurred boundaries of spectral reflectance between
evergreen and deciduous plants.

In UGI mappings, the nDSM is generally applied to separate plant heights. Its perfor-
mance mostly depends on the spatial resolution of the original data source, e.g., point cloud
density. Zhou and Qiu [55] applied WorldView-2 imagery and waveform LiDAR to identify
trees and grass in Dallas, US, and found that the accuracy produced from fused data was
7–8% higher than that from WorldView-2 imagery. Liu et al. [56] concluded that LiDAR
contributed 10% more accuracy than hyperspectral imagery in tree species recognition and
achieved a nearly 20% higher accuracy when combining LiDAR and hyperspectral imagery
in the greater Vancouver area, Canada. Currently, satellites are becoming increasingly
capable of imaging (tri-)stereo images, but the majority of existing nDSM layers are still
produced from LiDAR. In this study, the nDSM generated from stereo Pleiades-1A satellite
imagery showed an equivalent efficacy to nDSM produced from a LiDAR source (R2 = 0.98,
RMSE = 1.18). This may partly be because the flat terrain of the study area is favored by
stereo imagery, but the greater ability of tri-stereo imagery in dealing with various terrains
would be a relief in the absence of the LiDAR data set.

Differing from nDSM, the performance of plant phenology is largely determined by
synergistic effects, e.g., satellite platform, spatial resolution, observation time, and also
frequency. The deciduous species generally start to wither and decolorize in the late fall or
early winter, which leads to yellow reflections after the reduction in chlorophyll and the
increment in cancroid within plant leaves [45]. Some evergreen plants de-colorize during
the non-growing season, but to a much lesser degree than deciduous plants. Therefore,
the observation time of satellite imagery is a vital feature to discriminate deciduous and
evergreen species [57]. Tigges et al. [52] showed that a larger number of sensed images
contribute to more accurate landcover dynamic observations. In our study, the three
Pleiades-1A satellite images acquired from March, July and December might fail to capture
phenological changes completely, as January is possibly the optimal timing point for the
study area to discriminate deciduous and evergreen plants.

In contrast to the randomly distributed confusions from classifications using single
imagery, classifications integrating multi-sourced imagery presented aggregated confusion
patterns. A large fraction of misclassifications occurred between high and low vegetation
when using multi-temporal imagery, but confusions often occurred between deciduous
and evergreen when using stereo imagery (Table 4). Evergreen species were always “over-
classified” while deciduous species were “under-classified” (Table 5). These confusing
patterns were the result of multiple effects. Low deciduous (5.21%) was the least covered
vegetation type, followed by high evergreen, with a coverage of 6.93% in the study area.
Moreover, these vegetation types were fragmented and scattered, and spectrally affected by
the surrounding environment, especially in enclosed gardens. Furthermore, the compact
medieval city of Leuven contains much shading and many obscured areas. The evergreen
species are typically pine and fir trees, generally dark in color, which limits the availability
of spectral and textural features. Therefore, for these vegetation types, it is difficult to
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collect high-level training samples and sufficient spectral signatures to meet the requisite
of rational recognition accuracy.

4.4. Greenspace Landscapes in Gardens Parcels

The study area had more than 15,000 garden parcels (as defined in Section 2.3.3) and
covered 30.85% of the study area (24.13 of 78.21 Km2, Figures 4 and 12) with an average
size of 474 m2. This forms the landscape view, in that the large area of urban sprawl is filled
with a maze of garden mosaics. The garden parcels contain 18.82 Km2 of greenspace and
much more vegetation than the other land use types (77.95% vs. 46.32%) across the study
area. The average greenspace coverage was 51.05% in statistical sectors, 31.48% in building
blocks, and 70.98% in garden parcels (Figure 13; Table 6). This variable coverage at different
scales implies that the domestic gardens contribute the majority of urban greenspace [16,30].
At the broad scale of the Flemish region of Belgium, approximately 73% of houses have a
domestic garden [58], which take up 8.3% of the total area. The garden coverage of 30.85%
in our study area makes sense, because the “diamond region” is the most populated region
in Belgium.

Global observations revealed that, in populated cities, UGI landscapes are generally
small-sized and inlaid in a matrix of artificial structures in the urban core area but are more
aggregated in rural areas [59]. Although medieval Leuven is a small city by international
standards, its compactness results in a similar greenspace landscape to populated cities,
which implies a demand for smart greening strategies [60]. For example, the exurban
gardens (1017.83 m2) are significantly larger than the other gardens (637.97 m2 of suburban
gardens, and 258.59 m2 of urban gardens), and the greenspace within gardens decreased in
mean patch size (153.48 to 21.35 m2) but increased in patch density (65.09 to 425.32/ha).
Specifically, the townhouses and city apartments of Leuven city are usually associated
with small backyards, which constrains the patch size of garden greenspace but increases
fragmentation and shape complexity [61]. In contrast, detached houses and single-family
houses in rural areas generally contain a large amount of vegetated area, which would
aggrandize greenspace coverage and mean patch size (Table 6).

Figure 13. The spatial variations of greenspace at scales. (a) Statistical sector; (b) building block;
(c) garden parcel. Figures share the legend.
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Table 6. The landscape characteristics of garden greenspace.

TA (ha) PC (%) PD (/ha) ED (/ha) LPI (%) MPS (m2)

Garden

Green space 1881.74 70.98 227.86 1402.33 78.45 92.93

High evergreen 174.31 6.93 102.91 441.43 7.27 12.24

High deciduous 694.12 23.46 637.28 1860.27 26.42 29.81

Low evergreen 859.97 35.38 298.03 1103.72 40.13 55.58

Low deciduous 153.34 5.21 79.45 386.09 4.63 17.11

Urban
garden

Green space 122.03 56.46 425.32 2049.57 60.69 21.35

High evergreen 19.14 8.56 152.28 461.68 7.55 8.72

High deciduous 47.65 20.43 855.94 2387.14 23.61 15.19

Low evergreen 42.84 22.29 573.6 1778.39 25.83 23.08

Low deciduous 12.40 5.18 130.46 424.91 3.74 7.43

Suburban
garden

Green space 926.18 70.85 146.83 1236.06 75.41 86.16

High evergreen 89.46 7.75 108.43 463.04 6.48 11.36

High deciduous 318.59 25.79 542.74 1296.98 25.35 25.42

Low evergreen 441.11 31.51 314.56 982.95 38.52 44.91

Low deciduous 77.02 5.8 89.77 372.63 5.06 14.28

Exurban
garden

Green space 833.54 82.43 65.09 591.15 94.37 153.48

High evergreen 67.93 6.67 59.58 437.28 7.96 16.7

High deciduous 295.54 29.41 251.34 883.51 29.13 41.05

Low evergreen 406.62 40.12 115.67 601.73 51.47 73.19

Low deciduous 63.45 6.23 50.02 359.42 5.85 23.96

Existing urban ecological studies have revealed that greenspace landscapes (i.e., com-
positions and configurations) could provide numerous ecosystem services contributing
to urban sustainability and human well-being. For example, trees were more efficient
in mitigating urban heat islands than grass [7]. Nevertheless, low evergreen (grassland)
was the most vegetated type (35.34%) across studied gardens, which makes these gardens
more vulnerable to urban heat risks or other environmental hazards than the city parks
containing many woods. In addition, the greenspace coverage, patch size and shape com-
plexity are also positively related to their cooling effects [6]. In study area, the urban heat
intensity is 2.8–4.7 ◦C and the discomfort index is 3.4–4.3 higher in urban areas than in rural
areas during the summer. However, the greenspace in downtown gardens (6925 parcels)
constitutes only a small fraction of total garden greenspace (1.22 of 18.82 Km2 at an average
coverage of 56.46%), whereas rural gardens (9128 parcels) provide a considerable propor-
tion of total garden greenspace, 8.33 of 18.82 Km2 at an average coverage of 82.43%. This
striking contrast leads to large imbalances in ecosystem provisions and demands between
urban gardens and rural areas. Therefore, it is worth emphasizing the pressing needs of
interdisciplinary studies conducted in collaboration with landscape designers and urban
ecologists. Such studies would provide better insight for landscape designers when they
are balancing ecological functions and landscape amenities in garden regulations.

4.5. Applicability and Limitation

We valued the applicability very much when designing the methodology in the first
place. A methodology derived from one place generally are difficult to transfer to other places
of the world. There are several factors may improve the applicability of our study. First,
the study area is a typical region, that represents heterogeneous garden environment and
abundant vegetation resources, to test the methodology. Second, we selected the widely used
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satellite imagery that has potentially contributions to our classification. Third, we evaluated
the capacity of stereo-imagery in constructing 3D structure, concerning the less availability
and accessibility of LiDAR data set in many regions. Finally, we present a straightforward
methodology design, which is easy to understand, including segmentation validation, feature
selection and classifier application. Those designs facilitated the applicability and replication
of our analysis in other cities and regions.

Our case study exemplified the application of multi-sourced satellite imagery in
quantifying composition and landscape in the less concerned gardens. This study could
be improved in following aspects: (a) the plant phenologies in study area vary among
vegetation types and species, so a bigger number of temporal images (in present we only
have 3 images) can offer more variations of plant phenology; (b) the Pleiades imagery
used in our study are stereoscopic imagery, a tri-stereoscopic imagery would produce
more accurate 3D structure than stereo-image, in particular the north-western part of study
region are hilly areas; and (c) we chose CART as the classification method, but many other
classification methods like SVM, RF and CNN also produce reliable performances. Further
studies may compare these classification methods to identify the most potential one for
UGI mapping in domestic gardens.

5. Conclusions

Domestic gardens comprise more than one-third of urban areas in many cities but
have been the focus of less study due to their small size and lack of regulation. Here, we
developed an approach to derive garden parcels and evaluated the added values of multi-
sourced satellite imagery in garden mapping in the medieval European city. Our results
have proved the significant contributions of increased spatial resolution to vegetation type
recognition in domestic gardens. The improvements were generally related to their spatial
resolution increments. Application of multi-temporal stereo Pleiades-1A imagery improved
the overall accuracy by 13% and greenspace coverage by 8.53% contrasting to classification
of single Pleiades-1A imagery. The garden greenspace covers 30.85% of total garden parcels,
and the average greenspace coverage is 70.98%. Along with the urban-rural continuum,
the average garden size increased from 258.59 m2 for urban gardens to 1017.83 m2 for
rural gardens, while the average greenspace coverage increased from 56.46% to 82.43%.
Additionally, the aggregated greenspace mosaics in rural gardens indicated by the largest
patch index led to the increased mean patch size and reduced greenspace fragmentation
and shape complexity.

City residents are less educated with regard to the ecological provisions of urban
gardens, and how they could improve their function. Studies such as this one call for multi-
disciplinary collaborations between urban ecologists, landscape designers, and the local
community. These studies and collaborations offer residents an opportunity to understand
the environmental value of their gardens and enlighten decision makers with regard to
greenspace planning to optimize ecosystem services and landscape amenities.
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