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Abstract: High-resolution data are increasingly used for various applications, yet the revisit time is
still low for some applications, particularly in frequently cloud-covered areas. Therefore, sensors
are often combined, which raises issues on data consistency. In this study, we start from L1 to L3
data, and investigate the impact of harmonization measures, correcting for difference in radiometric
gain and spectral response function (SRF), and the use of a common processing chain with the same
atmospheric correction for Sentinel-2A/B, Landsat-8, DEIMOS-1, and Proba-V center cameras. These
harmonization measures are evaluated step-wise in two applications: (1) agricultural monitoring,
and (2) hydrological modelling in an urban context, using biophysical parameters and NDVI. The
evaluation includes validation with in situ data, relative consistency analysis between different
sensors, and the evaluation of the time series noise. A higher accuracy was not obtained when
validating against in situ data. Yet, the relative analysis and the time series noise analysis clearly
demonstrated that the largest improvement in consistency between sensors was obtained when
applying the same atmospheric correction to all sensors. The gain correction obtained and its impact
on the results was small, indicating that the sensors were already well calibrated. We could not
demonstrate an improved consistency after SRF correction. It is likely that other factors, such as
anisotropy effects, play a larger role, requiring further research.

Keywords: consistent time series; radiometric calibration; SRF; landsat-8; sentinel-2; PROBA-V;
DEIMOS-1

1. Introduction

There are clear tendencies in the use of higher spatial resolution satellite sensors, both
for land [1–3] and water applications [4]. The revisit time of these sensors has greatly
improved since the launch of the two Sentinel-2 satellites. Still, in areas with frequent
cloud coverage, the update frequency of cloud-free data can be considerably lower. A
solution is to combine data from different missions in order to obtain more frequent
observations. A combination of different sensors is also necessary when data from a
sufficiently long time series are required for analysis. This is, for example, the case for
agricultural monitoring in which anomaly analysis is a frequently used method to assess
the agricultural production of the current growing season [5,6]. Combining the recent
and temporally more dense Sentinel-2 data with an archive of similar datasets is then
important [5,7]. The availability of sufficiently fine spatial resolution data with an adequate
temporal frequency and sufficient spectral information is still considered as a challenge, e.g.,
in agricultural monitoring [8,9] and vegetation monitoring [10,11]. The use of multi-mission
time series should also contribute to decrease the uncertainty in derived products [12].

The joint use of data from different sensors raises some clear concerns about data
consistency [13,14], and a seamless combination of EO products coming from different
missions require corrections that account for the sensor differences. The Harmonized
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Landsat Sentinel-2 (HLS) dataset [15] and Sen2Like tool [16] include co-registration, the
same atmospheric correction method for both sensors, bi-directional distribution function
(BRDF) normalization, and correction for the differences in spectral response functions
(SRF) to generate top-of-Canopy (TOC) reflectances and NDVI. Many publications exist that
focus on one aspect of harmonizing data from similar sensors: radiometric gain assessment
(e.g., [17–21]), atmospheric correction (e.g., [22,23]), BRDF normalization (e.g., [24]) and
SRF correction (e.g., [25–29]).

The relative importance in the consistency of the datasets for each of these corrections
has not yet been explored. The evaluation of the improved consistency mainly focusses on
the comparison of simultaneous acquisitions, simulations, or artificial data derived from
e.g.hyperspectral images (e.g., [25]). General statistics such as RMSE and regression analysis
are often used to evaluate the performance of the harmonization measure (e.g., [25–27]),
whereas evaluation on a time series is not often performed (e.g., [15,23]). The evaluation
is predominantly completed on TOC reflectance data or NDVI, but the impact of the
harmonization measures on downstream products is not assessed.

For the Belharmony project, we considered the harmonization of a multi-sensor time
series from the viewpoint of two applications: agricultural monitoring and vegetation
monitoring for hydrological modelling in an urban context. The different harmonization
measures were evaluated in their relative contribution to obtain more accurate and more
consistent time series of NDVI and biophysical parameter fractions of absorbed photo-
synthetically active radiation (fAPAR), leaf area index (LAI), and fraction of vegetation
cover (fCover) for these applications. We made use of the extensive set of EO data and
in situ reference data which have been systematically collected over the BELAIR urban
and agricultural sites. The BELAIR initiative [30], which started in 2013, aims to develop
Belgian test sites, for which targeted EO data and other measurement results are collected
on behalf of the Belgian and international research communities, and which may be used
as calibration and validation sites for new EO missions, data and products.

In this paper, we present a bottom-up approach where we start from the L1 TOA level
of four satellite sensors: Sentinel-2A&B (S2), Landsat-8, Deimos-1 (DMC) and the center
camera of PROBA-V (PV). We analyzed different causes of differences and formulated
corrections for them using well-established methods. Unlike HLS [15] and Sen2Like [16], we
started the investigation with the L1 TOA reflectance data, as differences at L1 can strongly
be amplified at L2 and should therefore already be corrected for at the L1 level. Next, the
impact of SRF differences was analyzed and SRF adjustment functions were proposed. A
common processing chain was used to generate L2 and L3 products such that the risk of
biases introduced through different algorithms (e.g., atmospheric correction) or processors
was significantly reduced. BRDF normalization was not included in the processing chain,
because we focused on derived biophysical parameters that were retrieved from angular
reflectances. Finally, we analyzed the added value of each of the corrections on the derived
L3 datasets by means of two case studies. The scientific questions that are central to this
research are: (i) What is the relative impact of the harmonization measures on the data
per sensor? This question includes the analysis of the relative importance of radiometric
gain correction, changing the atmospheric correction to a common method for all sensors,
and SRF correction on the TOC reflectances, NDVI, and downstream products. (ii) What is
the impact of the harmonization measures on the accuracy of the downstream products?
(iii) What is the impact of these harmonization measures on the consistency of the multi-
sensor L2/L3 time series? This includes the analysis of the data between sensors and
over time.

2. Materials
2.1. Satellite Missions Considered in the Study

In this paper, we make use of data from 4 satellite sensors—Sentinel-2A&B (S2),
Landsat-8, Deimos-1 (DMC) and the center camera of PROBA-V (PV)—in order to evaluate
the impacts of the applied harmonization measures on data accuracy and time series
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consistency. Obviously, each sensor has specific spatial and spectral characteristics. Table 1
shows the spectral response curves for all sensors divided into three spectral ranges: visual
blue, green and/or red bands (VIS), near-infrared bands (NIR) and short-wave infra-red
bands (SWIR).

Table 1. Band combinations relative to S2A and their spectral range (in nm).

Sentinel-2 Landsat 8 DMC PROBA-V

B3 543–578 B3 533–590 GREEN 520–600

B4 650–680 B4 636–673 RED 630–690 B2 614–696

B5 698–713

B6 733–748

B7 773–793

B8 785–899 B5 851–879 NIR 770–900 B3 772–902

B8A 855–875 B5 851–879 NIR 770–900 B3 772–902

B11 1565–1655 B6 1566–1651 SWIR 1570–1635

B12 2100–2280 B7 2107–2294

2.1.1. PROBA-V

The Project for on-board autonomy–VEGETATION (PROBA-V) is a small satellite
designed to monitor global vegetation [31,32]. It was operational between November 2013
and June 2020. PROBA-V has a field of view of 102, resulting in a swath width of 2295 km.
The optical design of PROBA-V consists of three cameras, of which the central camera
(considered in this study) observes at a 100 m nominal resolution and covers a swath of
approximately 517 km, which ensures global coverage every five days. PROBA-V observes
in four spectral bands: blue (centered at 0.463 µm), red (0.655 µm), near infrared (NIR,
0.837 µm), and short-wave infrared (SWIR, 1.603 µm, see Table 1). Although the resolution
of 100 m is not considered as high resolution, the sensors were included in the analysis
because they were also used in the applications that we are targeting (e.g., LAI dynamics).

The standard products of PROBA-V were also compared to the Belharmony products:
the PROBA-V 100 m C1 top-of-canopy reflectance data which are atmospherically corrected
with SMAC A/C [33] by the PROBA-V processing facility. The available layers were TOC
reflectance and NDVI [34]. BIOPARS were not distributed.

2.1.2. DEIMOS-1

The DEIMOS-1 (DMC) mission is fully owned and operated by Deimos Imaging (DMI,
Spain) [35]. The payload is the Surrey linear imager−6 channel−22 m resolution optical
imager (SLIM-6-22). The imager delivers observations in three spectral bands: red (centered
at 0.549 µm), green (0.679 µm), and NIR (0.803 µm) with 22 m ground sample distance
(GSD) at a nominal altitude of 663 km, with a 625 km swath.

Only L1 DMC data can be ordered. For the processing of the DMC data to L2 and L3
products, the in-house Morpho processing chain (which uses ATCOR [36] for atmospheric cor-
rection) has been used in the past. This dataset was used as the original data in the evaluation.

2.1.3. Sentinel-2

Sentinel-2 consists of a constellation of two operational satellites [37–39]. Sentinel-2A
(S2A) and Sentinel-2B (S2B). Sentinel-2 carries the multi-spectral instrument (MSI) that
samples in 13 spectral bands (Table 1): four bands at 10 m spatial resolution, six bands at
20 m, and three bands at 60 m. The orbital swath width is 290 km. An on-board calibration
device (OBCD) is used for the radiometric calibration of Sentinel-2 MSI.

The standard products of Sentinel-2 used in the evaluation consist of Level 2A top-of-
canopy (TOC) products, downloaded from the ESA hubs. These data are processed with
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Sen2Cor [40]. Terrascope [41] also provides the BIOPARS using the same neural network
as used in Belharmony (see Section 3.1.4). This dataset was also used in the comparison.

2.1.4. Landsat-8

Landsat-8 (L8) has two imagers onboard: the operational land imager (OLI) and the
thermal infrared sensor (TIRS) [42]. The OLI has nine spectral bands (Table 1) covering
the blue to SWIR wavelengths with a spatial resolution of 30 m for bands 1–7 and 9. The
spatial resolution for band 8 (panchromatic) is 15 m.

As original data, Landsat-8 land-surface reflectance products were ordered from USGS
(e.g., produced with the Landsat-8 Surface Reflectance Code (LaSRC) [43]). The available
layers were TOC reflectance.

2.2. Case Sites

BELAIR is a Belgian STEREO initiative which was established to foster joint research
and long-term data collection at 4 sites in Belgium, each with a different thematic focus. A
variety of research projects use the data acquired on these sites. We focused on two case
studies which required the combination of data from different sensors, one on HESBANIA,
which covers the fruit and agricultural area between Sint-Truiden and Gembloux, and the
other on the SONIA area, located in the urban area of Brussels (see Figure 1).
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Figure 1. BELAIR sites in Belgium. The HESBANIA (agriculture) and SONIA (urban) sites are used
as case studies in this research.

2.2.1. HESBANIA Agricultural Case Study

Time series of satellite-retrieved BIOPARs (fAPAR, LAI and fCover) are used for the
monitoring of agricultural fields. The case study initial research focused on potato moni-
toring for the Belgian potato industry. Meanwhile, this research led to the WatchItGrow
application [9], where farmers can obtain information on the state of the crop, its health
status and development phase, predicted yield, and harvest date. This application requires
sufficient cloud-free data over the entire growth season. Therefore, the L3 products from
L8, S2 and DMC are combined to have a higher temporal frequency of the BIOPARs.

The BIOPARs are generated with the neural network (NN) approach of INRA-EMMAH.
The neural network for S2 is publicly available [44], and is based on 8 input bands (8B_NN).
Additional neural networks were trained by INRA-EMMAH for S2 (3B_NN), L8 (5B_NN,
3B_NN) and DMC (3B_NN) in the frame of WatchItGrow resulting in two sets of NN:
(1) NN based on all relevant bands per sensor, and (2) NN based on green, red and NIR
bands for each sensor (3B_NN). For S2, the 10 m bands are used for the 3B-NN, whereas
the 8B_NN uses 8 spectral bands as input.
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The available in situ data consists of FAPAR, LAI and fCover measures derived from
hemispherical pictures since 2014, at several potato fields at regular intervals during the
growth season. This reference dataset was used to assess and quantify the impact of the
various harmonization measures on the accuracy of the final end products (i.e., the retrieved
biophysical parameters).

The analysis was further extended at the parcel level for a large number of fields
extracted from the parcel database of Flanders.

2.2.2. SONIA Urban Case Study

The SONIA site is located in the urban area of Brussels. Urban heat waves are pre-
dicted to occur more frequently with climate change. Urban vegetation and the linked
evapotranspiration rate can play a mitigating role. However, a major challenge in urban
hydrological modelling remains the mapping of vegetation dynamics and its role in hydro-
logical processes, in particular interception storage and evapotranspiration. Conventional
mapping of vegetation usually implies intensive labor and time-consuming field work.

Remote sensing data offers a great potential to characterize urban vegetation dynamics,
but this requires long-term data with high spatial and spectral resolution to distinguish
the urban landcover types, and frequent revisiting times to capture seasonal vegetation
dynamics. Therefore, NDVI and LAI from a combination of sensors are used in this
application.

At the SONIA site we collected in situ data for BELAIR campaigns in both 2015 and
2018. Spectral measurements of both homogeneous urban impervious and grass surfaces
were taken. The LAI measurements of trees were taken with the Sunscan system (Type SS1-
COM-R4). The Sunscan measures and compares incidents, transmits photosynthetically
active radiation, and subsequently derives LAI [11]. The measurements were taken 1 m
below the canopy in 8 compass directions of each studied tree. For each compass direction
the Sunscan was positioned at a 1 m distance from the stem. We mostly restricted ourselves
to the four most dominant species in Brussels: chestnut, linden, plane and maple, although
some birch trees were also selected. During tree selection we made sure to have trees of
different sizes, contexts (park vs street trees) and health. The in situ data for urban built-up,
grass and trees were used as reference to evaluate the harmonization measures on the
different satellite-derived biophysical parameters (NDVI and LAI).

3. Methods

Figure 2 shows the overall flowchart of the work performed and relates it to the
different sections of the paper.

3.1. Harmonisation Approach

A bottom-up approach from L1 to L3 products, based on well-established methods,
was used to identify the main sources of inconsistencies between data from S2, L8, DMC
and PV, and to correct for them. First, the inter-satellite consistency was checked at L1 top-
of-atmosphere (TOA) reflectances. Second, the same atmospheric correction method was
used to process all datasets to top-of-Canopy (TOC) reflectances, and third, the difference in
SRF was assessed between comparable bands of the four sensors. For the radiometric gain
and SRF correction, S2A was used as reference because it has bands that overlap with the
bands of the other sensors needed for NDVI and BIOPAR retrieval, and because it covers
the longest period, and therefore overlaps with the period for which we had data from the
other sensors.

3.1.1. L1 TOA Intercalibration

The aim was to verify the inter-satellite radiometric consistency of Landsat-8, Sentinel-
2, DMC and PROBA-V (100 m) and to derive, if needed, temporally averaged gains to be
applied to the L1 data for the improvement of the L1 inter-sensor consistency.
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the paper. Colours indicate the different parts of the work: white, input data; red, analysis of
harmonization measures performed to set up the processing chain; blue, the processing chain;
yellow, the processed data sets for evaluation; cyan, the evaluation performed to answer the research
questions formulated in the Introduction (Section 1).

When assessing the consistency at L1, a distinction between low and high radiance levels
is required (but often neglected) as, particularly at very low (and also extremely high) scene
brightness, the radiometric response of the optical system might not be linear. To assess the
L1 TOA consistency at medium to high radiance levels, the OSCAR Libya-4 approach [45]
was used. Here, we only summarize the methodology as the methods and results have been
described in detail in [46]. In the OSCAR Libya-4 approach [45], simulated TOA bidirectional
reflectance factors (BRFs) define an absolute reference against which optical sensors can be
cross-calibrated. The simulated TOA BRFs are calculated with 6SV with, as input, Rahman–
Pinty–Verstraete (RPV) bi-directional reflectance distribution factor (BRDF) model parameters
derived for the Libya-4 desert site, meteorological input data, and aerosol characterization data
derived from Aerosol Robotic Network (AERONET) stations [47] in the Sahara region. The
modeled TOA reflectance values were simulated for the actual illumination and observation
geometry and by taking into account the actual spectral response curves of the sensors. The
OSCAR Libya-4 calibration method was applied to S2A, S2B, LS8, DMC, and PROBA-V
cloud-free TOA extractions over the Libya-4 region of interest.

3.1.2. Atmospheric Correction

For the atmospheric correction, the iCOR atmospheric correction method [48–50]
was used. iCOR uses the Moderate-Resolution Atmospheric Radiance and Transmittance
Model-5 “MODTRAN5” for radiative transfer calculations [51], and works with Look-Up
Tables (LUT) to speed up the process. The validation of the method is part of ACIX I and
II [50], and is not part of this study. The strength of iCOR is that (1) it is a surface adaptive
correction method, i.e., the method identifies whether a pixel is water or land and applies
a dedicated atmospheric correction, and (2) that implementations are available for all the
different satellite missions used in this study.

3.1.3. Derivation of Spectral Adjustment Functions

Spectral response functions (SRFs) determine the position and width of a spectral band,
and have been identified as one of the most important sources of uncertainty for the continuity
and usability of multi-sensor datasets [52]. As no SRF corrections were available in the
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literature for all the sensors involved in this study with respect to S2A, the SRF corrections
were estimated using well-established methods described below. The method included the
estimation of a set of potential SRF correction functions, as well as the evaluation to select the
best performing correction. In the analysis of the impact of difference in SRF, we deliberately
neglected uncertainties caused by effects of the atmosphere, spatial sampling, or other sources
of variability, and investigated the effect of the differences in SRF solely on the data.

The method to derive the SRF correction functions comprised 3 steps (see, e.g., [25,26]):
(1) generate a large set of representative spectra, which were used to (2) calculate the sensor
response using the SRFs of the concerned sensors. From these, (3) correction functions
between the sensors relative to S2A were estimated.

The Coupled Soil-Leaf-Canopy (SLC) model of [53] was chosen as the radiative transfer
model (RTM) to simulate the vegetation reflectances. The SLC model is a combination
of the Hapke soil BRDF model, FLUSPECT and 4SAIL2 and is available on github (https:
//github.com/ajwdewit/pyslc, accessed on 20 November 2018). The definition of the input
parameters was based on values found in the literature [25,26,54,55]. The illumination and
observation geometry of the simulations varied between the minimum and the maximum
values observed in the S2, L8, DMC and PROBA-V center camera images. The sampling
scheme used Latin hypercube sampling. The simulations were completed with spectra of
urban materials acquired with an ASD and/or from the hyperspectral sensor APEX. The
representativeness of the total sample was iteratively evaluated by comparing the density
of the entire set of spectra with the density of APEX measurements over the BELAIR sites
and with global PROBA-V data over 1 year. A total set of 220,283 spectra were used to
generate the sensor-specific responses for all the bands.

The different sets of correction functions found in the literature were used to correct
for the difference in SRFs between sensors [25–28,56,57]. Appendix A lists all mathematical
expressions of all functions that were used to model the differences in the SRF between a
selected sensor and Sentinel-2A. This means that the bands of Landsat 8, DMC and PROBA-
V center camera were adjusted to the spectral bands of Sentinel-2A. The corresponding
bands are shown in Table 1. The naming of the S2 bands was used for all sensors when
discussing the SRF correction functions.

The SRF correction functions were evaluated based on the following criteria:

• Shape of the correction function overlaid on a scatterplot of the data. This is only
possible if the correction function is based on 1 input parameter, e.g., the NDVI;

• Density scatterplots between the absolute difference (AD) of S1 and S2 (Y-axis) and
the NDVI of S1 (X-axis). The majority of the simulations should be centered around
an AD value of 0 and this should be stable for the entire NDVI range. Same plot for
SBAF, which should be centered around an SBAF value of 1;

• Bias histogram;
• APU plot: the accuracy, precision and uncertainty should be smaller than compared to

the comparison of the original data over the reflectance range.

All graphs, except the first one, were compared with the same plots generated with
the original data.

The second step of the evaluation was performed on an independent dataset created
from hyperspectral images from APEX. Two APEX images over the HESBANIA and
SONIA site were selected and convoluted with the SRFs of the sensors under investigation
to generate artificial images. The different correction functions were then applied to the
artificial images of the respective sensors to create corrected artificial images. Then, we
compared the bias histograms of the artificial images with and without spectral adjustment
to the artificial S2A images. The result was the final selection of the SRF correction per
band per sensor against S2A.

3.1.4. Generation of Enhanced L2 and L3 Products Using a Common Processing Chain

The generation of enhanced L2 and L3 PROBA-V, S2, L8 and DMC data consisted of
(1) the applications of the cross-calibration gains to harmonize the TOA reflectance/radiance

https://github.com/ajwdewit/pyslc
https://github.com/ajwdewit/pyslc
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data against Sentinel-2A, (2) the use of the same atmospheric correction code for all sensors
(iCOR), (3) the application of the spectral adjustment functions to correct for the difference
in the SRFs between S2A and the other sensors, and (4) the derivation of the Normalized
Difference Vegetation Index (NDVI) and biophysical indicators (BIOPARS) from the top-
of-canopy (TOC) reflectance products using similar algorithms for the various missions.
The biophysical indicators included: fAPAR, fCOVER and LAI. Note that the cloud mask
delivered with the original data was used. The processing chain is visualized in Figure 3.
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The generation of enhanced L2 and L3 time series was performed for the BELAIR study
sites (see Section 2.2). In order to be able to assess the impact of the various “harmonization
measures” separately, reprocessing of the datasets over the BELAIR sites was performed
with and without the gain application (step 1) and with and without the application of the
spectral adjustment functions (step 3) (see flowchart in Figure 3).

Next, the BIOPARs and NDVI were calculated. For S2 and L8, the BIOPARs were
calculated with a 3B NN, but also 8B and 5B, respectively (see also Section 2.2.1). We
combined the data into two groups:

• 8B_BIOPAR: S2 8B_*, L8 5B_* and DMC 3B_*: all the available spectral information is
used for the retrieval of the BIOPARs.

• 3B_BIOPAR: S2 3B_*, L8 3B_* and DMC 3B_*: the same spectral information is used
for the retrieval of the BIOPARs.

To compare the Belharmony-generated datasets to the nominal/original baseline level
2 products, these nominal baseline level 2 products over the BELAIR sites for the different
missions were downloaded and/or processed (see Section 2.1 for description).

In the subsequent sections, we denote the different processing versions and levels as
defined in Table 2.

Table 2. Naming of datasets used in this study and description of the processing performed.

Dataset Name Processing Performed

Nominal/original baseline level2 products

ORIG Original data, processing performed with Sen2COR (for S2), LaSRC
(for L8), SMAC (for PROBA-V)

Belharmony processing

ICOR Atmospheric correction completed with ICOR

ICOR + GAIN Gain applied to TOA radiance data + atmospheric correction
performed with ICOR

ICOR + GAIN + SRF Gain applied to TOA radiance data + atmospheric correction
performed with ICOR + SRF correction

3.2. Evaluation of the Enhanced L2 and L3 Time Series
3.2.1. Impact Assessment of the Different Harmonization Measures per Sensor

In response to research question (i), the objective was to assess the magnitude of
the impact of the different corrections applied on the data per sensor. The analysis was
performed on the TOC reflectance bands, NDVI, and BIOPARs. ICOR was taken as the
reference to compare to because standard TOC products are not available for all sensors
(DMC). The following image pair sets per sensor were used:

• ICOR—ICOR + gain
• ICOR—ICOR + gain + SRF
• ICOR—original

A large sample of paired images was taken from the time series of the different sensors.
For S2 and L8, only 1 tile was processed. Every image was systematically subsampled
taking every 10th pixel in a window size of 21 × 21 pixels to obtain a sufficiently large
sample, while including the largest geographical extent and time period. For the S2 10 m
layers, a subsample of the 21st pixel in a window size of 42 × 42 pixels was taken. Only
cloud-free pixels were included in the overall sample. The mean bias between the samples
with different corrections was calculated.

3.2.2. Accuracy Assessment of the Downstream Products against In Situ Data

To answer research question (ii), the processed data were validated against in situ data
for the two case sites.
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HESBANIA Case Study:
The objective was to assess the BIOPARs from a combination of sensors with in situ

observations of FAPAR, FCOVER and LAI. The mean BIOPAR value of each image was
calculated for each in situ field block.

This was performed per sensor, and for all corrections separately. For S2, the original
data were also used. Then, the extracted time series were combined among sensors,
resulting in 4 datasets per BIOPAR, as summarized in Table 3.

Table 3. Definition of the combined datasets extracted for the HESBANIA fields (in situ and from the
parcel database).

Name of Resulting Time Series S2A S2B L8 DMC

ICOR ICOR ICOR ICOR ICOR

ICOR + gain ICOR ICOR + gain ICOR + gain ICOR + gain

ICOR + gain + SRF ICOR ICOR + gain ICOR + gain + SRF ICOR + gain + SRF

Original Original Original ICOR ICOR

For all these combinations and corrections, a matchup dataset was created with the
in situ data. A match between the in situ data and the BIOPAR data was found when the
remote sensing data were not more than 3 days different than the in situ data, and when
the area covered by the clear pixel within a block was at least 75% of the area defined by
the shapefile. Scatterplots and statistics were calculated for all these datasets.

SONIA Case Study:
The objective was to evaluate the ICOR processing on satellite imagery in an urban

context by analyzing the NDVI of urban built-up and grass areas, as well as LAI of trees
from different sensors (S2, DMC, L8, and PV) compared to ground-truthing data available
from the BELAIR 2015 and 2018 campaigns (see Table 4).

Table 4. Datasets used in the SONIA evaluation.

Class Label DMC S2 L8 Proba-V

NDVI: urban impervious Urban 2015 2018 2015 and 2018 2015 and 2018

NDVI: urban grass Grass 2015 2018 2015 and 2018 2015 and 2018

LAI: urban trees Trees 2015 2018 2015 and 2018 2015 and 2018

3.2.3. Consistency Analysis of the Downstream Products
Consistency Analysis with S2A as Reference

In this relative analysis, we compared S2A with data from other sensors that were
corrected according to Table 3. This was performed for the in situ data, but also for a
larger set of fields and sites. For HESBANIA, agricultural fields with a minimum size of
10 ha were selected from the parcel database of Flanders, resulting in a sample of 752 fields
with various crop types. The mean value per field was calculated when min 75% of the
field had cloud-free data. Again, match-ups were observations that had a maximum of
3 days difference. For SONIA, the consistency analysis was performed using homogeneous
urban pixels (>90% of the pixel was covered by the specific landcover). Here, DMC was
considered as a reference sensor in 2015 (because S2A was not yet operational) and S2A in
2018, to compare against the data from other sensors before and after ICOR processing.

Time Series Analyses

For all the sites in the parcel database over HESBANIA, the mean value per field was
extracted for each BIOPAR and NDVI for each sensor and for each correction. These were
then combined as specified in Table 3. The results were per-field time series composed
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of data from different sensors and with different corrections. For these time series, the
temporal smoothness and the (relative) time series noise were calculated. The same is
completed for the SONIA area, on time series of homogeneous pixels. Here, only ORIG
and ICOR were compared.

The temporal smoothness δ [58] was evaluated by taking three consecutive observa-
tions and computing the absolute value of the difference between the center P(dn+1) and the
corresponding linear interpolation between the two extremes P(dn) and P(dn+2), as follows:

δ(dn) =

∣∣∣∣P(dn+1)− P(dn)−
P(dn)− P(dn+2)

dn − dn+2
(dn − dn+1)

∣∣∣∣ (1)

The output was a time series with smoothness values. The time series noise was then
estimated by averaging δ over the time series [59]:

Noise =

√
∑N−2

n=1 δ(dn)
2

N − 2
(2)

Output was a single value per field and per correction type. Histograms showing the
distribution over all fields were plotted per correction type.

4. Results
4.1. Harmonization Approach Results
4.1.1. L1 TOA Intercalibration

The results are discussed relative to S2A. According to the Libya-4 OSCAR results, L8,
PV, S2B, and DMC agree with S2A to within ±2% for comparable spectral bands, with the
exception of the DMC green band, which was approximately 3.5% lower than S2A (Table 5).
Deviations observed between S2A and S2B were of the same magnitude as those observed
between S2A and the other missions. For most bands, S2A was slightly brighter than S2B,
which is in line with results reported by [17,20,21,60]. These values were applied as gain
correction in the processing.

Table 5. Mean ratio (over all observations) of the satellite-measured TOA reflectances to the 6SV TOA
reflectance reference simulations over Libya-4 (Table copied from [46]).

S2 S2 S2A %Diff S2B L8 L8 %Diff L8 DMC DMC %Diff DMC PV PV %Diff PV

band cwv ratio vs. S2A band cwv vs. S2A band cwv vs. S2A band cwv vs. S2A

1 443 1.008 −1.05% CA 443 −1.05% Blue 460 −1.30%
2 490 0.985 −0.03% Blue 492 0.94% 460 0.97%
3 560 0.999 −0.16% Green 561 0.82% Green 549 −3.5%
4 665 1.005 −0.76% Red 654 0.08% Red 679 0.2% Red 658 −1.55%
5 705 1.016 −1.32%
6 740 1.023 −1.49%
7 783 1.034 −1.35%
8 842 0.999 −0.40% NIR 803 0.8% NIR 834 0.78%

8A 865 1.027 −0.84% NIR 865 −0.28%
9 945 NA NA

10 1375 NA NA Cirrus 1373 NA
11 1610 0.998 −0.40% SWIR1 1610 −0.30% SWIR 1610 −0.21%
12 2190 0.973 −0.12% SWIR2 2200 0.28%

4.1.2. Spectral Response Adjustment Functions

The SRF corrections were estimated based on the simulated dataset completed with
hyperspectral ground measurements (see Section 3.1.2). The evaluation of the SRF correc-
tion functions was performed by applying the correction functions on the same dataset and
on artificial images derived from APEX data (see Section 3.1.2 for full description).

Selection of the SRF correction function per band and per sensor was performed by
interpreting all the plots that were generated in the evaluation process on the simulations.
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Examples of detailed plots were provided for the SWIR band of PV in Figure 3. The absolute
difference between the original simulations of PV and S2A showed an almost linear trend
with NDVI, which was removed after the SRF correction. The ratio between both bands in
the function of NDVI showed a non-linear trend that was also removed after SRF correction.
The bias histogram was also narrower and the APU plot showed lower values of accuracy,
precision, and uncertainty over the reflectance range. This all indicates a higher agreement
between B11 of S2A and the corresponding SWIR band of PROBA-V.

Figure 4 shows the bias histogram before and after the same SRF correction applied
on the artificial data derived from APEX images. The bias histograms clearly demonstrate
the improved correspondence between the data of the two SWIR bands.
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and after applying the selected RSRF correction function AD_NDVIpoly2 (red), for the agricultural
HESBANIA (left) and urban SONIA (right) images.

The selected correction functions for all sensors compared to S2A are summarized in
Table 6. For a number of sensor/band combinations, no correction was retained. This was
either because both bands were already so similar that no improvement was obtained (see
Table 1)—e.g., L8 B5 compared to S2 B8A, and DMC B3 compared to S2 B8—or because
the correction could only correct for a very small part of the difference, and the remaining
difference was still high. This was the case when comparing S2 B8 (broad) with L8 B5
(narrow), and S2 B8A (narrow) with DMC B3 (broad) (see also Table 1). Except for these band
combinations, all other corrections functions were applied on the data for further analysis.

Table 6. Selected SRF correction functions.

Input S2 Equation Coefficients

band Band a b c d e f

Landsat-8

B3 B3 A6 1.007457 0.007411 −0.061680 0 - -

B4 B4 A6 0.983784 −0.054115 0.171154 −0.030599 - -

B5 B8 No suitable correction found, SRFs too different.

B5 B8A Original bands are already very similar

B6 B11 A10 0.000449 4.081912 −0.954106 4.081850 0.954195 -

B7 B12 A5 0.000369 0.000779 −0.020686 0.019961 −0.000708 1.000709

DMC

B1 B3 A6 1.026747 0.023303 −0.165327 0 -

B2 B4 A6 0.996053 −0.037969 0.091627 0.063597

B3 B8 Original bands are already very similar

B3 B8A No suitable correction found, SRFs too different.
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Table 6. Cont.

Input S2 Equation Coefficients

PROBA-V

B2 B4 A6 0.993998 −0.126106 0.338988 0 -

B3 B8 A9 0.999468 3.211558 −1.000562 3.2107839 1.003200

B3 B8A No suitable correction found, SRFs too different.

SWIR B11 A7 0.001377 −0.000669 0.004392 0 -

4.2. Evaluation of the Enhanced L2 and L3 Time Series
4.2.1. Impact Assessment of the Different Harmonization Measures per Sensor

In the impact assessment of the different corrections per sensor, we can see that the
largest difference between the TOC reflectance datasets was obtained when applying the
same atmospheric correction method compared to using different methods for L8 and S2
(Figure 5). The magnitude of the difference depends on the spectral band. L8 had a negative
mean bias error (MBE) for all bands when comparing original data with ICOR processing,
meaning that TOC reflectances after ICOR processing were higher. The opposite was true
for S2. For DMC, this was not assessed, because only L1 are publicly available, and for PV it
was only assessed for NDVI, and here the impact was not the largest. The gain corrections
were correctly reflected at the TOC reflectance level. A positive (negative) % difference to
S2A in the gain correction resulted in a negative (positive) MBE between the ICOR and
ICOR+gain datasets. The magnitude of the % difference was also reflected in the MBE,
although not linearly. The magnitude of the MBE when adding the SRF corrections was the
smallest for all bands and sensors. Here, the ICOR data were compared with data having
the gain and SRF corrections both combined. For DMC, this resulted in a larger difference
with the ICOR dataset. For other sensors, the difference with the ICOR dataset was smaller,
meaning that the gain and SRF corrections partially cancelled each other out.

The most interesting part of the analysis was how these corrections were translated
into the derived parameters NDVI, LAI, FAPAR and FCOVER. For DMC, the MBE was
positive for all parameters. The magnitude of the impact of the gain correction was largest
for LAI (0.22), but this was because LAI was within the range of (0, 8) instead of (0, 1) for
the other parameters. The impact of the gain correction on FAPAR and FCOVER was <0.01,
and 0.015 for NDVI, which was overall very small. Adding the SRF correction resulted in a
larger difference with the ICOR dataset for all parameters, except for LAI. For all derived
parameters of L8, the MBE was positive after gain correction when compared to the ICOR
dataset. Again, the magnitude was largest for LAI for the reason explained before. The
MBE was higher for the parameters derived with the 3B NN than with the 5B NN. The 3B
NN took only bands B3, B4 and B5 as input, which had the largest gain correction among
the L8 bands. The 5B NN also included B6 and B7, for which the gain correction was almost
negligible. Adding the SRF to the gain correction resulted for most parameters in a smaller
difference with the ICOR dataset, except for NDVI and 5B_LAI. The largest difference for
the NDVI was observed when comparing the original and the ICOR NDVI. The BIOPARs
were not calculated based on the original L8 data. For S2, the largest difference in the
derived parameters was again found when comparing the original with the ICOR data.
There was an opposite impact for the parameters derived with the 3B_NN (MBE > 0) than
with the 8B_NN (MBE < 0). The impact of the gain correction on S2-derived parameters
resulted in a small difference >−0.01 for FAPAR and FCOVER. SRF corrections were not
applied on S2, as S2A was used as reference and S2B was almost identical. For PROBA-V,
the comparison with the original data was only assessed on the NDVI, which resulted in a
positive MBE, meaning that the NDVI with iCOR processing was lower. The largest impact
of the gain correction was observed for PROBA-V NDVI, with a difference >−0.02 after
gain correction. For this sensor, the red and NIR bands had opposite gain correction, which
was amplified in the NDVI. The impact of the SRF correction on the NDVI was negligible.
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4.2.2. Accuracy Assessment of the Downstream Products against In Situ Data
HESBANIA

The BIOPARs derived with the different harmonization measures were validated
against in situ data for a number of fields. Figure 6 shows that, for all BIOPARs, the
various corrections resulted in small differences in uncertainty (RMSE) in comparison with
in situ data. In general, there was a small increase in accuracy when going from ICOR,
then added gain, and then added SRF corrections, except for LAI. The application of the
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ICOR atmospheric correction had the largest impact on increasing the accuracy of the LAI
retrieval. The RMSE decreased very little when adding corrections. The harmonization
measures only had a small influence on accuracy and uncertainty.
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the different correction combinations (colors).

SONIA

Figure 7 shows the results per sensor and per year for the SONIA area. Here, only
the impact of using the same atmospheric correction compared to the original data was
investigated, since it was demonstrated that the impact of the other harmonization measures
was smaller (see Section 4.2.1), which was also confirmed for the HESBANIA case. The RMSE
for the class Trees is always slightly higher when using ICOR for atmospheric correction. For
the classes Urban and Grass, the results depend on the sensor, but also on the year. Overall,
the difference in RMSE was small for most data analyzed. We can conclude that a higher
absolute accuracy was not obtained when harmonizing the atmospheric correction.
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4.2.3. Consistency Analysis of the Downstream Products
Consistency Analysis with S2A as Reference

Despite the limited impact on accuracy, the harmonization measures had, as primary
goal, a better consistency between the datasets from different sensors. Therefore, the data
extracted for the in situ fields from DMC, L8, S2B and Proba-V were also compared to
S2A, here considered as reference sensor. Matchups between all available observations
were selected in the same way as for the in situ data, i.e., observations with a maximum
of 3 days difference. The RMSE is shown in Figure 8. For LAI, the impact of using the
same atmospheric correction method results in a smaller RMSE compared to using the
original data, indicating a higher consistency. The other harmonization measures showed
little improvement. For the other BIOPARs and NDVI, the RMSE decreased slightly when
adding harmonization measures. Using the same atmospheric correction resulted in a
smaller RMSE for most of the BIOPARs, although the impact had a smaller magnitude
compared to LAI. This was not only because the range of values was larger for LAI, as the
RMSE was reduced by a factor 2.
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This analysis was repeated on a large sample using the parcel database for the HES-
BANIA site, again taking S2A as reference in the comparison. The results are shown in
Figure 9. The MBE had the largest magnitude when comparing the S2A with the original
data of the other sensors, except for NDVI. The impact of the different harmonization
measures was smaller and did not always result in a smaller RMSE, e.g., for FAPAR. For
FCOVER, the RMSE was the smallest when applying all corrections. The impact of the
harmonization measures was negligible for LAI, except for the application of the same
atmospheric correction, which had a large impact on the RMSE.
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Figure 9. Same as Figure 7 but for the parcel database.

Figure 10 shows the RMSE between match-ups of the SONIA data of two sensors
for the in situ sites, for both the original data and the ICOR data. The graphs clearly
demonstrate that the RMSE between the sensor data decreases when applying the same
atmospheric correction method, resulting in a higher consistency between the data of the
different sensors.
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Time Series Analyses

The datasets extracted using the parcel database were also used to analyze the time
series noise (TSnoise) of the time series resulting from combining the data from the different
sensors, before and after the harmonization measures (see Table 3). It was expected that the
TSnoise would decrease with higher consistency between the data of the sensors. Figure 11
shows the results for the HESBANIA site. All BIOPARs and NDVI showed a higher TSnoise
for the original dataset. The difference was the largest for LAI and NDVI. The impact of
using the same atmospheric correction and the other harmonization measures was hard to
discern. The results suggest that the amount of noise in the time series decreased when
applying the same atmospheric correction method on all datasets.
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the original data and the different harmonization measured applied on the dataset (colors) for the
HESBANIA site.

At the SONIA site, TSnoise decreased for the dataset after ICOR processing (Figure 12).
The difference was the smallest for urban built-up areas and smaller for NDVI (grass and
urban) than LAI (trees). The results showed that by using the same atmospheric correction,
the amount of noise in a time series was reduced in urban areas.
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5. Discussion

The Belharmony study was defined as a bottom-up approach from L1 to L3 products to
improve consistency between S2A, S2B, L8, DMC and PV center camera, and also to analyze
the relative importance of the various harmonization measures on downstream products
for two applications (see Figure 3 for overall scheme). In the study, we took S2A bands as a
reference to which the differences in radiometric calibration and differences in SRF of the
comparable bands of other sensors were corrected. In addition, a common processing chain
was developed for all sensors including the application of the same atmospheric correction
for all sensors. The different steps of the harmonization process were then evaluated on
two case studies in Belgium: on an agricultural site, HESBANIA, and an urban site, SONIA.

The results of the gain correction are shown and discussed in detail in [46]. In sum-
mary, we found inter-sensor deviations between comparable bands to be within the ±2%
uncertainty range of the method applied, except for the DMC green band, where a differ-
ence of −3.5% was found. Similar results for S2 and L8 were obtained in [17,18,60]. The
results indicate that, with the exception of the green DMC band, a high consistency already
exists between the different sensors. Nevertheless, the small differences were applied on
the datasets anyway and further assessed.

Next, correction functions for the differences in SRF were established. A large number
of simulations with the addition of a set of urban spectra were used to model the differences
in SRF with respect to the comparable band in S2A. Various correction functions were also
estimated and evaluated on an independent dataset (APEX images). As in [28], the optimal
correction differed per sensor combination and per band. Comparing the obtained results
with correction functions published in the literature is difficult, because the reference was
often different (e.g., MODIS/Aqua in [28]), or because not all sensors were part of the study,
e.g., [25] only includes S2 and none of the other sensors discussed here. For a number
of sensor/band combinations, no correction was retained. This was either because both
bands were already so similar that no improvement was obtained, or because the correction
did not yield a significant improvement. Except for these band combinations, all other
corrections functions were applied on the data for further analysis.

After processing a large set of data, different analyses were performed to evaluate the
performance of the harmonization measures. These included: (1) impact assessment of
the various harmonization measures on the data per sensor; (2) accuracy assessment of
the downstream products using in situ data; (3) comparison of match-ups between these
products from different sensors; and (4) analyses of the noise in time series generated on
the combination of the different sensors.

In the impact assessment of the different corrections at TOC reflectance level, we saw
that the largest difference between comparable bands of the sensors was obtained when
applying the same atmospheric correction instead of comparing the original data with
each individual pre-processing choice. The same approach was followed in [22] in order
to increase the consistency between NOAA-AVHRR sensors and SPOT-VEGETATION. In
that study, all atmospheric input data were taken from external sources and the method for
atmospheric correction was the same. In the current study, the AOT was derived from the
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images themselves; hence, these were not the same, but estimated in a similar way. The
atmospheric correction, as such, was not evaluated in this study, but is part of ACIX I and
II [50]. The impact of the gain and SRF correction on the TOC reflectances were, in general,
much smaller. Next, we looked at how these differences at TOC reflectance level translated
into the derived parameters, NDVI and BIOPARs. Again, the difference was the highest
when comparing the original data with ICOR data. Adding the gain and SRF corrections
resulted in smaller differences with respect to the ICOR dataset.

The added value of the different harmonization measures was further investigated for
two distinct case study areas, in an agricultural (HESBANIA) and urban (SONIA) landscape.
First, the obtained NDVI and BIOPARs generated with different corrections were validated
against in situ data for these areas. The various harmonization measures did not necessarily
lead to higher accuracy or precision. For LAI in HESBANIA, an agricultural site, accuracy
was higher when applying the same atmospheric correction to all data sources compared
to the original data. For FAPAR and FCOVER, there was only a very small difference in
accuracy. For the SONIA urban site, the RMSE was higher after using the same atmospheric
correction for most cases. Validation of the atmospheric correction was performed in ACIX
I and II. The results of ACIX I are available in Doxani, which also includes the methods
used for the original data (Sen2Cor for S2, LaSRC for L8). They demonstrate that iCOR
performs almost equally as well as LaSRC for L8. On the other hand, Sen2Cor performs
better than iCOR for S2. Meanwhile, some changes were made to iCOR, and these results
were evaluated in ACIX II, but this study has not yet been published. The choice of iCOR
was made because it can be applied to a suit of sensors.

Although using iCOR did not improve the accuracy with respect to in situ data, the
consistency between the datasets improved. This was demonstrated first by creating match-
ups between data from one sensor and from the other sensors for the case study sites and
comparing these. For both case studies, a higher consistency was found after using the
same atmospheric correction. The impact of the gain and SRF corrections lead, in most
cases, to a slightly higher consistency, except for FAPAR. This analysis was repeated for
a large number of agricultural fields (HESBANIA) and the same results were obtained.
Second, the distribution of the time series noise for the same fields in HESBANIA and for
homogeneous pixels in SONIA were assessed, which confirmed the previous results that
using the same atmospheric correction had the largest contribution to a better consistency
between the datasets. Applying the gain and SRF correction did not result in less noise
in the time series. Although the two case sites covered different land cover types, similar
results for the analysis were obtained.

Accurate calibrated instruments are a prerequisite for interoperability between sensors.
The reason why the gain correction did not improve the consistency is because the sensors
were already well calibrated [61–64] and the remaining difference estimated was small and
within the uncertainty range of the method used [60]. The results obtained demonstrated
the added value of correcting for SRF differences on a controlled dataset based on APEX
images. Here, the only difference between the dataset was the SRF used to create artificial
images. The added value of the SRF correction was not confirmed on the evaluation with
the real sensor data. This could be because the impact was smaller than the differences
that were induced by other sources such as BRDF effects in the images. The BIOPARs,
however, were retrieved while considering the observation and illumination geometry, and
the output should therefore already account for anisotropy effects. This was not the case for
the NDVI. BRDF effects were not considered in the study and are a source of difference that
have to be accounted for, as well for the generation of fully harmonized multi-mission time
series [65]. Although satellites such as S2 or L8 acquire images close to nadir, they are not
likely to observe the same target over a long period of time with a unique Sun-target-sensor
geometry configuration. The latter changes according to day of the year, scanning strategy,
and stage in the life of the mission. Thus, an inconsistent sampling of the BRDF in time and
space will inevitably introduce directional effects that can hamper with the interpretation of
observed temporal changes in surface reflectance time series. Thus, to properly disentangle
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changes due to vegetation from those simply introduced by directional effects, the BRDF
of a target must be modeled. By approximating the anisotropy of a target with a BRDF
model (e.g., [66,67]), we can normalize (adjust) all surface reflectance observations to a
common Sun-sensor geometry in order to derive consistent and smooth surface reflectance
time series.

6. Conclusions

To conclude, we recall the research questions that were formulated. What is the relative
impact of the harmonization measures on the data per sensor? The relative impact of the
harmonization measures differed from sensor to sensor and from band to band. In general,
the impact of changing the atmospheric correction to ICOR was the largest. The gain and
SRF corrections had smaller impacts, and sometimes had opposite signs. A similar impact
was observed for the downstream BIOPAR products.

What is the impact of the harmonization measures on the accuracy of the downstream
products? The harmonization measures did not necessarily lead to a higher accuracy of
the products.

What is the impact of all these harmonization measures on the consistency of the
multi-sensor L2/L3 time series? Using the same atmospheric correction method especially
resulted in a better agreement between the NDVI and BIOPARs, and the noise in the time
series was reduced. Accurate calibration of the sensors was, of course, also important,
and the fact that we did not find an added value in applying a gain correction suggests
that the sensors were already closely calibrated. The SRF correction impact could not be
demonstrated, probably because other sources of differences were not taken into account,
such as BRDF correction.
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Appendix A. Mathematical Expressions of SRF Correction Functions

Linear model [56]:
ρλ,re f = a + b·ρλ,tar (A1)

Multi-linear regression models (e.g., [26]). The model uses two input bands, the target
band (to be corrected band) and an additional band. When NIR is the target band, then red
is the additional band, and when red or another band is the target band, then NIR is the
additional band:

ρλ,(red,nir),re f = β1ρred,tar + β2ρnir,tar + β3NDVI + β3NDVI2 + ε (A2)

ρλ,(other band),re f = β1ρother band,tar + β2ρnir,tar + β3NDVI + β3NDVI2 + ε (A3)

ρλ,(g,red,nir),re f = β1ρ(g,red),tar + β2ρnir,tar + β3

(
ρ(g,red),tar·ρnir,tar

)
+ β4

(
ρ(g,red),tar

)2
+ β5

(
ρ(nir),tar

)2
+ ε

(A4)
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ρλ,(g,other band,nir),re f = β1ρ(g,other band),tar + β2ρnir,tar + β3

(
ρ(g,other band),tar·ρnir,tar

)
+β4

(
ρ(gother bandd),tar

)2
+ β5

(
ρ(nir),tar

)2
+ ε

(A5)

Quadratic model of the Spectral Band Adjustment Factor (SBAF) [28], the Absolute
Difference (AD) or the Relative Difference (RD) [27]:

SBAF =
ρλ,re f

ρλ,tar
= a + b·NDVI + c·NDVI2 (A6)

AD = ρλ,tar − ρλ,re f = a + b·NDVI + c·NDVI2 (A7)

RD =
ρλ,tar − ρλ,re f

ρλ,tar
·100 = a + b·NDVI + c·NDVI2 (A8)

Exponential function of the SBAF, AD or RD [28]:

SBAF = a·eb·NDVI + c·ed·NDVI (A9)

AD = a·eb·NDVI + c·ed·NDVI (A10)

RD = a·eb·NDVI + c·ed·NDVI (A11)
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