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Abstract: Surface ocean dynamics play a key role in the Earth system, contributing to regulate its
climate and affecting the marine ecosystem functioning. Dynamical processes occur and interact
in the upper ocean at multiple scales, down to, or even less than, few kilometres. These scales are
not adequately resolved by present observing systems, and, in the last decades, global monitoring
of surface currents has been based on the application of geostrophic balance to absolute dynamic
topography maps obtained through the statistical interpolation of along-track satellite altimeter data.
Due to the cross-track distance and repetitiveness of satellite acquisitions, the effective resolution of
interpolated data is limited to several tens of kilometres. At the kilometre scale, sea surface tempera-
ture pattern evolution is dominated by advection, providing indirect information on upper ocean
currents. Computer vision techniques are perfect candidates to infer this dynamical information from
the combination of altimeter data, surface temperature images and observing-system geometry. Here,
we exploit one class of image processing techniques, super-resolution, to develop an original neural-
network architecture specifically designed to improve absolute dynamic topography reconstruction.
Our model is first trained on synthetic observations built from a numerical general-circulation model
and then tested on real satellite products. Provided concurrent clear-sky thermal observations are
available, it proves able to compensate for altimeter sampling/interpolation limitations by learning
from primitive equation data. The algorithm can be adapted to learn directly from future surface
topography, and eventual surface currents, high-resolution satellite observations.

Keywords: earth observations; ocean dynamics; satellite altimetry; sea surface temperature; artificial
intelligence; machine learning; deep learning; neural networks

1. Introduction

In the last decade, technological progress has opened new prospects for the appli-
cation of deep-learning techniques in a wide range of fields. This revolutionary change
originated from the concurrent increase of computational power at widely affordable costs
and impressive growth of openly available data. Computer vision is one specific branch of
artificial intelligence (AI) that is driving significant improvements thanks to the possibility
to design and implement complex model architectures based on deep convolutional neural
networks (CNN). Computer vision originally aimed to emulate the human capability to
immediately discriminate objects and features in a picture or video, as well as to extrapo-
late/predict relevant information from partial or degraded input, either for recreational,
medical, security or other commercial uses, e.g., for automated focusing on specific subjects
in consumer and professional cameras, for semantic/instance segmentation and anomaly
detection in medical imagery or in support of self-driving automated vehicles.

The Earth system research community is increasingly exploring and developing AI
technologies to solve complex data processing and analysis problems and go beyond
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the present limitations of numerical models (see also [1]). Indeed, to discover the laws
governing Earth system processes and better predict their evolution over several spatial and
temporal scales, a combination of precise observations and theoretical/numerical models is
needed [2]. In fact, even considering the significant increase in the number of acquisitions
by remote sensing platforms and autonomous instruments, it will never be possible to
describe and predict the state of the Earth system at all scales (or even of just one of its
subsystems, such as the ocean) only through observed data. Satellite observations over the
ocean, for example, only measure surface properties, with distinct temporal sampling and
coverage depending on the sensor and mission. Conversely, information on the vertical
distribution of properties along the water column can only be provided through in situ
sensors that clearly lack the ability to simultaneously provide large spatial coverage and
high space-time resolution. Empirical/statistical methodologies and historical data are
thus often used to interpolate or reconstruct approximated 2D or 3D descriptions of ocean
dynamics from a limited number of observed state variables, with poor to no physically
driven constraints (e.g., [3]). On the other hand, full descriptions of the ocean state evolution
(over a predefined set of scales) can be obtained through numerical models, still requiring
a prior knowledge/guess of the initial state and of the forcings over time, as well as the
parameterization of sub-grid physics. Due to the uncertainties in the initial conditions and
parameterizations and the non-linearity of the dynamics, model predictions easily drift
away from what is seen in the observations, unless observations are ingested within the
simulation itself through data assimilation (DA), e.g., [4]. At present, DA is mostly based
on probabilistic approaches, and it is also not rigorously tractable due to the huge number
of variables and nonlinear processes involved, as well as the difficulty in simultaneously
and properly characterizing model and observation errors.

Despite some scepticism due to the generally limited interpretability and explainabil-
ity of complex neural networks, deep learning methods are perfect candidates to cope
with the high-dimensional spaces, multiple processes, non-linear relations and noisy data
involved in Earth system observations and models [5]. While it is beyond our scope to
provide a comprehensive list of the ever-growing applications of AI algorithms to Earth
system science, it is worth citing some of the most relevant objectives, which span from
hybrid modelling approaches, such as the development of new sub-grid-scale parame-
terizations [6,7] and the improvement of DA techniques to be used in classical numerical
circulation models [8,9], to the downscaling of low resolution models [10], to supervised
learning approaches for data augmentation, filtering, interpolation or prediction [11–18],
to the detection of dynamical features [19], to the set-up of neural networks for partial
differential equation solution/identification and modelling of latent dynamics, e.g., [20–24].
Indeed, whenever sufficient information is available, physically informed neural network
models can be designed to explicitly include physical constraints, for example, by building
custom loss-functions that enforce the structure of the network to obey a known governing
equation (through automatic differentiation), and/or by exploiting the similarities between
residual networks and the numerical schemes used to integrate the ordinary differential
equations that govern dynamical systems. However, sometimes sequential observations can
merely resolve the large-scale dynamics, as high-resolution spatial snapshots are available
only episodically and provide only limited information to describe (and directly learn) the
evolution of small-scale processes. In those cases, alternative approaches can be tested to
improve the dynamical reconstruction and eventually recover high-resolution information
from existing data.

Actually, many advanced computer vision algorithms can be adapted to geoscientific
analysis, making the most of past efforts dedicated to addressing similar problems. One
such example is given by a specific class of techniques, known as super-resolution (SR),
that aims to recover high-resolution (HR) details from low-resolution images [25]. In
the single-image super-resolution algorithms, deep convolutional neural networks are
optimized to identify the features of an image by looking at its different channels and
learning how to recover the original features from their degraded versions. This is done
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by combining the translation invariance and locality properties of convolutional layers
with the impressive learning properties of deep architectures coupled with non-linear
activations. In computer vision applications, this problem is inherently ill-posed since
multiple HR images could correspond to a single LR image, and the performance of
the models is highly dependent on the extensiveness of the catalogue of images it was
trained with. State-of-the-art super-resolution algorithms do achieve impressive results
in the processing of blurred/low-resolution photographs, though, and some attempts to
adapt them to Earth observation problems have already been carried out: DeepSD (Deep
Statistical Downscaling), a stacked SR-CNN algorithm based on the early three-layer model
by [26], has been applied to downscale Earth system model simulations, and CNN models
have been tested for sea surface temperature (SST) and wind field downscaling, with
positive results [27,28]).

Here, we aim to recover high-resolution sea surface dynamical features by combining
low-resolution ocean absolute dynamic topography (ADT) fields based on satellite altimetry
(resolving O(100 km) wavelengths) and high-resolution SST acquired by thermal imaging
spaceborne radiometers (between O(1 km) and O(10 km) depending on the sensor). This
represents a different problem with respect to simple model output downscaling or single
variable super-resolution, as we want to combine the information provided by channels at
both original and degraded resolution in a multi-channel image, taking advantage of the
physical relations among the variables we include in the different channels. In fact, even
if it only implies a weak constraint, our strategy includes physical considerations in the
choice of the predictor variables, building upon the role of surface water mass advection in
the local evolution of the SST [29], but we also aim to exploit the repetitiveness of satellite
observing system geometries. We thus consider also the temporal SST variation and the
ADT mapping error as additional predictors.

High-resolution observations of ocean dynamic topography through imaging sen-
sors (thus ‘natively’ 2D), however, will not be available before the launch of the joint
NASA/CNES/CSA ASC/UK Space Agency surface water and ocean topography (SWOT)
mission, expected by the end of 2022, while more direct observations of surface currents
could be provided by ESA Earth Explorer 10 Harmony mission only after 2027–2028, if
present phase A, namely the design consolidation and feasibility studies, proves success-
ful [30], or even later by SEASTAR ESA Earth Explorer 11 candidate mission [31]. As such,
we rely here on an observing system simulation experiment (OSSE). In practice, we use
the output of an ocean general circulation numerical model to simulate both predictor and
target variables, considering that, in the future, our network can be trained directly with
remotely sensed data. After training with OSSE data, our model can be applied to real
altimeter-derived ADT and SST data in the test/prediction phase. In practice, learning first
from primitive equation simulations and known observing-system geometry and succes-
sively testing over true observation-based products can also be interpreted as a means to
assimilate model physics in our data-driven reconstruction. Presently, core estimates of
ocean surface currents are obtained by measuring absolute dynamic topography (i.e., the
surface height referenced to an empirical geoid) through radar altimeters installed on a
constellation of polar-orbiting satellite platforms. Sea level observations are acquired by
altimeters along a discrete number of tracks, and surface geostrophic currents are obtained
by first interpolating the ADT onto a regular 2D grid [32] and then computing ADT gradi-
ents (geostrophy implies velocities are perpendicular to the pressure gradients associated
with sea surface level differences, with an inverse dependence on the Coriolis parameter).
ADT-interpolated products reach an effective resolution of O(100 km) at mid-latitudes [33],
but recent studies [34,35] also revealed that many unresolved structures are aliased into
larger structures and that the gridded altimetry products contain an unrealistic number of
large mesoscale eddies. Hence, even for large scale eddies, having a typical wavelength
larger than 100 km, the standard altimetry may be biased, with such large-scale bias mainly
occurring in cyclonic eddies.
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Altimeter-derived ADT maps can thus be thought of as a deformed view of true
surface elevation, obtained through a transformation that combines the satellite observa-
tion geometry and the space-time surface elevation evolution effectively captured by the
interpolation algorithm. Our objective is to set up a neural network that is able to learn
the inverse mapping from our limited input ADT to the true sea surface elevation. To
do that, we explicitly include as tentative predictors the low-resolution ADT field, the
SST field and its temporal derivative, ∂SST/∂t, as well as the formal interpolation error
(∆ADT) that is associated with the input ADT product (retrieved as part of the optimal
interpolation algorithm), and we set the high-resolution ADT as our target. In fact, at the
large scale, SST responds to air-sea fluxes and related upper layer mixing with the deeper
oceanic layers, but when getting close to the mesoscale and sub-mesoscale dynamical range
(namely at scales between a few kms and a few tens of km, over day-to-weeks timescales), a
significant contribution to the local SST variations is given by horizontal advection (though
vertical advection is also expected to play a significant role, especially at the sub-mesoscale,
e.g., [36]). SST products obtained from thermal images provide synoptic high-resolution
data up to (nominal) 1 km spatial resolution over wide portions of the ocean surface [37,38].
Even if their effective spatial resolution rarely exceeds a few kilometres to tens of kilometres,
they allow an almost continuous monitoring of SST changes at daily intervals and longer
timescales. As such, several past attempts to improve surface current retrieval have been
based on the use of the sequential information provided by SST products, either through
maximum cross-correlation techniques [39] or by directly considering tracers’ advection
equation [40–43].

Our work exploits the data prepared for an OSSE that was originally designed for
different objectives in the framework of the European Space Agency ocean CIRculation from
ocean COLour observations (CIRCOL) project [44]. They consist of one year of synthetic,
daily ADT and surface geostrophic currents data over the Mediterranean Basin. Full details
explaining how we simulate the observing system geometry are reported in Section 2,
where all pre-processing steps to prepare our training and test datasets are described. It
must be stressed that for this OSSE, SST data have been assumed to be void-free and
error-free, which is clearly not true, especially when looking at kilometre-scale features; so
our work must be considered as a first exploratory step that will need to be significantly
expanded for eventual operational applications.

2. Materials and Methods
2.1. Primitive Equation Model Data

The Mediterranean Forecasting System (MFS) is a hydrodynamic model for the
Mediterranean Basin and the Atlantic Ocean off the Strait of Gibraltar [45]. Monthly
to 15-minute instantaneous outputs of 3D horizontal currents and sea surface height (SSH),
as well as monthly to hourly estimates of 3D temperature and salinity fields are available via
the Copernicus Marine Service web portal (Product ID: MEDSEA-ANALYSIS-FORECAST-
PHY-006-013). For the present study, we relied on daily outputs of SSH and SST, extracting
information within the boundaries of the Mediterranean Basin (30 to 46◦ N and −6 to
37◦ E). These fields are provided on a 1/24◦ regular grid and 125 unequally spaced vertical
levels. The simulations are based on the NEMO model (Nucleus for European Modelling
of the Ocean) used in combination with Wave Watch-III for the wave component. The MFS
simulations also account for data-assimilation of 2D satellite-derived SST, salinity vertical
profiles, as well as along-track sea-level anomaly observations.

2.2. Satellite Absolute Dynamic Topography

The sea surface geostrophic currents were obtained from the Copernicus Marine
Service and are derived from optimally interpolated absolute dynamic topography data
merging observations from a constellation of radar altimeters. Such a constellation is com-
posed of four to six altimeters in the 2008–2019 temporal range [32]. The geostrophic cur-
rents are provided as daily fields with nominal 1/8◦ horizontal resolution. The 2008–2019
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time series was extracted. The corresponding Copernicus Marine Service product and
dataset ID are SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051/dataset-duacs-
rep-medsea-merged-allsat-phy-l4, respectively (accessed on 1 March 2021 and now in-
cluded as part of the SEALEVEL_EUR_PHY_L4_MY_008_068/cmems_obs-sl_eur_phy-
ssh_my_allsat-l4-duacs-0.125deg_P1D dataset).

2.3. Satellite Sea Surface Temperature Data

Remotely sensed SST data are taken from the European Copernicus Marine Service
(https://marine.copernicus.eu/access-data, last accessed 14 January 2022). They are Level-
4 (L4) products, which means they provide gap-free estimates on a regular grid and are
operationally produced and freely distributed in near-real time. We have used here 11 years
(2008–2019) of the ultra-high-spatial-resolution (UHR) Mediterranean dataset, reaching a
nominal 0.01◦ × 0.01◦ resolution (Product ID: SST_MED_SST_L4_NRT_OBSERVATIONS_
010_004_c_V2). This SST dataset is retrieved by first combining the night-time images
collected by multi-platform infrared sensors, after specific quality control and cloudy pixel
removal, and by successively running a two-step optimal interpolation algorithm [37].
Before using satellite SST L4 data to build our predictor tensor, we had to map them
on the same grid used for the model training. To obtain a consistent prediction, we
preliminary assessed the effective spatial scales resolved by the model SST, and eventually
filtered the UHR to remove scales that have never been seen by the network. This was
achieved by applying a low-pass Lanczos 2D filter (with window size = 9 and cutoff = 1/8)
directly to the UHR data before remapping on the final 1/24◦ grid (through a basic bilinear
interpolation). As discussed in the Results section, this pre-processing has the drawback
of further smoothing the SST field in areas not covered by concurrent infrared satellite
measurements due to cloud contamination or other coverage issues.

2.4. Sea Surface Drifter Data

In situ measurements of sea surface currents were obtained from autonomous La-
grangian drifting buoys that are passively transported by the ocean surface currents [46,47].
During the drifting buoy evolution, the data on the position are interpolated at uniform
intervals (~30 minutes) relying on the kriging interpolation method developed by [47]. The
velocities are finally computed via a finite-difference method of the interpolated positions
and provided with six-hourly temporal resolution. The data covering the period of our
study have originally been provided by the Italian Institute of Oceanography and Exper-
imental Geophysics (OGS) for the purposes of the ESA-CIRCOL project. The timeseries
are accessible via http://doi.org/10.6092/7a8499bc-c5ee-472c-b8b5-03523d1e73e9, last
accessed 14 January 2022); buoy-derived surface current values are only retained if the
buoy is equipped with a drogue: a device that guarantees the buoy evolution to be driven
by the ocean currents rather than by surface winds [48].

2.5. Simulating Altimeter-like ADT Maps

One year (2017) of synthetic altimeter-derived ADT maps was obtained from the
outputs of the Copernicus Marine Service MFS hydrodynamic simulation, using the data
unification and altimeter combination system (DUACS) mapping method. The different
steps are detailed below. Firstly, sea level anomaly (SLA) was computed from model
outputs by means of Equation (1):

SLA = SSH − (MDT − 0.344) (1)

where the mean dynamic topography (MDT) is provided as a static field together with the
model outputs. A 0.344 constant (expressed in m) allows us to adjust the SLA values in the
Mediterranean Sea to guarantee that the spatio–temporal average of SLA is zero during
2017. The large-scale, high-frequency variability, usually removed by applying a dynamic
atmospheric correction (DAC) [49] is filtered out of these synthetic data by applying a Loess
filter. The SLA is then sampled along the actual tracks of a synthetic constellation composed

https://marine.copernicus.eu/access-data
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of four radar altimeters: Jason-3, Sentinel-3A, SARAL/Altika and Cryosat-2 missions. This
step is achieved by running the SWOT simulator software [50], which allows us to account
for the actual orbits, errors and noise that characterize each mission. The chosen four-
satellite constellation is representative of the constellation ingested in Copernicus Marine
Service processing during 2017. Such along-track synthetic measurements are then ingested
by the DUACS processing chain to produce L4 SLA maps. The optimal interpolation (OI)
scheme follows the DUACS DT2018 (Delayed Time) configuration for the Mediterranean
area, described in [32]. The reconstructed small-scale maps are then recombined with the
filtered large-scale maps. Such data are provided on a daily basis and over a regular 1/8◦

grid (more details available in [44]).

2.6. Preparation of Training and Test Datasets for Deep Convolutional Learning

The OSSE data were simulated starting from year one of the primitive equation model
daily output described above. The original input images cover the entire Mediterranean
domain at 1/24◦ spatial resolution, leading to an individual image size of 380 × 1000
pixels. We randomly chose 40 dates (~11% of the total) to be kept aside as independent
test data, and we successively resampled the original images, extracting much smaller tiles
(76 × 100), which were later used as input to the network training. Despite the random
holdout strategy being a standard, different choices of the test dataset could also be done.
However, the test on OSSE prediction only serves here to assess the relative performance of
the different network architectures, not its absolute performance, which is not relevant per
se, when looking at simulated input data. The tiles are then extracted by going through a
double loop on latitude and longitude, imposing a spatial overlap of 50%, so that a total
of 42,250 samples is finally available for the training. The dimension of the tiles has been
chosen to simplify the pre-processing and reduce the memory required by the training
steps. In fact, all tiles are normalized before entering the network. In the case of the SST,
ADT and ∂SST/∂t, they are first transformed into anomalies estimated with respect to the
tile spatial mean and are successively scaled by dividing the anomalies by the maximum
value (in absolute value) recorded throughout the series. The ∆ADT only goes through
the normalization step. As the tiles cover an area of approximately 300 km × 400 km, the
anomaly computation is indeed serving as a high-pass filter, removing the background
variability associated with basin scale processes and seasonal variations (e.g., steric and
thermal variations driven by large-scale, air–sea interactions), which are not relevant to
reveal the impact of mesoscale processes on SST evolution related to horizontal advection.
This filtering is consistent with the tests described in [44]. After the test/prediction, the
tiles are merged together to compute a weighted average on overlapping areas.

2.7. Deep Convolutional Models Learning Strategy and Configuration

All deep convolutional models considered in this work (Section 3) have been written
in Python using the open-source library Keras. They are trained adopting an early stopping
rule to avoid overfitting and minimize the generalization error. In practice, the original
training dataset is randomly split into a proper training set (85% of data) and a validation
set (15%) (not to be confused with the fully independent test dataset described above, which
is never seen during the training) based on which both training (hindcast) and validation
losses are updated during the network optimization. The validation loss, in particular, is
used as an estimate of the generalization error, and early stopping consists in terminating
the iterative learning as soon as its values start to increase. As the estimations can be rather
noisy, early stopping admits a “patience” parameter, which defines the number of epochs
to be completed before the loss function minimum can be considered such. Here we have
set the patience equal to 20 for the SRCNN model (whose computations are very fast but
require many more epochs to converge) and reduced it to five for all deeper models. The
adaptive moment estimator, Adam, is applied for the stochastic optimization of models’
parameters [51], with the learning rates (lr) and numerical stability constants (ε) kept as in
the original implementations of the baseline networks (i.e., lr = 3 × 10−4 and ε = 10−7 for
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SRCNN; lr = 10−4 and ε = 10−8 for the other networks). The latter values are also adopted
for dADR-SR. Within the dADR-SR model, we have also tested the implementation of a
DropBlock strategy [52] to improve the network regularization with minimal performance
differences.

2.8. Automatic Eddy Detection

The angular momentum for eddy detection and tracking algorithm (AMEDA) is freely
available software for the detection and tracking of oceanic eddies from 2D gridded fields of
surface currents and/or sea surface height [53]. It is based on the computation of eddy local
normalized angular momentum (LNAM) and on the observations of closed streamlines
around the LNAM extrema. The algorithm was successfully applied to remotely sensed 2D
fields and model outputs, e.g., [35,53,54], and enables the determination of eddies’ contour
and trajectories as well as eddy merger/splitting events. In this study, AMEDA was used
to identify eddy shapes seen by standard altimetry products (described in Section 2.2) and
the fields obtained from the combination of satellite altimetry ADT and high-resolution
satellite SSTs. We relied on the AMEDA default configuration, accounting for the expected
perturbation lengths in the Mediterranean area (i.e., considering the typical Mediterranean
Rossby deformation radii).

3. Results
3.1. Testing Single-Image, Super-Resolution Configurations and Designing a Multi-Scale
Adaptive Model

A large variety of neural network architectures have been proposed to achieve single-
image super-resolution, even considering only those dealing with input–output images
of the same size [25]. Comparing all of them is clearly beyond the scope of our work,
which is rather to demonstrate whether the super-resolution class of techniques can be
efficiently used for quantitatively accurate dynamical retrievals based on multiple variables
and observation types. As such, we have implemented here four different models, three of
them basically reproducing already published (baseline) networks, and a third one that
includes elements from different models but represents an original network architecture.
All models are trained considering the mean-squared error as the reference loss function.

The first model is the Super-Resolution Convolutional Neural Network (SRCNN)
proposed by [26]. It consists of three 2D convolutional layers: the first one includes
128 filters with a 9 × 9 kernel size, the second one with 64 filters and a 3 × 3 kernel
size and the third one with a single 5 × 5 filter. The first two layers include a nonlinear
activation (rectified linear unit, ReLU), and zero-padding is applied in every layer to keep
the original image size end-to-end (Figure 1A). Each layer represents a specific operation in
the conceptual explanation of the SRCNN given by [26]: overlapping patches extraction
from the low-resolution image (where the patches have the same size as the kernel) and
representation into a high-dimensional vector (feature mapping, with vector dimensions
equal to the number of filters); non-linear mapping of each high-dimensional vector onto
another high-dimensional vector comprising a second set of high-resolution feature maps;
these are directly linked to the final image in the third step (reconstruction). We applied
SRCNN in four different configurations, namely considering SST, ∂SST/∂t, ADT and ∆ADT
in input (all together) and alternately removing either ∂SST/∂t, ∆ADT or both ∂SST/∂t and
∆ADT from the predictor variables. After training the networks (see details in Section 2),
we used the fully independent test data to assess the accuracy of the prediction over the
entire Mediterranean Basin, comparing the root-mean-squared differences (RMSD) between
the altimeter-like ADT and the “true” ADT, as well as those between the super-resolved
ADT field and our simulated “ground truth”. SCRNN gave us some first indications
(Figure 1B–E): overall, we could not find an improvement in the ADT reconstruction by
incorporating all predictors, but what appeared to be actually detrimental was the inclusion
of the ADT interpolation error. In fact, excluding ∆ADT from the input already improves
the accuracy of the simple SRCNN’s reconstruction. Conversely, including ∂SST/∂t always
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appeared beneficial. Even if our initial hypothesis on the relevance of the information on
the observing geometry (as provided by the ADT interpolation error) seemed wrong, we
must stress that the features that dominate the patterns of ∆ADT are much larger than the
scales of the dynamical features we want to super-resolve, and SRCNN is plausibly a too
shallow/simple network to deal with such different scales due to a very limited ability
to learn complex interdependencies between channels (it actually contains only around
110k trainable parameters). Thus, we are still confident that a properly defined network
architecture would be able to exploit the information on where the altimeter-like ADT field
is expected to be more accurate and where it deserves stronger corrections. As such, we
decided to test all successive (and gradually more complex) network architectures with
both the configuration with the four predictors and the one without the ADT error.
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Figure 1. Super-Resolution Convolutional Neural Network (SRCNN) adapted to the reconstruction
of absolute dynamic topography from multiple channel inputs. (A) SRCNN network architecture.
(B–E) Relative performance of the SRCNN reconstructions, assessed on the independent test data
as the difference between the RMSD between the altimeter-like and original model output and the
RMSD between the super-resolved absolute dynamic topography (ADT) and the original model
ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the
models trained/tested considering: (B) the full set of predictor variables; (C) removing ∂SST⁄∂t from
the predictors; (D) removing ∆ADT from the predictors; (E) removing both ∂SST⁄∂t and ∆ADT. ADT
and related RMSD values are expressed in m.

The second network we have implemented is the baseline Enhanced Deep Residual
network for Super-Resolution (EDSR) proposed by [55]. EDSR was designed to exploit
the possibility to significantly deepen the networks (i.e., to increase the number of layers)
opened by residual learning frameworks. Instead of learning fully unreferenced functions,
residual networks (ResNet) define the layers as residual functions (actually they are based
on residual blocks, including different convolutional and batch normalization layers, and
activation functions, where the residual is referenced to the block input) and have been
proven much easier to optimize than conventional networks, allowing users to train con-
siderably deeper networks and obtain significantly better accuracies [56]. EDSR simplified
the network architecture with respect to models based on original ResNet by reducing
the number of parameters employed in each residual block (Figure 2A). In its baseline
formulation, it includes a first 2D convolutional layer made up of 64 filters with 3 × 3
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kernel size, followed by 16 residual blocks, increasing the number of trainable parameters
to approximately 1.2 M, one order of magnitude higher than SRCNN. The first layer out-
put and the output of the last residual block in the sequence are also summed up (skip
connection) before entering the output convolutional layer (including a single 3 × 3 filter),
which connects to the target image. Residual blocks include two convolutional layers with
the number of filters equal to the input channels (64) and a 3 × 3 kernel size. These two
layers are connected through a non-linear activation (ReLU). The outputs of the second
convolutional layer within the residual block are summed to the input channels to obtain
the residual, after applying them a fixed scaling factor of 0.1. Notably, the scaling strategy
applied within the EDSR residual block was formerly proven to stabilize the training of
complex networks, allowing users to safely increase the number of filters [57].
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Figure 2. Enhanced Deep Super-Resolution (EDSR) baseline model tested for the reconstruction of
high-resolution absolute dynamic topography from multiple channel inputs. (A) EDSR network
architecture. EDSR is based on a specific residual block design. (B,C) Relative performance of the
EDSR reconstructions, assessed on the independent test data as the difference between the RMSD
between the altimeter-like and original model output and the RMSD between the super-resolved
ADT and the original model ADT (red indicates smaller RMSD from model predictions). The
panels show the performance of the models trained/tested considering: (B) EDSR and the full set of
predictor variables; (C) EDSR removing ∆ADT from the predictors. ADT and related RMSD values
are expressed in m.

The minimum of the loss function reached during the model training was around
~4.5 × 10−3 for SRCNN, whatever the configuration, with small differences between
hindcast and validation. The same numbers would indicate a much better performance
of ESDR, with validation loss values of around 1.8 × 10−3 for the configuration excluding
the ADT error from the predictors and values close to 1.6 × 10−3 for the full predictors
set. The minimum hindcast loss got close to 1.1 × 10−3 in both EDSR configurations.
However, the test run on the independent data clearly indicated that the improvement
only occurred in some parts of the domain, while worse reconstructions can be obtained
in dynamically relevant areas, both including the ADT error or not in the predictor list
(Figure 2B,C). Not too surprisingly, in the first case, higher RMSD are found along some of
the repeated altimeter tracks, well visible as diamond/rhomboid shapes (Figure 2B), which
again indicates that the network is not able to efficiently exploit the information on the
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ADT interpolation error. In the latter, though, higher errors in the reconstruction are found
also in some areas that are well known for being dynamically very active (e.g., offshore the
Algerian coast, Figure 2C).

The third network considered is the Adaptive Deep Residual Network for Super-
Resolution (ADR-SR) proposed by [58]. ADR-SR represents an interesting evolution of
the EDSR. Its main improvement consists in substituting the learned feature fixed scaling
applied within the EDSR residual block with an adaptive scaling, obtained by introducing
a squeeze-and-excitation (SE) module [59]. Within the adaptive residual block (ARB),
channel-wise feature responses are adaptively recalibrated through an SE module before
summing them to the block input, allowing the network to more efficiently model complex
interdependencies between the learned feature channels (Figure 3A). Conceptually, we
might thus expect it to drive a substantial advance with respect to simpler networks.
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Figure 3. Adaptive Super-Resolution (ADR-SR) baseline model tested for the reconstruction of
high-resolution absolute dynamic topography from multiple channel inputs. (A) ADR-SR network.
ADR-SR is based on the inclusion of a squeeze-and-excitation module within its residual block design.
(B,C) Relative performance of the ADR-SR reconstructions, assessed on the independent test data
as the difference between the RMSD between the altimeter-like and original model output and the
RMSD between the super-resolved ADT and the original model ADT (red indicates smaller RMSD
from model predictions). The panels show the performance of the models trained/tested considering:
(B) ADR-SR and the full set of predictor variables; (C) ADR-SR removing ∆ADT from the predictors.
ADT and related RMSD values are expressed in m.

The SE module first reduces all 2D feature channels into 1D values through global
average pooling (squeeze). The excitation operation then consists in learning a weight
vector, built through a self-gating mechanism that takes the output of the global average
pooling as input and provides per-channel modulation weights. The self-gating consists in
a bottleneck with two, fully connected layers (including non-linear activations), the first



Remote Sens. 2022, 14, 1159 11 of 22

one reducing the dimensionality by a predefined factor (and including a ReLU activation),
and the second one increasing it back to the number of channels in the input to the module
(followed by a sigmoid activation). These weights are successively used to suppress or
enhance individual channel features (feature recalibration) before summation to get the
residuals. With respect to baseline EDSR, ADR-SR increases the number of filters within
each block from 64 to 192 but limits the number of feature channels in input to the residual
block from 64 to 32. The ADR-SR network implemented here employs 16 residual blocks
and finally includes slightly less than 1.8M trainable parameters.

ADR-SR performance assessed on the test dataset significantly improved with respect
to that of the other networks, and, for the first time, including the information on the
low-resolution ADT interpolation error leads to a tangible reduction of the RMSD over
most of the basin (Figure 3B,C). Still, a lower accuracy is found close to some of the altimeter
repeated tracks (visible as diamond shapes), which might be due to the limited ability
either of ADR-SR and of the previously tested networks to correctly handle the information
provided at different spatial scales by the input predictor variables. This specifically reflects
the larger scale of ADT mapping error patterns with respect to the geophysical variables.

To overcome this issue, we have developed here a novel deep convolutional architec-
ture, which combines the successful developments of previously tested super-resolution
models with the dilated-convolution-based multi-scale information learning inception mod-
ule proposed by [60]. Dilated convolution allows users to extract information at different
scales and significantly expands the network’s receptive field even without enlarging the
kernel size [61]. Choosing a dilation rate, r, r-adjacent pixels are skipped by the convo-
lution kernel, so that related weights refer to samples taken at tuneable distances. In the
inception module designed by [60], the channels input to each module first pass through
three parallel dilated convolution layers with kernel size 3 × 3 and dilation factor of 1,
2 and 3, respectively. Then, all convolution outputs are concatenated and passed to the
successive layers.

We have named the new model “dilated Adaptive Deep Residual Network for Super-
Resolution (dADR-SR)”. Its architecture is depicted in Figure 4. In the first step, dADR-SR
input channels are passed to three parallel convolutional layers, each one with ten filters
and a 3 × 3 kernel size, but with an increasing dilation factor of 1, 3 and 5, respectively. The
output of the three convolutional layers is then concatenated into a single multiscale feature
tensor, which represents the input to a sequence of multiscale adaptive residual blocks.
Indeed, within each residual block, the same multiscale parallel feature extraction is carried
out, thus defining a multiscale adaptive residual block (M-ARB). To avoid excessively
increasing the number of parameters to train, the number of residual blocks is here kept to
12 (four fewer than in the EDSR/ADR-SR baseline), and the number of filters included in
the two sets of convolutional layers inside each M-ARB is chosen as 120 and 10, respectively.
Within the M-ARB, after concatenating the learned multiscale features, a SE module is
included (with a predefined dimensionality reduction factor of 10 instead of 16, so that the
bottleneck in dADR-SR is shaped 30-3-30, instead of 32-2-32). The final number of trainable
parameters in the dADR-SR model is slightly below 1.6 M.
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Figure 4. The dilated Adaptive Super-Resolution (dADR-SR) model developed to reconstruct high-
resolution absolute dynamic topography from multiple channel inputs. (A) The dADR-SR network
architecture; dADR-SR is based on the inclusion of dilated, convolution-based learning inception
modules in the core layers of ADR-SR. (B,C) Relative performance of the dADR-SR reconstructions,
assessed on the independent test data as the difference between the RMSD between the altimeter-like
and original model output and the RMSD between the super-resolved ADT and the original model
ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the
models trained/tested considering: (B) dADR-DR and the full set of predictor variables; (C) dADR-SR
removing ∆ADT from the predictors. ADT and related RMSD values are expressed in m.

The dADR-SR model outperforms any of the previous networks when tested on the
independent dataset, displaying a marked reduction of the RMSD over the entire basin
(Figure 5), with only extremely few and very small spots showing a minimal degradation
(Figure 4B,C). The information captured at the different scales by including all predictors
thus further enhances the accuracy of the reconstruction with respect to the model that
does not consider the low-resolution ADT interpolation error.
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Figure 5. The dADR-SR model performance compared to simulated standard altimetry. (A) RMSD
between the altimeter-like and original model output and (B) RMSD between the super-resolved
absolute dynamic topography (ADT) obtained with dADR-SR (using full predictors set) and the
original model ADT. ADT and related RMSD values are expressed in m.

3.2. Applying Dilated Adaptive Residual Super-Resolution Trained on Simulated Data to Real
Satellite Observations

Our successive analysis is aimed to verify to what extent we can use the features
learned from observing system simulations based on primitive equation modelling to im-
prove present-day, data-driven reconstructions, but also to identify eventual limitations of
the present OSSE set up and issues related to real observation-based products. We have thus
applied the model trained on OSSE data to predict high-resolution ADT starting from prop-
erly pre-processed, satellite-altimeter-based, low-resolution ADT and high-resolution SST
products (e.g., Figure 6). For both variables, we have actually taken optimally interpolated
data (also known as Level 4 (L4), see Section 2), covering the 2008–2019 period. Assessing
the accuracy of the observation-based, super-resolved maps is not trivial, as large-coverage,
high-resolution observations of the surface topography/currents are not presently available.
As such we followed a double approach: on the one hand, we performed a qualitative
analysis of the reconstructed patterns, looking at areas of intense mesoscale activity visible
in the satellite SST L4 data and comparing the (sub)mesoscale eddies identified by the
AMEDA automatic detection algorithm in original and super-resolved data; on the other
hand, we built a match-up database with the surface current estimates provided by surface
drifters (see Section 2) and used it to compute the statistics of the differences with respect
to the geostrophic currents estimated from standard altimeter ADT and super-resolved
ADT field.

The dADR-SR model reveals impressive potential to resolve mesoscale turbulent
features that are generally smeared out, often misplaced or even totally missed by standard
altimetry, when clear-sky thermal data are present. Figure 7 presents a wonderful example
of such a turbulent field, with many mesoscale eddies, dipoles and current meanderings
well visible, especially in the western Mediterranean Basin, detaching from the Algerian
current towards the centre of the basin along the North Balearic front and Liguro-Provençal
current. Surface geostrophic currents estimated from the dADR-SR ADT (Figure 6B) not
only appear much sharper than those depicted by low-resolution altimetric data (Figure 6A)
but prove also able to reconstruct dynamical features that were completely absent in the
standard product (Figure 7).

Specifically, dADR-SR recovers the strong cyclonic eddies associated with two
mushroom-like dipoles along the Algerian coast, marked with the letters “A” and “B”
in the zoomed panels of Figure 7, displaying much more consistent shapes and intensities.
The cyclonic circulation in (B) is actually described as two eddies by the AMEDA eddy
contours estimated from the super-resolved field, which is much more consistent with the
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SST patterns, while a single and almost rectangular shape is found in standard altimeter
estimates. Consistency is not meant here as a perfect alignment between the SST gradi-
ents and the geostrophic currents—which is not at all to be expected in non-stationary
current fields—but to the impossibility of having so many isotherms being crossed by very
large-scale currents, considering the well-developed structures found in the SST field, even
assuming a strong chaotic stirring. The dADR-SR prediction also recovers much more
reliable patterns associated with the weaker meanders and smaller-scale recirculations
in the centre of the sub-basin (C and D) and also the highly asymmetric, strong dipole
visible east of Menorca Island (E). Remarkably, it is also capable of identifying the winding
north-eastward current close to Corsica (F) that is seen as a rather straight and uniform
flow in low-resolution altimetry and completely missed by corresponding AMEDA, while
being detected as a small dipole in super-resolved AMEDA contours.
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Figure 6. The dADR-SR prediction from real satellite-derived absolute dynamic topography (ADT)
and sea surface temperature data (SST) for one example date (17-07-2016). (A) Original altimeter-
based surface geostrophic currents (obtained from the ADT gradients); (B) super-resolved surface
geostrophic currents; (C) satellite SST field. The cyan box in (C) identifies the area plotted in Figure 7.

The situation looks very different when the original thermal-infrared data are masked
by clouds, because in these cases SST data interpolation leads to much smoother SST
structures and gradients than what is observed in clear-sky conditions. This filtering
unfortunately reflects on the structures retrieved by the dADR-SR model as well, evi-



Remote Sens. 2022, 14, 1159 15 of 22

dently dumping surface current intensities and also eventually clearing out several of the
mesoscale features.
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Figure 7. Dynamical structures reconstructed by dADR-SR prediction from real satellite-derived
absolute dynamic topography (ADT) and sea surface temperature data (SST) (zoomed from Figure 6).
(A) Original altimeter-based surface geostrophic currents; (B) super-resolved surface geostrophic
currents; (C,D) satellite SST field with overplot of the eddy contours identified through AMEDA de-
tection algorithm (red = cyclonic, blue = anticyclonic, black dots stand for automatically detected eddy
centres) applied to original altimeter currents (C) and to super-resolved field (D). A–F letters serve to
more easily locate the dynamical features that are recovered by dADR-SR and missed/misplaced by
standard altimetry products (discussed in the text).

One such example is given in Figure 8, which shows the interpolated SST and the
associated nominal interpolation error on the 1st of July 2014 and the same fields taken
three days apart. During these three days, clouds gradually moved into the southwestern
Mediterranean from Morocco, completely hiding the sea surface to the satellite infrared
radiometers on the second date (Figure 8B,E). The corresponding SST field, presenting very
clear and distinct structures on the first day, is dramatically blurred by the interpolation
in data-void areas (Figure 9). Similar to the example presented in Figure 7, the dADR-
SR reconstruction is able to recover much more consistent surface current patterns in
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the presence of clear-sky thermal observations, e.g., aligning the currents to the true
shape/position of the jet found close to 6◦E (Figure 9G) along the Algerian coast. This jet is
actually feeding a mushroom-like mesoscale structure whose cyclonic eddy is much better
retrieved in the super-resolved image and significantly misplaced by the standard product
(Figure 9E). Likewise, SR fields also reconstruct the small-scale features observed in the
Almeria–Oran front region (i.e., to the north of the SST front found around the Greenwich
meridian), which is seen as a unique and quite large cyclone in altimetry maps (consistent
with what was noticed by [35]). Notably, however, the geostrophic current field based
on altimetry only suffers minor evolutions after three days (Figure 9F), while dADR-SR
actually appears to have smeared out most of the features observed previously. Current
intensities are also significantly and unrealistically reduced on the 3rd of July, especially in
the intense, anticyclonic meander observed along the Algerian coast at 6◦E (Figure 9H).
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nominal interpolation error; (C,D), MODIS Terra pseudo-true colour images; (E,F) from NASA
Worldview (https://worldview.earthdata.nasa.gov, last accessed on 14 January 2022). On the first
date, clear-sky conditions (E) lead to extremely clear and distinct SST patterns and low interpolation
errors in all the Mediterranean (A,C). Three days later, clouds arriving from Morocco (F) prevent the
reconstruction of small-scale dynamical features in the SST field and lead to increased interpolation
errors (B,D). The thin cyan box identifies the area zoomed in Figure 9.
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Figure 9. Impact of the smoothing introduced by SST data interpolation on the dynamical re-
construction (zoomed from Figure 8). (A,B) original altimeter-based surface geostrophic currents;
(C,D) super-resolved surface geostrophic currents; (E–H) SST L4 field with overplot of the eddy
contours identified through AMEDA detection algorithm (red = cyclonic, blue = anticyclonic, black
dots stand for automatically detected eddy centres) applied to original altimeter currents (E,F) and to
super-resolved field (G,H). Current vectors are overplot in (A–D) plots.

Several similar cases can be picked up by looking at the entire time series, but our qual-
itative understanding of the power and limitations of the model and observations analysed
in this first work are fully confirmed also by the successive quantitative assessment. This
latter exercise was carried out by matching the independent estimates of surface currents
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obtained from in situ drifting floats with co-located/concurrent data-driven modelling
and altimeter data. Actually, the error associated with the super-resolved and standard
altimetric estimates (assessed here as the absolute value of the difference with respect to
drifter data) does not display a unique behaviour along the individual drifters’ trajecto-
ries, with alternating improvements and degradations of the current velocity components,
which do not present marked geographical characterization (Figure 10). Overall, though,
SR fields seem to provide slightly more accurate values in some (mostly offshore) areas of
the western basin, while, on average, they seem to perform worse in the easternmost part
of the Levantine basin (close to Israel/Lebanon coasts).
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(A) zonal component; (B) meridional component. Positive values indicate an improvement with
respect to altimetry.

4. Discussion

While our findings could be of general interest to a broad range of scientists, we expect
them to stimulate further investigations and suggest new ways to efficiently combine Earth
system data from multiple sensors and models. In fact, the adaptation and development of
AI and deep-learning tools for Earth observation encompasses an ever-growing number of
potential applications. We have tested here a novel approach that not only allows users to
take advantage of neural network techniques for the combination of multi-sensor, remotely
sensed data, but proposes an innovative way to merge satellite observations and numerical
models, building an observation-based product that implicitly includes knowledge of
the physics of the system in a way different from classical statistical interpolation or
data assimilation.
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We performed an observing system simulation experiment to test the applicability of
computer vision algorithms (originally designed for single image super resolution) for the
improved estimation of ocean absolute dynamic topography. Usually, OSSEs provide a
controlled testing environment, targeted to better tune observing system design or to set
up the retrieval algorithms for future satellite missions. Indeed, one interesting aspect of
the experiment carried out here is that, while it will hopefully be possible in the future to
train our super-resolution model directly from observations (as soon as SWOT, Harmony
or SEASTAR measurements become available), it is already possible to apply it to super-
resolve present altimeter products, provided the area and period under study are effectively
covered by cloud-free/noise-free infrared images.

In fact, we have identified a number of issues and aspects that will need further
investigation and new developments. First of all, a dedicated effort would be needed to
take into account the limitations of present, satellite-based SST L4 data, which are obtained
through spatio-temporal statistical interpolation of eventually cloud-contaminated infrared
images and thus provide uneven spatial spectral information (depending on the persistence
of cloud cover and interpolation strategy adopted) [41]. One possible strategy to expand the
applicability of algorithms based on super-resolution would thus be to also fully simulate
SST interpolation and related error in an improved OSSE. This could be achieved by adding
realistic data voids to model data and implementing the same algorithm used operationally
for SST interpolation. The interpolated SST and related formal interpolation error could
then be included as predictors rather than the original model SST. As an alternative, one
could test the applicability of the model to non-interpolated SST data (also known as
Level 3), starting already from the training phase. Moreover, this approach requires a
specific OSSE and dedicated tests.

One additional aspect that deserves to be mentioned is that we carried out our tests in
the Mediterranean Sea, which is likely one of the most complex areas in terms of upper
ocean dynamics (though cloud coverage is less critical than elsewhere) [62]. This is due
to the small Rossby radius of deformation (i.e., the scale at which buoyancy and rotation
effects are comparable, which set the characteristic size of dominant flow instabilities) and
the occurrence of intense, small-scale air–sea interactions (modulated by highly variable
orography) that drive complex coastal dynamics that can significantly affect the source/sink
terms in the upper-ocean-temperature-evolution equation. This may undermine our work-
ing hypothesis that small scale changes are substantially dominated by advection. It would
thus be interesting to train (or even only to test) our model in other areas where intense
mesoscale activity is observed (e.g., western boundary currents, Antarctic Circumpolar
Current, etc.), eventually starting from different numerical simulations. Additionally, we
plan to further improve the network architecture by implementing and testing the latest
modules and ideas emerging from computer vision research (e.g., convolutional block
attention module (CBAM)), [63]. Major advances might then come from the design of
network architectures that admit the explicit use of sequences of ADT and SST data as
predictors, which could then allow users to define physically informed loss functions (e.g.,
by enforcing some approximate potential vorticity/tracer conservation) to jointly improve
the reconstruction of both current and tracer evolution over time.

Author Contributions: Conceptualization, B.B.N.; methodology, B.B.N., D.C. (Daniele Ciani), D.C.
(Davide Cavaliere) and E.C.; investigation, B.B.N. and D.C. (Daniele Ciani); visualization, B.B.N. and
D.C. (Daniele Ciani); supervision, B.B.N.; writing—original draft, B.B.N. and D.C. (Daniele Ciani);
writing—review and editing, B.B.N. and D.C. (Daniele Ciani), D.C. (Davide Cavaliere) and E.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been partly supported by the Copernicus Marine Environment Monitoring
Service Multi Observations Thematic Assembly Center (CMEMS MOB TAC), funded through subcon-
tracting agreement no. CLS-SCO-18-0004 between Consiglio Nazionale delle Ricerche and Collecte
Localisation Satellites (CLS), the latter of which is presently leading the CMEMS MOB TAC. The
83-CMEMS-TAC-MOB contract was funded by Mercator Ocean as part of its delegation agreement
with the European Union, represented by the European Commission, to set up and manage CMEMS.



Remote Sens. 2022, 14, 1159 20 of 22

The data used for the observation system simulation experiment have been provided by the ocean
CIRculation from ocean COLour observations (CIRCOL) project, funded by the European Space
Agency via the contract grant no. 4000128147/19/I-DT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dADR-SR code is available at: https://github.com/bbuong/
dADR-SR (last accessed 14 January 2022) and training/test datasets are available at: https://doi.org/
10.5281/zenodo.5815330 (last accessed 14 January 2022). The AMEDA code and description are freely
accessible through https://github.com/briaclevu/AMEDA (last accessed 14 January 2022).

Acknowledgments: We thank Emanuela Clementi for providing support on the numerical simulation
data used for the setup of the observing system simulation experiment and Milena Menna for
providing support on the drifter database. We also wish to thank Claudia Cesarini for critical reading
of the paper and useful suggestions on the presentation of the results. We acknowledge the use of
imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov, last accessed
14 January 2022), part of the NASA Earth Observing System Data and Information System (EOSDIS).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can deep learning beat

numerical weather prediction? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2021, 379, 20200097. [CrossRef] [PubMed]
2. Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations

and Targeted High-Resolution Simulations. Geophys. Res. Lett. 2017, 44, 12396–12417. [CrossRef]
3. Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R. A new estimate of the global 3D geostrophic ocean circulation based

on satellite data and in-situ measurements. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2012, 77–80, 70–81. [CrossRef]
4. Moore, A.M.; Martin, M.J.; Akella, S.; Arango, H.G.; Balmaseda, M.A.; Bertino, L.; Ciavatta, S.; Cornuelle, B.; Cummings, J.;

Frolov, S.; et al. Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A
More Complete Picture of the State of the Ocean. Front. Mar. Sci. 2019, 6. [CrossRef]

5. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understand-
ing for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

6. Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth
Syst. 2019, 11, 376–399. [CrossRef]

7. Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L. Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: A case study with the Lorenz 96 model. J. Comput. Sci. 2020, 44, 101171. [CrossRef]

8. Ruckstuhl, Y.; Janjić, T.; Rasp, S. Training a convolutional neural network to conserve mass in data assimilation. Nonlinear Process.
Geophys. 2021, 28, 111–119. [CrossRef]

9. Storto, A.; De Magistris, G.; Falchetti, S.; Oddo, P. A Neural Network-Based Observation Operator for Coupled Ocean-Acoustic
Variational Data Assimilation. Mon. Weather Rev. 2021, 149, 1967–1985. [CrossRef]

10. Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. DeepSD: Generating high resolution climate change
projections through single image super-resolution. arXiv 2017, arXiv:1703.03126.

11. Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.-M. DINCAE 1.0: A convolutional neural network with error estimates to
reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [CrossRef]

12. Sammartino, M.; Nardelli, B.B.; Marullo, S.; Santoleri, R. An Artificial Neural Network to Infer the Mediterranean 3D Chlorophyll-
a and Temperature Fields from Remote Sensing Observations. Remote Sens. 2020, 12, 4123. [CrossRef]

13. Nardelli, B.B. A Deep Learning Network to Retrieve Ocean Hydrographic Profiles from Combined Satellite and In Situ Measure-
ments. Remote Sens. 2020, 12, 3151. [CrossRef]

14. Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the
South China Sea and West Philippine Sea. Remote Sens. 2020, 12, 480. [CrossRef]

15. Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall’Olmo, G.; D’Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C. A neural
network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the
particulate backscattering coefficient. J. Geophys. Res. Oceans 2016, 121, 2552–2571. [CrossRef]

16. Sauzède, R.; Bittig, H.; Claustre, H.; De Fommervault, O.P.; Gattuso, J.-P.; Legendre, L.; Johnson, K.S. Estimates of Water-Column
Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks.
Front. Mar. Sci. 2017, 4. [CrossRef]

17. Sinha, A.; Abernathey, R. Estimating Ocean Surface Currents With Machine Learning. Front. Mar. Sci. 2021, 8. [CrossRef]
18. Zheng, G.; Li, X.; Zhang, R.-H.; Liu, B. Purely satellite data–driven deep learning forecast of complicated tropical instability

waves. Sci. Adv. 2020, 6, eaba1482. [CrossRef]

https://github.com/bbuong/dADR-SR
https://github.com/bbuong/dADR-SR
https://doi.org/10.5281/zenodo.5815330
https://doi.org/10.5281/zenodo.5815330
https://github.com/briaclevu/AMEDA
https://worldview.earthdata.nasa.gov
http://doi.org/10.1098/rsta.2020.0097
http://www.ncbi.nlm.nih.gov/pubmed/33583266
http://doi.org/10.1002/2017GL076101
http://doi.org/10.1016/j.dsr2.2012.04.012
http://doi.org/10.3389/fmars.2019.00090
http://doi.org/10.1038/s41586-019-0912-1
http://www.ncbi.nlm.nih.gov/pubmed/30760912
http://doi.org/10.1029/2018MS001472
http://doi.org/10.1016/j.jocs.2020.101171
http://doi.org/10.5194/npg-28-111-2021
http://doi.org/10.1175/MWR-D-20-0320.1
http://doi.org/10.5194/gmd-13-1609-2020
http://doi.org/10.3390/rs12244123
http://doi.org/10.3390/rs12193151
http://doi.org/10.3390/rs12030480
http://doi.org/10.1002/2015JC011408
http://doi.org/10.3389/fmars.2017.00128
http://doi.org/10.3389/fmars.2021.672477
http://doi.org/10.1126/sciadv.aba1482


Remote Sens. 2022, 14, 1159 21 of 22

19. Liu, Y.; Zheng, Q.; Li, X. Characteristics of Global Ocean Abnormal Mesoscale Eddies Derived From the Fusion of Sea Surface
Height and Temperature Data by Deep Learning. Geophys. Res. Lett. 2021, 48, e2021GL094772. [CrossRef]

20. Fablet, R.; Amar, M.; Febvre, Q.; Beauchamp, M.; Chapron, B. End-to- end physics-informed representation learning from and
for satellite ocean remote sensing data. In Proceedings of the XXIV ISPRS 2021: Intenational Society for Photogrammetry and
Remote Sensing Congress, Nice, France, 4–10 July 2021; p. hal-03189218.

21. Pannekoucke, O.; Fablet, R. PDE-NetGen 1.0: From symbolic partial differential equation (PDE) representations of physical
processes to trainable neural network representations. Geosci. Model Dev. 2020, 13, 3373–3382. [CrossRef]

22. Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2018, 378, 686–707. [CrossRef]

23. Ouala, S.; Nguyen, D.; Drumetz, L.; Chapron, B.; Pascual, A.; Collard, F.; Gaultier, L.; Fablet, R. Learning latent dynamics for
partially observed chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 103121. [CrossRef] [PubMed]

24. Fablet, R.; Beauchamp, M.; Drumetz, L.; Rousseau, F. Joint Interpolation and Representation Learning for Irregularly Sampled
Satellite-Derived Geophysical Fields. Front. Appl. Math. Stat. 2021, 7, 655224. [CrossRef]

25. Wang, Z.; Chen, J.; Hoi, S.C.H. Deep Learning for Image Super-Resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
43, 3365–3387. [CrossRef]

26. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 295–307. [CrossRef]

27. Ducournau, A.; Fablet, R. Deep learning for ocean remote sensing: An application of convolutional neural networks for super-
resolution on satellite-derived SST data. In Proceedings of the 9th IAPR Workshop on Pattern Recogniton in Remote Sensing
(PRRS), Cancun, Mexico, 4 December 2016; pp. 1–6. [CrossRef]

28. Höhlein, K.; Kern, M.; Hewson, T.; Westermann, R. A comparative study of convolutional neural network models for wind field
downscaling. Meteorol. Appl. 2020, 27, e1961. [CrossRef]

29. Rio, M.-H.; Santoleri, R.; Bourdalle-Badie, R.; Griffa, A.; Piterbarg, L.; Taburet, G. Improving the Altimeter-Derived Surface
Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs. J. Atmospheric
Ocean. Technol. 2016, 33, 2769–2784. [CrossRef]

30. Lopez-Dekker, P.; Biggs, J.; Chapron, B.; Hooper, A.; Kääb, A.; Masina, S.; Mouginot, J.; Buongiorno Nardelli, B.; Pasquero, C. The
Harmony Mission: End of Phase-0 Science Overview. In Proceedings of the 2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7752–7755.

31. Gommenginger, C.; Chapron, B.; Hogg, A.; Buckingham, C.; Fox-Kemper, B.; Eriksson, L.; Soulat, F.; Ubelmann, C.; Ocampo-
Torres, F.; Burbidge, G. SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean
Processes in Coastal, Shelf and Polar Seas. Front. Mar. Sci. 2019, 6, 457. [CrossRef]

32. Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.-I.; Legeais, J.-F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018:
25 years of reprocessed sea level altimetry products. Ocean Sci. 2019, 15, 1207–1224. [CrossRef]

33. Ballarotta, M.; Ubelmann, C.; Pujol, M.-I.; Taburet, G.; Fournier, F.; Legeais, J.-F.; Faugère, Y.; Delepoulle, A.; Chelton, D.;
Dibarboure, G.; et al. On the resolutions of ocean altimetry maps. Ocean Sci. 2019, 15, 1091–1109. [CrossRef]

34. Amores, A.; Jordà, G.; Arsouze, T.; Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day
Gridded Altimetric Products? J. Geophys. Res. Ocean. 2018, 123, 7220–7236. [CrossRef]

35. Stegner, A.; Le Vu, B.; Dumas, F.; Ghannami, M.A.; Nicolle, A.; Durand, C.; Faugere, Y. Cyclone-Anticyclone Asymmetry of Eddy
Detection on Gridded Altimetry Product in the Mediterranean Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017475. [CrossRef]

36. Mahadevan, A.; Tandon, A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 2006, 14,
241–256. [CrossRef]

37. Nardelli, B.B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature
data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [CrossRef]

38. Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote
Sens. Environ. 2017, 200, 154–169. [CrossRef]

39. Bowen, M.M.; Emery, W.; Wilkin, J.; Tildesley, P.C.; Barton, I.J.; Knewtson, R. Extracting Multiyear Surface Currents from
Sequential Thermal Imagery Using the Maximum Cross-Correlation Technique. J. Atmospheric Ocean. Technol. 2002, 19, 1665–1676.
[CrossRef]

40. Ciani, D.; Rio, M.-H.; Menna, M.; Santoleri, R. A Synergetic Approach for the Space-Based Sea Surface Currents Retrieval in the
Mediterranean Sea. Remote Sens. 2019, 11, 1285. [CrossRef]

41. Ciani, D.; Rio, M.-H.; Nardelli, B.B.; Etienne, H.; Santoleri, R. Improving the Altimeter-Derived Surface Currents Using Sea
Surface Temperature (SST) Data: A Sensitivity Study to SST Products. Remote Sens. 2020, 12, 1601. [CrossRef]

42. Isern-Fontanet, J.; García-Ladona, E.; González-Haro, C.; Turiel, A.; Rosell-Fieschi, M.; Company, J.B.; Padial, A. High-Resolution
Ocean Currents from Sea Surface Temperature Observations: The Catalan Sea (Western Mediterranean). Remote Sens. 2021, 13,
3635. [CrossRef]

43. Rio, M.-H.; Santoleri, R. Improved global surface currents from the merging of altimetry and Sea Surface Temperature data.
Remote Sens. Environ. 2018, 216, 770–785. [CrossRef]

44. Ciani, D.; Charles, E.; Nardelli, B.B.; Rio, M.-H.; Santoleri, R. Ocean Currents Reconstruction from a Combination of Altimeter
and Ocean Colour Data: A Feasibility Study. Remote Sens. 2021, 13, 2389. [CrossRef]

http://doi.org/10.1029/2021GL094772
http://doi.org/10.5194/gmd-13-3373-2020
http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1063/5.0019309
http://www.ncbi.nlm.nih.gov/pubmed/33138452
http://doi.org/10.3389/fams.2021.655224
http://doi.org/10.1109/TPAMI.2020.2982166
http://doi.org/10.1109/TPAMI.2015.2439281
http://doi.org/10.1109/prrs.2016.7867019
http://doi.org/10.1002/met.1961
http://doi.org/10.1175/JTECH-D-16-0017.1
http://doi.org/10.3389/fmars.2019.00457
http://doi.org/10.5194/os-15-1207-2019
http://doi.org/10.5194/os-15-1091-2019
http://doi.org/10.1029/2018JC014140
http://doi.org/10.1029/2021JC017475
http://doi.org/10.1016/j.ocemod.2006.05.006
http://doi.org/10.1016/j.rse.2012.10.012
http://doi.org/10.1016/j.rse.2017.07.029
http://doi.org/10.1175/1520-0426(2002)019&lt;1665:EMSCFS&gt;2.0.CO;2
http://doi.org/10.3390/rs11111285
http://doi.org/10.3390/rs12101601
http://doi.org/10.3390/rs13183635
http://doi.org/10.1016/j.rse.2018.06.003
http://doi.org/10.3390/rs13122389


Remote Sens. 2022, 14, 1159 22 of 22

45. Clementi, E.; Pistoia, J.; Escudier, R.; Delrosso, D.; Drudi, M.; Grandi, A.; Lecci, R.; Cretí, S.; Ciliberti, S.; Coppini, G.; et al. Mediter-
ranean Sea Analysis and Forecast (CMEMS MED-Currents 2016–2019) (Version 1) [Data Set]; Copernicus Monitoring Environment
Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2021. [CrossRef]

46. Poulain, P.-M.; Menna, M.; Mauri, E. Surface Geostrophic Circulation of the Mediterranean Sea Derived from Drifter and Satellite
Altimeter Data. J. Phys. Oceanogr. 2012, 42, 973–990. [CrossRef]

47. Hansen, D.V.; Poulain, P.-M. Quality Control and Interpolations of WOCE-TOGA Drifter Data. J. Atmospheric Ocean. Technol. 1996,
13, 900–909. [CrossRef]

48. Menna, M.; Poulain, P.-M.; Bussani, A.; Gerin, R. Detecting the drogue presence of SVP drifters from wind slippage in the
Mediterranean Sea. Measurement 2018, 125, 447–453. [CrossRef]

49. Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—
comparisons with observations. Geophys. Res. Lett. 2003, 30. [CrossRef]

50. Gaultier, L.; Ubelmann, C.; Fu, L.-L. The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction. J. Atmospheric
Ocean. Technol. 2016, 33, 119–126. [CrossRef]

51. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15. Available online: https://hdl.handle.net/11245/1.505367
(accessed on 1 March 2021).

52. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Dropblock: A regularization method for convolutional networks. Adv. Neural Inf. Process. Syst. 2018,
arXiv:1810.12890v1 [cs.CV], 10727–10737.

53. Le Vu, B.; Stegner, A.; Arsouze, T. Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) and Its Application to
Coastal Eddy Formation. J. Atmospheric Ocean. Technol. 2018, 35, 739–762. [CrossRef]

54. Bagaglini, L.; Falco, P.; Zambianchi, E. Eddy Detection in HF Radar-Derived Surface Currents in the Gulf of Naples. Remote Sens.
2019, 12, 97. [CrossRef]

55. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017;
pp. 136–144. [CrossRef]

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

57. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on
learning. In Proceedings of the 31st AAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp.
4278–4284.

58. Liu, S.; Gang, R.; Li, C.; Song, R. Adaptive deep residual network for single image super-resolution. Comput. Vis. Media 2019, 5,
391–401. [CrossRef]

59. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2011–2023. [CrossRef] [PubMed]

60. Shi, W.; Jiang, F.; Zhao, D. Single image super-resolution with dilated convolution based multi-scale information learning
inception module. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20
September 2017; pp. 977–981. [CrossRef]

61. Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. In
Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December
2016; pp. 4905–4913.

62. Malanotte-Rizzoli, P.; Artale, V.; Borzelli-Eusebi, G.L.; Brenner, S.; Crise, A.; Gacic, M.; Kress, N.; Marullo, S.; D’Alcalà, M.R.;
Sofianos, S.; et al. Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues
and directions for future research. Ocean Sci. 2014, 10, 281–322. [CrossRef]

63. Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision, Munich, Germany, 8–14 September 2018. [CrossRef]

http://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS4
http://doi.org/10.1175/JPO-D-11-0159.1
http://doi.org/10.1175/1520-0426(1996)013&lt;0900:QCAIOW&gt;2.0.CO;2
http://doi.org/10.1016/j.measurement.2018.05.022
http://doi.org/10.1029/2002GL016473
http://doi.org/10.1175/JTECH-D-15-0160.1
https://hdl.handle.net/11245/1.505367
http://doi.org/10.1175/JTECH-D-17-0010.1
http://doi.org/10.3390/rs12010097
http://doi.org/10.1109/CVPRW.2017.151
http://doi.org/10.1007/s41095-019-0158-8
http://doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408
http://doi.org/10.1109/icip.2017.8296427
http://doi.org/10.5194/os-10-281-2014
http://doi.org/10.1007/978-3-030-01234-2_1

	Introduction 
	Materials and Methods 
	Primitive Equation Model Data 
	Satellite Absolute Dynamic Topography 
	Satellite Sea Surface Temperature Data 
	Sea Surface Drifter Data 
	Simulating Altimeter-like ADT Maps 
	Preparation of Training and Test Datasets for Deep Convolutional Learning 
	Deep Convolutional Models Learning Strategy and Configuration 
	Automatic Eddy Detection 

	Results 
	Testing Single-Image, Super-Resolution Configurations and Designing a Multi-Scale Adaptive Model 
	Applying Dilated Adaptive Residual Super-Resolution Trained on Simulated Data to Real Satellite Observations 

	Discussion 
	References

