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Abstract: Wheat dominates the Australian grain production market and accounts for 10–15% of the
world’s 100 million tonnes annual global wheat trade. Accurate wheat yield prediction is critical to
satisfying local consumption and increasing exports regionally and globally to meet human food
security. This paper incorporates remote satellite-based information in a wheat-growing region in
South Australia to estimate the yield by integrating the kernel ridge regression (KRR) method coupled
with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and the
grey wolf optimisation (GWO). The hybrid model, ‘GWO-CEEMDAN-KRR,’ employing an initial
pool of 23 different satellite-based predictors, is seen to outperform all the benchmark models and
all the feature selection (ant colony, atom search, and particle swarm optimisation) methods that
are implemented using a set of carefully screened satellite variables and a feature decomposition
or CEEMDAN approach. A suite of statistical metrics and infographics comparing the predicted
and measured yield shows a model prediction error that can be reduced by ~20% by employing the
proposed GWO-CEEMDAN-KRR model. With the metrics verifying the accuracy of simulations, we
also show that it is possible to optimise the wheat yield to achieve agricultural profits by quantifying
and including the effects of satellite variables on potential yield. With further improvements in
the proposed methodology, the GWO-CEEMDAN-KRR model can be adopted in agricultural yield
simulation that requires remote sensing data to establish the relationships between crop health, yield,
and other productivity features to support precision agriculture.

Keywords: wheat yield; satellite data; machine learning; kernel ridge regression; South Australia

1. Introduction

Agriculture and climate change are interrelated sciences [1], with adverse climate vari-
ability being a fundamental factor disrupting agricultural production. This may correlate
to food availability, decreased food access, and even food quality [2]. Such an effect is
likely to happen with subsequent changes in temperature, rainfall, and extreme climatic
conditions such as heatwaves, diseases, pest invasions, and varying nutritional quality of
some foods, to name a few [3]. Quantifying and modelling the impacts of these factors on
crop yield is vital for improving the resilience of our agricultural system in a highly variable
environment [4]. The authors in [5] state that three variables, such as crop yield, cropping
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area, and crop frequency, are fundamental to the crop production equation. Modelling crop
yield has often been estimated based on the sensitivity of agricultural outputs to climate
variability under global warming scenarios. It has also been estimated that changes in
frequency and/or cropping can cause roughly 70% of the change in agricultural output
driven by climate variability [6].

Several types of research have assessed climate change impacts on crop yields at local
and global scales. Some examples stated in [7–10] use either deterministic or artificial
intelligence methods for modelling. Romeijn et al. [11] have evaluated deterministic and
complex analytical hierarchy process methods for agricultural land suitability analysis in a
changing climate. Aschonitis et al. [12] assessed the intrinsic vulnerability of agricultural
land to water and nitrogen losses via a deterministic approach and regression analysis.
Several studies, such as [13–15], have used deterministic or probabilistic approaches for
modelling. However, these methods lack automation and can be time-consuming, complex,
and resource-intensive [16,17]. Machine learning (ML) methods have gained significant
attention from researchers keen to develop yield prediction models. One such study is the
work of Kouadio et al. [18], which used soil fertility properties as fertiliser constituents (i.e.,
soil organic matter (SOM), available potassium, boron, sulfur, zinc, phosphorus, nitrogen,
exchangeable calcium, magnesium, and pH) to predict Robusta coffee yield in Vietnam.

Wheat yield predictions based on multi-source data from climate, satellite, soil, and
historical yield records have developed rapidly using linear regression [19,20], machine
learning [21,22], and deep learning algorithms [23,24]. The research interest has focused
on identifying the most important predictors and developing robust prediction models.
Kolotii et al. [25] applied single-factor linear regression to forecast winter wheat crop yield in
Ukraine using normalised difference vegetation index (NDVI), leaf area index (LAI), and a
fraction of absorbed photosynthetically active radiation (fAPAR) derived from satellite data
and crop growth model. The author indicated that the satellite-based biophysical parameter
predictor, LAI, yielded the most accurate result at each scale. Cai et al. [26] combined climate
and satellite data to achieve the best performance for wheat yield prediction in Australia.
The findings also indicated that the yield prediction models based on machine learning
methods outperformed the regression methods used by earlier researchers, such as [27–29].
Among satellite-based inputs, using the enhanced vegetation index (EVI) provided better
performance in yield prediction than the solar-induced chlorophyll fluorescence (SIF).
Kamir et al. [30] integrated the benefits of machine learning and regression methods, climate
records, and satellite image time series to estimate wheat yields across the Australian wheat
belt. The results show that the combination of support vector regression (SVR) and radial
basis function is the best model while the additional information from climate (temperatures
and rainfall) significantly improved yield predictions compared to the pure NDVI-based
model. Moreover, the author suggested that the resulting yield estimates meet the accuracy
requirements for mapping the yield gap and identifying yield gap hotspots that could be
targeted for further work. Bali and Singla [31] demonstrated that deep learning-based
Recurrent Neural Network (RNN)-long short-term memory (LSTM) outperformed machine
learning models, Artificial Neural Network (ANN), Random Forest (RF), and Multivariate
Linear Regression (MLR) model in predicting wheat yield in the northern region of India
using climate variables. The results also show that machine and deep learning models
outperformed the two linear regression methods in predicting wheat yield; however, the
LSTM did not perform better than SVR. Overall, it is clear that studies focused on the
importance of incorporating satellite data for modelling purposes to capture spatially
relevant information for yield prediction, the performance of different predictors and
models requires further investigation.

This paper contributes to the development of the robust method for predictor selection
and accuracy of wheat yield prediction using large datasets derived from satellites. The
study also aims to report on the modelling impacts of climate variability on agricultural
crop yields in South Australia using satellite-derived information. This is why this study is
necessary and has several advantages [32], such as eliminating the provision to collect un-
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obstructed spatial data physically without a piece of measuring equipment and considering
satellite sensors that can passively record electromagnetic energy reflected from or emitted
by the phenomena of interest [33]. In other words, using the satellite method to collect data
means that passive remote sensing does not disturb the object or the area of interest and can
help collect the data over relatively large spatial areas. The use of remote sensing methods
in satellite datasets can also help to characterise the natural weather or climatic features
without being affected by the physical objects on the ground surface. Using satellites to
monitor the ground, the surface areas can be observed systematically, and the changes
in soil or other properties affecting crop yield can also be monitored systematically and
regularly over time. Remote sensing methods also enable us to obtain repetitive coverage,
which becomes quite handy when collecting data on dynamic themes such as soil moisture,
water, agricultural fields, etc. Australian farmers are vulnerable to climate variability
and change [34]. As for South Australia as a specific choice of an area of interest, it is
observed that the region has varying rainfall patterns, droughts, and higher temperatures
that pose significant risks to the state’s urban water supplies and agricultural areas [35,36].
This affects wheat production, a prime employment source in South Australia, and its
export. Therefore, climate change variability in the region, especially during the austral
winter, is a potential threat to production [35]. Lastly, this study maps ground conditions at
small-to-medium scales, making the data acquisition methods cheaper and faster.

2. Materials and Methods
2.1. Theoretical Frameworks

This section summarises the proposed objective model (i.e., KRR) and related algo-
rithms (i.e., CEEMDAN and GWO) used in this study. The use of hybrid models in the
study can amplify the strengths of the individual techniques to provide a more robust
approach to the modelling process and make the model more accurate and efficient [37–39].
This paper aims to use the predictive merits of the CEEMDAN (a data decomposition
method) combined with the KRR algorithm to achieve what has never been done in crop
yield modelling before, especially in South Australia. To improve the CEEMDAN-KRR and
other comparative models by selecting the most relevant satellite variables, we optimise the
overall predictive system using feature selections based on grey wolf optimisation (GWO),
ant colony optimisation (ACO, [40]), atom search optimisation (ASO, [41]), and particle
swarm optimisation (PSO) [42]. It is imperative to note that the CEEMDAN method is
a variation of the Ensemble Empirical Mode Decomposition (EEMD) algorithm that pro-
vides a near-exact reconstruction of the original signal and a better spectral separation of
the Intrinsic Mode Functions (IMFs) [43]. Several other comparison approaches include
CEEMDAN-MLR or Multiple Linear Regression, CEEMDAN-RF or Random Forest, and
CEEMDAN-SVR or Support Vector Regression, and their respective standalone counter-
parts such as KRR, MLR, RF, and SVR models are also used in this study. Technical details of
multi-linear regression (MLR) [44], random forest (RF) [45], and support vector regression
(SVR) [46,47], and the feature optimization methods ACO [40], ASO [41], and PSO [42] are
explained elsewhere.

2.1.1. Kernel Ridge Regression (KRR)

Ridge Regression (RR) is a simple yet powerful non-linear regression for forecasting,
especially when the kernel is introduced into RR (KRR) as it maps out the time-series non-
linearly transformed [48] input data to high dimensional space from low dimension [49] and
the kernel function is a feature map from d dimensional Hilbert Space Hk, Ψ : X → Hk
such that k

(
xi, xj

)
=
{

Ψ(xi), Ψ
(
xj
)}
Hk

. In this study, we follow Li et al. [49] to implement
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KRR. With kernel functions and n data samples (x1, y1), (x2, y2), . . . , (xn, yn) ∈ X ∗Y (yi
is the target value of corresponding xi, i = 1, 2, . . . , n), the kernel matrix equation is:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (1)

The KRR problem can be formulated as

min
w
‖Y−Kw‖2 + λ‖w‖2 (2)

Here Y is the target vector of all n data samples, w is the unknown vector, In is an
n ∗ n identity matrix and regularisation item λ ≥ 0 to avoid a large range of w.

w = (K + λIn)
−1Y (3)

2.1.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) is an improved version of ensemble mode decomposition (EMD) and empirical
ensemble mode decomposition (EEMD). The EMD is an adaptive time-space analysis
used to process non-linear and non-stationary time series of data. Due to the nonlinear-
ity of the data, EMD uses the divide and conquer strategy to decompose and ensemble
complex signals into simple components and extract those components as intrinsic mode
functions (IMFs) and residues [49]. To avoid EMD’s mode mixing problem, EEMD de-
composes signals by adding white Gaussian noise, but they cannot be offset after multiple
averaging [50,51]. Moreover, this method’s intricacy and computational complexity are
significantly raised when white noise is expanded numerous times [52]. The CEEMDAN
overcomes this problem with adaptive noise by reconstructing the original input/output
variables. Compared to EEMD, the reconstruction of CEEMDAN is comprehensive and
noise-free, and it requires fewer trials [53]. This study follows Torres et al. [54] and Ahmed
et al. [55] to implement CEEMDAN using the following steps.

Step 1: Decompose by EMD P realisation x[n]+ ε0 ω
i[n] to receive the first modal component

IM̂F1[n] =
1
p

p

∑
p=1

IMFp
1 [n] = IMF1[n] (4)

Step 2: The first residual component is calculated by putting k = 1 in Equation (1),

Res1[n] = χ[n]− IM̂F1[n] (5)

Step 3: Putting k = 2, the second residual component is obtained as

IM̂F2[n] =
1
p

p

∑
p=1

E1(r1[n] + ε1E1(ω
p[n])) (6)

Step 4: Similarly calculating kth residue as

Resk[n] = Resk−1[n]− IM̂Fk[n] (7)

Step 5: Decomposing the realizations Resk[n] + ε1E1(ω
p[n]). Here, k = 1, . . . K until

their first model of EMD reached and the (k + 1) is

IM̂F(k+1)[n] =
1
p

p

∑
p=1

E1(rk[n] + εkEk(ω
p[n])) (8)
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Step 6: Here, the k value is incremented and steps 4–6 are repeated, and the final
residue is achieved

Resk[n] = χ[n]−
K

∑
k=1

IM̂Fk (9)

Here, k is the highest number of modes.
Therefore, the signal x[n] can be expressed as

χ[n] =
K

∑
k=1

IM̂Fk + Resk[n] (10)

2.1.3. Grey Wolf Optimizer (GWO)

Grey wolf optimiser proposed by Mirjalili et al. (2014) depicts the interesting and
systematic lifestyle of grey wolves belonging to the Canidae family. Grey wolves lie at
the top of the food chain living in a pack of 5 to 12 with a social hierarchy naming alpha
(α-leaders), beta (β-advisors of alpha and commands δ andω), gamma (δ-commandsω),
and omega (ω-follow every other wolf’s command). During hunting, α, β, and δ work
as guides andω follow them. During encircling of prey for hunting, it is as described by
Al-Tashi et al. [56]

→
X (t + 1) =

→
Xp(t) +

→
A·
→
D (11)

→
D =

∣∣∣∣→C · →Xp(t)− X (t)
∣∣∣∣ (12)

where t indicates the current iteration,
→
A and

→
C are coefficient vectors,

→
Xp is the prey’s

positions vector, X is the position of the wolves in d dimensional space, as d is the variable

number.
→
A and

→
C can be calculated as the following:

→
A = 2

→
a ·→r1 −

→
a (13)

→
C = 2·→r2 (14)

where
−→
r1 and

−→
r2 are vectors randomly in [0, 1] and

→
a is a set vector that linearly decreases

from 2 to 0 over iterations. In the hunting process, α, β, and δ command and ω follow
them modifying their positions as required by the pack until a suitable position or, in this
case, a solution is achieved. The position selection can be calculated as

→
X (t + 1) =

−−−−−−−−→
x1 + x2 + x3

3
(15)

where x1, x2, and x3 can be defined as:

−→
x1 =

−→
Xα − A1·(

−→
Dα) (16)

−→
x2 =

−→
Xβ − A2·(

−→
Dβ) (17)

−→
x3 =

−→
Xδ − A3·(

−→
Dδ) (18)
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where x1, x2, and x3 are the best solutions at iteration t, A1, A2, and A3 can be calculated

using Equation (13) and
−→
Dα,

−→
Dβ and

−→
Dδ calculated from Equation (19) and

−→
C1 ,

−→
C2 and

−→
C3

from Equation (14)
−→
Dα =

∣∣∣∣−→C1 ·
→
Xα −

→
X
∣∣∣∣

−→
Dβ =

∣∣∣∣−→C2 ·
→
Xβ −

→
X
∣∣∣∣

−→
Dδ =

∣∣∣∣−→C3 ·
→
Xδ −

→
X
∣∣∣∣

(19)

In the main paper, to tune exploration and exploitation
→
a vector is suggested to

decrease for each dimension linearly proportional to the number of iterations from 2 to 0.
The equation is as follows, and ter is the optimisation total iterations number:

→
a = 2− t· 2

maxtter
(20)

Figure 1 illustrates the flowchart of the grey wolf optimisation algorithm. The figure
shows that only one wolf can conduct a mating action in a wolf pack. It is not required
for the alpha (α) wolf to be the strongest wolf in the pack, but the wolf must have the
finest management skills. The beta (β) wolf possesses the group’s second-best command.
The wolf supports each other and serve as a liaison with all other wolves in the pack.
The second is the delta (∆) and omega (ω) wolves, respectively, maintaining the group’s
diminishing authority level. The wolf is the group’s lowest level of the hierarchy, and it
obeys the orders and instructions of a wolf. The GWO method uses four sorts of grey
wolves for the simulation, representing the four fitness functions.
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2.1.4. Particle Swarm Optimiser (PSO)

The particle swarm optimiser algorithm is a population-based stochastic optimisation
inspired by social and psychological considerations [57]. The PSO relates to swarm intelli-
gence principles, which imitate the social behaviour of flocking birds or schooling fish. The
algorithm has gained popularity due to its several favourable properties, including its basic
structure, resilient mobility, and ease of implementation [58,59], which enable the training
of various intelligent models. Each particle is considered a plausible solution in the search
space of an optimisation problem. The control parameters determine the convergence of
particle trajectories, keeping track of each particle’s unique best fitness value, locating the
global best particle, and updating each particle’s location and velocity. If convergence is not
achieved, the iterative process is repeated until either the optimisation problem converges
to an optimal solution, or the maximum number of iterations is reached. The number of
particles is 10, with a maximum number of iterations of 150. The maximum and minimum
bond inertia weights were 0.9 and 0.4, respectively.

2.1.5. Atom Search Optimiser (ASO)

Zhao et al. [60] introduced Atom Search Optimisation (ASO) as a new metaheuristic
algorithm in 2019. The ASO simulates the fundamental concepts of molecular dynamics
and atom movement principles, such as potential function characteristics, contact force,
and geometric constraint force. In ASO, each atom keeps track of two vectors: position
and velocity. When it comes to binary optimisation, the atoms only have to deal with
two numbers (“1” or “0”). As a result, a means to leverage the atom’s velocity to alter
the position from “0” to “1” or vice versa should be discovered. Previous research has
shown that the transfer function helps convert a continuous optimisation algorithm to
a binary one [61]. During the initial iterations of ASO, each atom interacts with others
via attraction or repulsion. Repulsion can help avoid over-concentration of atoms and
premature algorithm convergence, improving exploration capability across the search space.
As iterations progress, the repulsion becomes weaker, and the attraction becomes more
robust, indicating that exploration diminishes, and exploitation grows. Finally, each atom
interacts with other atoms by attraction, ensuring that the algorithm has a lot of power
to use.

2.1.6. Ant Colony Optimiser (ASO)

Dorigo and Caro [62] proposed Ant Colony Optimization (ACO), which is technically
motivated by the behaviours of ant colonies. We used an ACO algorithm to identify features
as a comparing approach in this work. According to the ACO algorithm’s theory, when
ants discover a sign of food, they leave a fragrant chemical known as a pheromone to mark
the trail [63]. When an ant seeks food, it follows the pheromone trail. Additionally, this ant
deposits pheromones along the path, allowing other ants to follow suit. When an ant must
choose between two roads, it chooses the one with a high pheromone level, indicating that
more ants have travelled the path. It is a question of convenience for the ants; shorter trails
become more fragrant than longer paths. If an ant does not follow a trail, the pheromone
degrades over time. As a result, the intensity of the pheromone is diminished [64], and over
time, all ants will take the shorter route to food. Finally, “pheromone evaporation” and
“probabilistic path selection” supply information to ants for them to identify the shortest
food path. The notions enable elasticity in the solution of optimisation problems. In a
nutshell, an ant can use the information contained in the bodies of other ants to select a
more practical choice.

2.1.7. Comparing Predictive Models

Three machine learning models were also included in determining a viable approach
to machine learning and a feature selection approach. Multiple Linear Regression (MLR)
seeks to model the relationship between two or more explanatory variables and a target
variable. It aids in determining the extent to which variables vary [65]. Support Vector
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Regression (SVR) is a machine learning kernel approach is used for various tasks, including
forecasting time series. SVRs that employ kernels can also learn the training data’s non-
linear trend. Three SVR models are available, each with a unique kernel (RBF, poly, and
linear) [66]. Additionally, the SVR model has been used in a variety of research applications,
including precipitation [67], solar radiation [68], wind energy [69], flood forecasting [68,70],
evaporation [71], and crop yield [72,73] prediction.

Breiman [74] developed the random forest (RF) model, and it contains regression and
classification methods. The RF model assembles tree predictors linked to distinct values of
randomly sampled random vectors. The model creates decor-related decision trees during
the training phase, and the overall model output is derived by averaging the output values
of all the individual trees [75]. The bootstrap resampling process generates a new set of
training data from the initial training sample set N, and then K decision trees are used to
construct bootstrap-set random forests. The complete specifications for the RF model may
be found here [45]. RF is a collection (ensemble) of fundamental tree predictors. Each tree
can generate a response given a set of predictor values [75]. The random forest method has
been successfully implemented in predicting different crop yields worldwide [75,76].

3. Study Area and Data
3.1. Study Area and Wheat Yield Data

This study focused on a wheat yield prediction problem in South Australia, the fourth
largest state in southern central Australia. Australia has a Mediterranean climate with
an abundance of rain suitable for rainfed agriculture and crops like wheat. Wheat is the
largest broadacre winter crop typically sown from May to June and harvested by November
and December [26,77]. In the 2019–2020 financial year, 14 million tonnes of wheat were
harvested in Australia, 18% less than the previous year, and 2.689 million tonnes of wheat
were produced in South Australia (SA) [78]. Several climatic conditions, such as rainfall,
soil moisture, temperature, solar radiation, humidity, etc., determine wheat production and
are essential inputs to empirical and process-based models [26]. Delayed harvest due to a
series of heavy rainfall in November and flooding in some regions is likely to cause a fall
in wheat production in 2021–2022, which leads to poor grain quality [79]. Wang et al. [80]
showed that climate variability could impact wheat production by 31% to 47%.

For this study, the average yearly wheat yield data for South Australia (SA) from
1990 to 2020 was downloaded from the Australian Bureau of Agricultural and Resource
Economics and Sciences (ABARES) (http://apps.agriculture.gov.au/agsurf/, 29 December
2021). The dataset was acquired through farm surveys where the farm population ranged
from 1967 to 9018 farms, and the sample was between 73 and 206 farms. The farm popula-
tion was stratified based on operation size using the estimated value of the agricultural
operation. The size of each stratum was decided using the Dalenius–Hodges method, while
the sample was assigned to each stratum using a mixture of the Neyman allocation [81].
This dataset has been a prime source of information on the current and historical economic
performance of Australian farm business units and has been used to undertake research
and analysis on a range of industry issues and government policy areas.

It is worth to mention that South Australia’s cropping zones are of three types, namely
pastoral (411: SA North Pastoral), wheat-sheep (421: SA Eyre Peninsula; 422: SA Murray
Lands and the Yorke Peninsula), and high rainfall (431: SA South East) zone [82]. Except
for the Murray lands, where rainfall was generally average, most farming districts in South
Australia experienced below-average rainfall in September. Most crops’ yield potential was
increased by adequate rainfall and mild temperatures in October, especially those sown
later. However, the recovery in growth conditions in October came too late for crops in the
upper regions of the Eyre Peninsula and the Yorke Peninsula, which had been harmed by
dry conditions in early spring [79].

http://apps.agriculture.gov.au/agsurf/
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3.2. Predictor Variables

The monitoring of crop conditions using remote sensing is being used extensively
to assess crop conditions, soil moisture, and the probability of natural disasters such as
pest infestation, drought, and precipitation [83]. Ahmed et al. [55,63,84] has discussed the
importance of satellite-based remote sensing to forecasting and constant monitoring of soil
moisture and its importance in agriculture and human activities. Several other studies have
also projected the correlation between weather conditions and remote sensing information
to address the situation [26,85]. This study collected satellite data from NASA’s GES-DISC
Interactive Online Visualization and Analysis Infrastructure (GIOVANNI) repository from
1991 to 2020. Specifically, the study used Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2), whose data set spans 1980 to the present.

Along with the improvements to meteorological assimilation, MERRA-2 makes signif-
icant progress towards the Earth System. MERRA-2 is the first long-term global reanalysis
that incorporates space-based aerosol observations and their interactions with other physi-
cal processes in the climate system. The MERRA-2 model has a native spatial resolution
of 0.5 lat × 0.625 long and four temporal resolutions: daily, hourly, 3-hourly, and monthly.
The study used 32 monthly hydro-climatic variables converted to the yearly data to be cor-
related with wheat yield, as tabulated in Table 1. The predictor variables were extracted as
area-averaged of the time series data, as the target data (i.e., wheat yield) was provided for
the whole of South Australia. Figure 1 depicts the atmospheric domain of South Australia
between 127.44◦E, 38.79◦S, and 141.77◦E, 23.76◦S to extract the area-averaged wheat yield
data. Satellite data collection has significant advantages overground stations regarding
costs and coverage range. Local factors significantly impact ground stations and do not
typically have a logical distribution system [86]. On the other hand, satellite remote sensing
is not impacted by local conditions and captures data with a uniform cell size throughout
the world. Interestingly, satellite data tracks crop growth conditions and gradually captures
the variability in yield as the growing season progresses, and their contribution to yield
prediction peaks during the growing season’s peak [26,87].

Table 1. A description of the 32 predictors from the MERRA-2 satellite system used to design the
hybrid GWO-CEEMDAN-KRR model for wheat yield prediction (tonnes) in South Australia. The
feature selections were undertaken using GWO, ACO, PSO, and ASO, and a

√
shows the selected

feature, whereas a × shows the rejected feature.

Information of Satellite Derived Variables Results of Feature Selection

Notation Description Units GWO ACO ASO PSO

Q Specific humidity @1000 hPa kg/kg ×
√ √ √

TA Air temperature monthly @1000 hPa K
√ √ √

×
Q10 10-m specific humidity kg/kg ×

√ √ √

TO3 Total column ozone Dobsons
√

× ×
√

T2X 2-m air temperature-daily max K
√

×
√ √

T2A 2-m air temperature-daily mean K
√ √ √ √

T2M 2-m air temperature-daily min K
√

×
√ √

LE Total latent energy flux W/m−2 × × × ×

PR Total precipitation Kg/m2 ×
√ √

×

TA Surface air temperature monthly K ×
√

×
√

GRN Greenness fraction -
√

×
√

×
SW Surface soil wetness - ×

√
×

√
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Table 1. Cont.

Information of Satellite Derived Variables Results of Feature Selection

Notation Description Units GWO ACO ASO PSO

LAI Leaf area index -
√

× ×
√

ALB Surface albedo -
√

× ×
√

CL Total cloud area fraction -
√

×
√

×

SSF Surface incoming shortwave flux W/m−2 × × × ×

Q250 Specific humidity at 250 hPa kg/kg
√

×
√

×
Q500 Specific humidity at 500 hPa kg/kg × ×

√ √

Q850 Specific humidity at 850 hPa kg/kg ×
√ √ √

Q10 10-m specific humidity kg/kg × ×
√ √

Q2 2-m specific humidity kg/kg
√

×
√

×
SLP Sea level pressure hPa

√ √ √
×

T10 Temperature at 10 m above surface K × ×
√

×
T2 2-m air temperature K ×

√ √ √

TS Surface skin temperature K
√ √

× ×
U10 10-m eastward wind m/s ×

√ √
×

U2 2-m eastward wind m/s
√

×
√

×
U50 Eastward wind at 50-m m/s

√
×

√ √

V10 10-m northward wind m/s
√ √ √ √

V2 2-m northward wind m/s
√ √ √ √

V50 Northward wind at 50-m m/s
√ √ √

×
A Area Ha × ×

√
×

Total Number of Selected Features 18 15 24 17

3.3. Development of GWO-CEEMDAN-KRR Model

The proposed GWO-CEEMDAN-KRR model was developed on a personal computer
(PC) equipped with an Intel i7 processor running at 3.6 GHz and 16 GB of RAM. A publicly
available machine learning library, scikit-learn [88,89] using Python, was employed to
execute the KRR model for the proposed framework. An implementation of the feature
optimisation (i.e., GWO, ACO, ASO, and PSO) has been developed using MATLAB R2020b.
The CEEMDAN method is executed with the programming language software R. To
visualise further the anticipated wheat yield, tools such as matplotlib [90] and seaborn [91]
are used, in addition to standalone methods. The following steps were carried out to
develop the proposed GWO-CEEMDAN-KRR model.

Step 1: The 31 predictor variables obtained from the MERRA-2 satellite model were
combined to screen the best-correlated input predictors using grey wolf optimisation
(GWO) techniques. The use of GWO resulted in the best-selected predictors being used for
feature decomposition. The optimal values of four selected feature selection algorithms
are tabulated in Table 2. For the GWO, the optimal number of wolves is fixed at 10 with
100 iterations. Similarly, ACO, PSO, and ASO algorithms provide essential information on
selecting significant predictor variables.
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Table 2. The optimal parameter for the optimization algorithms such as grey wolf optimization
(GWO), ant colony optimization (ACO), atom search optimization (ASO), and particle swarm opti-
mization (PSO).

Characteristics Optimal Value

Grey Wolf Optimization (GWO)

Number of wolves 10

Maximum number of iterates 100

Curve Convergence

Ant Colony Optimization (ACO)

Number of ants 10

Maximum number of iterations 100

Coefficient control tau 1

Coefficient control eta 2

Initial tau 1

Initial beta 1

Pheromone 0.2

Coefficient 0.5

Atom Search Optimization (ASO)

Number of particles 10

Maximum number of iterations 100

Depth weight 50

Multiplier weight 0.2

Particle Swarm Optimization (PSO)

Number of particles 10

Maximum number of iterations 150

Cognitive factor 2

Social factor 2

Maximum velocity 6

Maximum bound on inertia weight 0.9

Minimum bound on inertia weight 0.4

Table 1 shows the optimal set of satellite-derived features selected by GWO, ACO,
ASO, and PSO methods.

Table 1 demonstrates that the GWO optimised diversified hydro-climatological vari-
ables for the predictive model.

Table 2 provides the optimum parameters of the GWO, ACO, ASO, and PSO algorithms.
Step 2: In this step, each of the GWO optimised predictor variables was resolved into

4-IMFs (i.e., IMF1, IMF2, IMF3, and IMF4) and 1-residual (RES) using the CEEMDAN
method (18 × 5 = 90 IMFs in total). Gaussian Noise realisations (N = 500) and the provided
amplitude in terms of added white noise (=0.2). The implementation of the CEEMDAN
process is in Figure 1. The decomposed component was then correlated with the variable
(i.e., wheat yield) by Pearson’s correlation, and the most highly correlated components
were chosen as the target components for the KRR model.
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Step 3: The selected predictor IMFs are normalised to minimise the overinfluence of
one input to another. Using the following equation, all variable features were normalised
to ensure that they received proportional attention in network training [0, 1] [26–28].

δnorm =
δ− δmin

δmax − δmin
(21)

In Equation (21), δ is the respective variable, δmin is the minimum variable, δmax
is the maximum, and δnorm is the normalised variable. After normalising the variables,
the datasets are partitioned into training (1991–2010), validation (2011–2016), and testing
(2017–2020) subsets. The data partitioning is done by the trial-and-error method.

Figure 2 shows the methodological steps of the proposed GWO-CEEMDAN-KRR model.
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Figure 2. Integrated workflow showing the study area and atmospheric domain of South Australia
with a schematic structure of KRR model integrating with GWO and CEEMDAN methods for the
proposed GWO-CEEMDAN-KRR model for wheat yield prediction.

Step 4: To predict the wheat yield of South Australia, this study developed the KRR
model to use the predictors’ data in step 3. GridSearchCV was used to create an optimal
architecture of the KRR model (regularisation strength = 1.5; gamma parameter = None,
with a degree of the polynomial kernel = 3 and kernel = rbf ). The performance of the
proposed model was compared to that of standalone machine learning models.

3.4. Predictive Model Evaluation

The robustness of the proposed machine learning model (i.e., GWO-CEEMDAN-
KRR) and the benchmark model is assessed using numerous performance metrics, e.g.,
Pearson’s Correlation Coefficient (r), root mean square error (RMSE), and normalised root
means square error (RMSE). Due to geographic differences between the study stations, we
also employ the relative error-based metrics: i.e., relative MAE (denoted as RMAE), to
compare geographically and climatologically diverse wheat yield sites. The accuracy of any
predictive model is evaluated by comparing its predicted test values to the actual test results.
The relative index of agreement (drel) can be a more sophisticated and compelling measure
form than the RMSE when the error distribution in the tested data is Gaussian [92]. A
sensitivity analysis was undertaken to evaluate the contributing response to the anticipated
Y of the provided set of predictor variables to verify the prediction models created in our
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study. The goal was to see which predictor variables contributed the most to modelling the
monthly evaporative loss value. Following previous research [93–95], we calculated the
sensitivity % of the output (E) to each predictor (x) variable as follows:

Zi = fmax(xi)− fmin(xi) (22)

Si =
Zi

∑n
i=1 Zj

× 100 (23)

where fmax(xi) and fmax(xi) are, respectively, the maximum and the minimum predicted
Y over the ith domain, where other variables are equal to their mean values. Zj is the
predicted value

4. Results

In this study, a hybrid KRR predictive model denoted as GWO-CEEMDAN-KRR is
developed and evaluated for its capability to predict wheat yield (Y) in South Australia.
The performance accuracy of wheat yield prediction is evaluated in comparison with sev-
eral comparing models (i.e., CEEMDAN-MLR, CEEMDAN-RF, and CEEMDAN-SVR) and
standalone methods (e.g., KRR, RF, MLR, and SVR) with all models employing four com-
petitive feature optimisation algorithms (i.e., GWO, ACO, ASO, and PSO). The outcomes
of the newly designed hybrid KRR predictive models were evaluated using statistical score
metrics in conjunction with the diagnostic plots of both the observed and the predicted Y
for the testing datasets.

Comparing the observed and predicted Y test data, we note that the newly developed
CEEMDAN-KRR model can generate the highest value of R (showing a good degree of
agreement between observed and predicted Y) while also generating the lowest values
of NRMSE using the grey wolf optimisation method, according to the findings in Table 3.
The GWO-CEEMDAN-KRR model with GWO produced R ≈ 0.998, NRMSE ≈ 0.437 %,
followed by ACO-CEEMDAN-KRR (R ≈ 0.990 and NRMSE ≈ 0.452%), PSO- CEEMDAN-
KRR (R ≈ 0.980 and NRMSE ≈ 0.477%) model that also produced substantially good, yet a
lower performance relative to the GWO-CEEMDAN-KRR model. We discovered that an
MLR model could produce better performance with a high R-value (0.963) in the standalone
model. However, this model still underperforms the objective GWO-CEEMDAN-KRR
model. Therefore, we note that the proposed CEEMDAN-KRR model using the grey wolf
optimisation feature selection with an appropriate feature decomposition using the CEEM-
DAN) method provided the most satisfactory performance. Regarding the benchmark
models’ poor performance (as shown in Table 3), the newly proposed hybrid KRR (i.e.,
GWO-CEEMDAN-KRR) predictive model has proven to be a superior tool for predict-
ing the wheat yield in South Australia using a carefully selected set of satellite-based
predictor variables.

Table 3. Evaluation of the hybrid CEEMDAN-KRR vs. the benchmark (i.e., CEEMDAN-MLR,
CEEMDAN-RF, CEEMDAN-SVR) models and their respective standalone counterpart (i.e., KRR,
MLR, RF, and SVR) models. The r and normalized root mean square error (NRMSE) is computed
between predicted and observed Wheat Yield (Y, tonnes) South Australia.

Predictive Model R NRMSE

GWO–Objective Feature Selection Method

CEEMDAN-KRR 0.998 0.437

CEEMDAN-MLR 0.896 1.144

CEEMDAN-RF 0.751 0.589

CEEMDAN-SVR 0.840 0.614
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Table 3. Cont.

Predictive Model R NRMSE

GWO–Objective Feature Selection Method

ACO–benchmark method

CEEMDAN-KRR 0.990 0.452

CEEMDAN-MLR 0.860 1.122

CEEMDAN-RF 0.847 0.531

CEEMDAN-SVR 0.681 0.743

ASO–benchmark method

CEEMDAN-KRR 0.974 0.738

CEEMDAN-MLR 0.866 0.659

CEEMDAN-RF 0.768 0.601

CEEMDAN-SVR 0.849 0.523

PSO–benchmark method

CEEMDAN-KRR 0.980 0.475

CEEMDAN-MLR 0.973 0.655

CEEMDAN-RF 0.784 0.689

CEEMDAN-SVR 0.929 0.525

Standalone

KRR 0.738 0.761

MLR 0.963 2.992

RF 0.882 0.653

SVR 0.758 0.710

The predictive performance of the proposed hybrid GWO-CEEMDAN-KRR model
is further evaluated by examining the relative error values (i.e., RMAE) and coefficient of
determination (R2) between the observed and predicted wheat yield in the testing phase as
shown in Figure 3. According to Figure 3, the newly developed CEEMDAN-KRR model,
with GWO algorithm, has the lowest percentage of RMAE (≈32%) and the highest R2

value (≈0.997), which is an impressive result compared with the same model with other
optimisation techniques. We also noted that the GWO method could produce the best
performance when integrated with the KRR-based predictive model compared with the
different feature selection techniques.

Interestingly, the KRR model performs best when the predictor variables are decom-
posed with the CEEMDAN method using all optimisation techniques. Our results range
between 32% and 36% regarding the RMAE value. The improvement in the prediction per-
formance is more evident after applying the feature decomposition (i.e., CEEMDAN) and
the feature optimisation (i.e., GWO) techniques. By these results, the hybrid CEEMDAN-
KRR model seems to outperform the comparison benchmark models and the standalone
machine learning models, demonstrating superior performance.

It is worth noting that this study has employed two distinct algorithms (one for
feature selection, namely the GWO, and the other for decomposition of selected features,
namely the CEEMDAN) to improve the overall performance of the hybrid KRR-based
predictive model. As a result, in Figure 4, we illustrate the effects of incrementally applying
the CEEMDAN and different optimisation methods such as GWO, ACO, ASO, and PSO
as the data pre-processing and the feature selection methods on the percentage change
in error (i.e., RMAE) and percentage change in Willmott’s Index (i.e., drel) from their
respective standalone models. The RMAE (%) values of the CEEMDAN-KRR model, which
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incorporates a GWO method for satellite predictor variable feature selection, appear to
decrease by ≈20%. For drel, this is a 35% increment from the standalone KRR model.
Moreover, for the case of the ACO feature selection method, the change of RMAE and drel
is 16 and 34%, for ASO, this change is 18 and 31%, and for PSO, the change is 10 and 30%,
accordingly relative to the standalone KRR model. The other models, such as the SVR, RF,
and MLR, showed a minimum improvement in utilising the four optimisation techniques
and the CEEMDAN data decomposition technique. This indicates that incorporating
the CEEMDAN and the GWO methods can improve the model’s predictive capability in
simulating the wheat yield tested data values. This is notable by these values outperforming
the indices generated for the comparison model by a significant margin. Therefore, this
exemplifies that the proposed hybrid predictive model is more accurate than competing
methods used to predict wheat yield.
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To demonstrate a superior performance of the proposed GWO-CEEMDAN-KRR and
its standalone counterpart models, we have also examined the prompting percentage of
the correlation coefficient (∆R), RMAE (∆RMAE), and NRMSE (∆NRMSE) for wheat yield
prediction, as illustrated in Figure 5. Note that the promoting percentage, presented as
the incremental performance (∆) of the objective model over the competing approaches,
aims to evaluate the difference in the R, RMAE, and NRMSE of the GWO-CEEMDAN-
KRR against the other models. In general, the metrics ∆R, ∆RMAE, and ∆NRMSE are
used to demonstrate a performance edge of the preferred (i.e., GWO-CEEMDAN-KRR)
model over the comparative counterparts. Figure 5 shows the results as for the case of ∆R,
the improvement is found to be ≈1% to 25%; for the case of ∆RMAE, the improvement
is ≈2 to 60%. Likewise, improving prediction performance in terms of ∆NRMSE also
demonstrates significant improvements. This demonstrates that our proposed model (i.e.,
GWO-CEEMDAN-KRR) was the most responsive in the prediction process.
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The discrepancy ratio (Dr) is used to further investigate the proposed model’s ro-
bustness. In general, the discrepancy ratio (Dr) measures whether a model overestimates
or underestimates a simulated wheat yield value. The Dr value that begins with a “one”
indicates that an exact prediction can be made for a specific observation. According to
Figure 6, the GWO-CEEMDAN-KRR model shows that the distribution of Dr is within a
±30% band error for observation of the testing phase. As determined by the discrepancy
ratio, hybrid machine learning approaches were the most accurate predictive models com-
pared to other models on the same basis. As shown in Figure 7, a scatter plot is used to
perform an additional evaluation of the hybrid predictive model (i.e., CEEMDAN-KRR)
where the GWO algorithm and the previous evaluation. The scatter plot is plotted with
the goodness-of-fit between the predicted and observed Y, and a least-square fitting line to
represent the relationship between the two variables. The suggested model outperforms
the standalone model with an R2 value significantly higher than the baseline model.
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Concerning the proposed model with GWO algorithm, it performed significantly
better than the other feature optimisation algorithms (i.e., ACO, ASO, and PSO), registering
magnitudes that were the closest to unity (m|R2 0.997|0.167), followed by the CEEMDAN-
KRR model with ACO (0.980|0.157). For the case of standalone KRR, the unity has far
deviated from the proposed model’s exhibits statistically significant performance with the
proposed model. Therefore, the learning hybrid CEEMDAN-KRR model with the GWO
algorithm is exceptionally well suited for predicting wheat yield for South Australia.

The performance of Wheat prediction using GWO-CEEMDAN-KRR that is shown
in Figure 8a (ECDF) examines the plots of various prediction skills using an empirical
cumulative distribution function (ECDF). Comparing the performance of the proposed
hybrid KRR model to the benchmark models, the generated error ranged from 50 to 300
within the 95 per cent percentile, demonstrating that the CEEMDAN-KRR model with
the GWO model was the most accurate and responsive wheat yield prediction model. A
Taylor diagram provides a more specific and conclusive argument about how strongly the
predicted and observed Y are correlated than a simple correlation coefficient. As illustrated
in Figure 8b, the output of the GWO-CEEMDAN-KRR model is significantly closer to
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the observation than the output of other comparing models, as indicated by the Taylor
diagram. The GWO outperformed other models’ optimised CEEMDAN-KRR model to
achieve the observed values’ closest match; however, the proposed model outperformed
against other counterpart models. The study site had a higher R-value than the observed
Y for the proposed CEEMDAN-KRR model, further supporting the findings of improved
performance by this model, which was previously reported.
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In addition to understanding the contribution of the input variables to the yield
prediction, a sensitivity analysis of individual variables was performed. Figure 9 shows the
results of sensitivity analysis for the proposed GWO-CEEMDAN-KRR model. It can be
observed that almost all the parameters selected by GWO were significant, ranging from
20% to 33%. Specifically, the leaf area index (LAI) had the highest sensitivity, which is
endorsed by other researchers [96,97]. However, inputs like V50, V10, V2, T2A, TS, and
Q2 show a similar sensitivity percentage, ranging from 28% to 31%. The high sensitivity
of the northward wind values is substantial, which is needed to be explored in further
study. Moreover, surface albedo and other meteorological variables were also found to be
significant in predicting wheat yield in South Australia.
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5. Discussion

The useful information derived from space combined with advanced machine algo-
rithms enabled the development of more accurate near-real-time forecasts for different
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crops at different scales [98,99]. The findings from this study clearly showed that spatial
information derived from MERRA-2 combined with the hybrid CEEMDAN-KRR model
could provide an accurate forecast tool for wheat yield in Australia. The high accuracy
of the proposed model has been proven through the reported model performance using
different evaluation criteria and benchmark models. In this study, the CEEMDAN-KRR
model with GWO generated R (0.998), and NRMSE (0.437%) outperformed other hybrid
and standalone models. Furthermore, the integration of the GWO technique has indicated
the most important predictors among 32 variables for wheat yield forecast. While the
present study contributes to the current research avenue, several limitations, challenges,
and suggestions for further research are discussed.

This study used the space-based MERRA-2 dataset to exploit many variables related
to atmospheric, weather, and canopy conditions. However, this dataset’s coarse resolution
(0.5◦ × 0.625◦) might affect the forecast accuracy of wheat yield. The predictor variables
obtained as area-averaged of the time series data for the whole of South Australia’s at-
mospheric domain would minimise the effect. Moreover, integrating vegetation indices
(VIs), land surface temperature (LTS), and weather variables acquired from higher spatial
resolution satellite data is highly recommended to overcome this issue. Multi-temporal
VIs such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI) derived from MODIS (250 m), Landsat (30 m), and Sentinel (10 m) data have
been successfully explored in predicting crop yield [100,101]. Furthermore, the composited
products (e.g., from MODIS) on a near real-time basis of 8 days, 16 days, and months can
overcome the cloud cover problem and, thus, improve the model performance. In addition,
gridded precipitation retrieved from the Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) dataset (~5.5 km) can provide helpful information to develop crop
yield forecast models [102].

One of the main challenges of using satellite-based data to predict crop yield at a
regional level is the lack of cropland cover masks. Zhang et al. [103] reported a consistent
improvement in yield prediction using crop-specific masks at all regions and scales. In
contrast, Shao et al. [104] claimed that using available cropland masks (e.g., summer crop
or cultivated crops) generated similar results to using an annual corn-specific mask. It
is also worth noting that the MERRA-2 dataset used in this study was extracted in the
atmospheric domain of South Australia between 127.44◦E, 38.79◦S and 141.77◦E, 23.76◦S to
extract the area-averaged wheat yield data, which potentially affects the forecast results.
Therefore, it is interesting to explore whether the wheat crop’s growing boundary could
enhance the forecast accuracy.

Another factor that may affect the model performance is the algorithms used for
modelling relationships between crop yield and predictors. Methods such as RF or SVM
might not perform well with time-ordered data such as multi-temporal VIs and weather
variables [102]. The authors demonstrated that the LSTM neural network model outper-
formed the multivariate OLS regression and random forest in soybean yield prediction.
Our results also showed that the CEEMDAN-KRR model is superior to MLR, RF, and SVR-
based models. In addition, deep learning methods are up-and-coming for the crop yield
prediction problem [105,106]. Therefore, future research can consider using space-based
datasets and deep learning approaches combined with automatic feature extraction to
improve yield forecasts. This study has established an essential framework for building
smart farming services. The high accuracy of crop yield prediction information in different
climatic conditions using the proposed model is an essential element that helps agricultural
producers and other stakeholders improve decision-making. In addition, this research
helps rural areas where gauge-based observations are not always available. This is because
satellite data can be used to help this research.

6. Conclusions

The prediction of wheat, subsistence, or commercial agricultural commodities using
freely available satellite data and remote sensing methods can add value to new initiatives



Remote Sens. 2022, 14, 1136 20 of 24

in precision agriculture. The active promotion of Agriculture 4.0, an Austrade strategy,
showcases our competitive advantage in agtech and foodtech to a global audience through
digital practices such as modelling crop yields through machine learning methods. This
paper has developed and implemented a hybrid machine learning algorithm with an
artificial intelligence methodology for wheat yield prediction in South Australia. The
new approach uses a feature selection strategy and the subsequent decomposition of the
selected features as an optimisation algorithm to improve the proposed Kernel Ridge
Regression (KRR) and a set of competitive compression models. To train the prescribed
models, we have used thirty-two predictors derived from the MERRA-2 satellite datasets
to encapsulate the features to model wheat yield and quantify the relationships between
satellite-derived information and ground-based wheat yield. Our novel method combined
the CEEMDAN, a feature decomposition method, and the grey wolf optimisation, a feature
selection method, to improve kernel ridge regression prediction accuracy. The proposed
hybrid GWO-CEEMDAN-KRR model, composed of five distinct modules for optimal
accuracy, was tested on area-aggregated wheat yield data in South Australia. A common
problem in data-driven modelling was solved when the GWO algorithm was used in the
machine learning model. It reduced the number of predictor variables to solve this problem.

According to the results of this study, the proposed hybrid CEEMDAN-KRR model
demonstrated the best performance in predicting wheat yield when it was optimised by
the GWO method. The high R-value of the CEEMDAN-KRR predictive model, which
ranged from 0.0980 to 0.998, and the low NRMSE value, which ranged from 0.437 to 0.475,
supported the different feature selection techniques of the model’s superior testing per-
formance. More precisely, the CEEMDAN-KRR model improved with the GWO feature
selection algorithm and registered the best performance. The scatterplot revealed that the
merits of the CEEMDAN-KRR model with GWO are the closest to unity, supporting the ap-
plicability of the newly designed hybrid CEEMDAN-KRR model in real-time applications.
Therefore, we ascertain that the proposed model can address a wide range of complex
or challenging prediction tasks in agriculture and can be a helpful method for predicting
other variables such as rainfall, wind speed, flood, or drought index. Global climate model
(GCM) datasets could be used in the future to predict crop yields under different global
warming scenarios, assess CO2 emissions, and measure agricultural sustainability to figure
out how future climate change and climate variability will affect farming.
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