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Abstract: The study of anthropogenic carbon monoxide (CO) emissions is crucial to investigate
anthropogenic activities. Assuming the anthropogenic CO emissions accounted for the super majority
of the winter CO fluxes in western Europe, they could be roughly estimated by the inversion
approach. The CO fluxes and concentrations of four consecutive winter seasons (i.e., December–
February) in western Europe since 2017 were estimated by a regional CO flux inversion system
based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and
the Data Assimilation Research Testbed (DART). The CO retrievals from the Measurements Of
Pollution In The Troposphere instrument (MOPITT) version 8 level 2 multi-spectral Thermal InfraRed
(TIR)/Near-InfraRed (NIR) CO retrieval data products were assimilated by the inversion system.
The analyses of the MOPITT data used by the inversion system indicated that the mean averaging
kernel row sums of the surface level was about 0.25, and the difference percentage of the surface-level
retrievals relative to a priori CO-mixing ratios was 14.79%, which was similar to that of the other
levels. These results suggested the MOPITT’s surface-level observations contained roughly the same
amount of information as the other levels. The inverted CO fluxes of the four winter seasons were
6198.15 kilotons, 4939.72 kilotons, 4697.80 kilotons, and 5456.19 kilotons, respectively. Based on the
assumption, the United Nations Framework Convention on Climate Change (UNFCCC) inventories
were used to evaluate the accuracy of the inverted CO fluxes. The evaluation results indicated that
the differences between the inverted CO fluxes and UNFCCC inventories of the three winter seasons
of 2017–2019 were 13.36%, −4.59%, and −4.76%, respectively. Detailed surface-CO concentrations
and XCO comparative analyses between the experimental results and the external Community
Atmosphere Model with Chemistry (CAM-Chem) results and the MOPITT data were conducted.
The comparative analysis results indicated that the experimental results of the winter season of
2017 were obviously affected by high boundary conditions. The CO concentrations results of the
experiments were also evaluated by the CO observation data from Integrated Carbon Observation
System (ICOS), the average Mean Bias Error (MBE), and the Root Mean Square Error (RMSE) between
the CO concentrations results of the inversion system, and the ICOS observations were −22.43 ppb
and 57.59 ppb, respectively. The MBE and RMSE of the inversion system were 17.53-ppb and 4.17-ppb
better than those of the simulation-only parallel experiments, respectively.

Keywords: carbon monoxide; flux inversion; WRF-Chem/DART; data assimilation; winter season;
western Europe

1. Introduction

Carbon monoxide (CO), causing indirect positive radiative forcing of 0.23 Wm−2

at the global scale [1], is an important trace gas in the atmosphere, being a marker of
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anthropogenic activities. Anthropogenic CO flux can be used as a proxy to identify anthro-
pogenic CO2 flux from the total CO2 emissions released into the atmosphere [2–4], since
most of them are co-produced simultaneously during the combustion of fossil fuels and
bio-fuels [5]. Estimating anthropogenic CO flux requires the quantification of a CO budget
determined by atmospheric sources, atmospheric sinks, and surface-CO emissions.

The atmospheric sources of CO, mainly from the oxidation of hydrocarbons such as
methane (CH4) and Non-Methane Volatile Organic Compounds (NMVOCs), account for
about half of the atmospheric CO burden, and the surface-CO emissions contribute the
remainder [6–10]. The atmospheric sinks of CO are dominated by reactions with hydroxyl
radicals [11,12], which give CO a lifetime ranging from weeks to months in the atmosphere,
depending on the season [13]. Anthropogenic CO fluxes account for the dominant part of
surface-CO emissions [5,14,15]. Biogenic [16], biomass-burning [17,18], and oceanic CO
fluxes [19] make up the remainder. Therefore, the study of anthropogenic CO fluxes is
crucial to investigations of CO’s atmospheric burden, trends, and its influences on radiative
forcing, as well as to help verify anthropogenic CO2 inventories through observations, and
to provide supports for the global stocktake.

Since 2000, the atmospheric CO burden has been monitored globally and continu-
ously by space-borne instruments such as MOPITT [20], Atmospheric Infrared Sounder
(AIRS) [21], Tropospheric Emission Spectrometer (TES) [22], Infrared Atmospheric Sound-
ing Interferometer (IASI) [23], and TROPOspheric Monitoring Instrument (TROPOMI) [24].
These space-borne observations indicate atmospheric CO concentrations have been de-
creasing globally for the last two decades. This decrease is believed to be mainly due to the
improvements in combustion efficiencies that have reduced the amount of anthropogenic
CO emissions [10,25–32].

Because of large chemical CO sources and sinks in the atmosphere, the atmospheric
CO concentrations are not only driven by the surface emissions. The declining trend of
CO concentrations observed by satellites is inconsistent with global bottom-up inventories,
which show that CO emissions have been rising since 2000 due to increased fossil fuel
consumption [5,33,34]. Therefore, the chemical transport model and inversion method are
needed to infer the surface-CO emissions from observations, as shown by [15,28,35–38].
Zheng [15] showed that the reduction in CO emissions in Europe since 2000, inferred from
MOPITT observations, was mainly due to reduced anthropogenic emissions, which was
consistent with local bottom-up inventories. Yoon [39] and Yin [28] also obtained similar
results in western Europe, while Jiang’s research on CO emissions, constrained by MOPITT
observations [38], showed that the anthropogenic CO emissions in Europe had not changed
since 2008.

In this study, CO fluxes and concentrations in western Europe during four consec-
utive winter seasons from 2017 to 2020 were inverted by a regional CO flux inversion
system, which was modified from Zhang’s WRF-Chem-/DART-based CO2 flux inversion
system [40] to assimilate MOPITT CO observations. The inversion system employed the
same profile assimilation strategy as in [38,41].

Western Europe has a well-developed and organized statistical infrastructure that
enables it to have quite accurate emission inventories with uncertainty of less than 5% [42].
Western Europe is also a highly industrialized region. During the winter, the atmospheric
CO concentrations and anthropogenic CO emissions are at their highest levels throughout
the year [38,43], and ecosystem activities are at the lowest levels, which means biogenic
CO emissions and biogenic atmospheric sources of CO, such as CH4 and NMVOC, are
at their lowest levels in the year. Furthermore, biomass-burning CO emissions are also
at their lowest levels during this period of a year [44,45]. Therefore, it was assumed that
the anthropogenic CO emissions accounted for the super majority of the winter CO fluxes
in western Europe. Based on this assumption, emission inventories submitted to the
UNFCCC [46] by western European countries were used to evaluate the accuracy of the
winter CO fluxes inverted by the assimilation system. In addition, ground-CO observations
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from ICOS sites [47] and external CAM-Chem results [48] were used to evaluate and
analyze data assimilation (DA) and parallel simulation-only (SIM) experimental results.

2. Materials and Methods
2.1. Methods
2.1.1. Chemical Transport Model

The WRF-Chem [49,50] Version 4.1.5 [51] was used as the atmospheric chemical
transport model of CO and 35 other gases. The chemical and meteorological components of
WRF-Chem [49,50] are simulated simultaneously and fully consistently with each other by
using the same mass- and scalar-preserving transport scheme, the same physics schemes
for subgrid scale transport, and the same grid cell dimensions. The configure options of the
WRF-Chem [49,50] model are listed in Table 1. The default model for ozone and related
chemical tracers and GOCART aerosols (MOZCART) [52–54], with the Kinetic Preprocessor
(KPP) library [55], is used in this study, and the chemical reactions and reaction rates can
be found in [52] .

Table 1. WRF-Chem configurations.

Options Configuration

Domian Center 46.982◦ N, 3.626◦ E
Grid Resolution 27 km

nx, ny, nz 99, 99, 36
Time Step 150 s

MicroPhysics Process NSSL 2-moment Scheme [56,57]
Cumulus Parameterization Kain–Fritsch Scheme [57,58]

Longwave Atmospheric Radiation RRTMG scheme [57,59]
Shortwave Atmospheric Radiation RRTMG scheme [57,59]
Planetary Boundary Layer Scheme YSU [57,60]

Land surface scheme MM5 [57,61]
Chemical Option MOZCART [52–54] using KPP library [55]
Photolysis Option Madronich F-TUV photolysis [52,62]

As shown in Figure 1, the WRF-Chem [49,50] domain covered western Europe and
had 99 (west–east) × 99 (south–north) grid cells with a spatial resolution of 27 km. In the
vertical direction, the atmosphere was decomposed into 36 terrain-following levels from
the surface to the upper boundary at 50 hPa.

Figure 1. The WRF-Chem domain and locations of ICOS ground-CO observation sites used for
evaluation. Projection method is Lambert. The center of the domain is at 46.982◦ N and 3.626◦ E.
Dots in different colors represent four different types of ICOS atmosphere stations.
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2.1.2. Regional CO Flux Inversion System

DART [63] is an open-source software framework for ensemble data assimilation
research developed by the National Center for Atmospheric Research (NCAR). DART has
been widely coupled with the WRF-Chem model [64–67]. On the basis of DART [63], a
regional CO flux inversion system was developed according to the flux inversion scheme
implemented in Zhang’s CO2 flux inversion system [40]. The inversion system employed
the same profile assimilation strategy as in [38,41] to estimate CO concentrations and fluxes
over western Europe. The Ensemble Adjustment Kalman Filter (EAKF) [63,68,69] method
in DART was used to assimilate the MOPITT CO retrievals and meteorological observations
into the forecast outputs from the WRF-Chem model.

By applying a state augmentation approach [40,70] to include non-prognostic variables,
the state vector x of the regional CO flux inversion system was defined as:

x = [Met, COC, OtherC, COF]T , (1)

where Met, COC, and OtherC represent meteorological variables and the concentrations
of CO and 35 other gases, respectively. They were advanced over time by the WRF-Chem
model. COF represents the non-prognostic CO fluxes input to the WRF-Chem model; it
could not be forwarded by the WRF-Chem model.

The Met and COC part of the state vector x were assimilated in the same way as
Zhang’s approach [40,64]. The OtherC part of the state vector x did not participate in the
assimilation process. OtherC provided constraints on CO atmospheric sources and sinks
to improve the forecast accuracy of COC during the WRF-Chem simulation process. The
OtherC were reset to the values extracted from the CAM-Chem outputs dataset [48] at
the beginning of each forecast–assimilation cycle. The update of the COF part of the state
variable x also adopted the same approach as in Zhang’s work [40].

2.2. Data
2.2.1. MOPITT CO Retrievals

MOPITT, aboard NASA’s Terra satellite, is the first space-borne instrument to provide
measurements of CO on a continuous basis since March 2000 [71]. MOPITT operates in a
sun-synchronous orbit at an altitude of 705 km with an equator-crossing time at 10:30 a.m.
local time. It has a swath width of 640 km, crossing the satellite track with a footprint size of
22 km × 22 km at nadir and can complete global measurement coverage every 3 days [71].

MOPITT measures CO in the 4.7-µm TIR band and 2.3-µm NIR band simultaneously.
TIR radiances are most sensitive to CO in the middle and upper troposphere, whereas
NIR observations mainly provide information about the CO total column with uniform
sensitivity throughout the troposphere [72]. In the MOPITT CO data products, the retrieved
CO profiles are expressed by a floating surface level and nine uniformly spaced levels
from 900 hPa to 100 hPa [73]. Since data products Version 5 [72], MOPITT provides multi-
spectral TIR/NIR joint retrieval CO products with greater sensitivity to CO in the lower
troposphere [74], which can be used to invert surface-CO emissions [15,28,38].

In this research, MOPITT version 8 (V8) multi-spectral TIR/NIR CO retrieval data
products (MOPV8J) [75,76] were used. Overall biases of MOPV8J [75,76] vary from about
−5% at 600 hPa to about 7% at 200 hPa [77], and bias drift has been decreased to statistically
negligible values (0.1% yr−1 or less) at all retrieval levels [77]. A recent study comparing
MOPITT V8 CO retrieval products [75,76] with aircraft profiles (including in the winter)
also showed that MOPITT generally agrees reasonably well with in situ profiles over both
urban and non-urban regions, with biases ranging from −0.7% to 0.0% [78].

Figure 2 shows the average of the averaging kernel row sums of CO retrievals over the
domain (shown by Figure 1) in four consecutive winter seasons (i.e., December–February)
from 2017 to 2020 in MOPV8J [75,76]. The mean averaging kernel row sums of the surface
level (1000 hPa in Figure 2) was about 0.25. Table 2 shows the Mean Absolute Error (MAE),
RMSE, and percentage of difference relative to a priori between CO retrievals and the
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corresponding a priori CO mixing ratios in MOPV8J. The a priori CO mixing ratios are
based on climatological values form 2000 to 2009, simulated by the CAM-Chem model [75].
For each level, the greater the deviation of the retrieved value from the a priori ratios, the
more information content the MOPITT observation provides [79]. In Table 2, the difference
relative to the a priori ratio of the surface-level CO was 14.79%, which was similar to that
of the other levels, suggesting that MOPITT’s surface-level observations contain roughly
the same amount of information as the other levels.

Figure 2. Average of the averaging kernel row sums of CO retrievals over the domain in four
consecutive winter seasons from 2017 to 2020 in MOPV8J. The horizontal bars represent the standard
deviation of each level.

Table 2. Analysis of the difference between the CO retrievals and the a priori CO-mixing ratios over
the domain in four consecutive winter seasons from 2017 to 2020 in MOPV8J.

Level MAE RMSE Difference Relative
to a Priori (%)

Surface 12.66 23.94 14.79
900 hPa 12.57 20.71 10.22
800 hPa 11.14 15.65 9.87
700 hPa 10.51 13.93 9.96
600 hPa 10.60 13.56 10.30
500 hPa 11.20 14.74 11.33
400 hPa 13.74 20.22 14.69
300 hPa 15.15 24.13 18.18
200 hPa 5.83 9.69 10.80
100 hPa 0.75 1.16 3.04

In order to compare vertical CO concentration profiles modeled by the CO flux inver-
sion system with MOPITT CO retrievals, the modeled CO concentration profiles need to be
converted by an observation operator F defined as [37]:
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F(x) = ya + A(H(x)− ya), (2)

where A is the averaging kernel of the MOPITT retrieval, H(x) and ya are the modeled
CO concentration profile interpolated to the vertical levels of the MOPITT retrieval and
the prior CO profile of the MOPITT retrieval, respectively. Both A and ya are provided in
MOPV8J for each CO retrieval [75].

2.2.2. Prior Fluxes

Anthropogenic, biogenic, and biomass-burning fluxes constituted the prior fluxes of
the regional CO flux inversion system.

The anthropogenic fluxes were from the Emissions Database for Global Atmospheric
Research (EDGAR) V4.3.2 part II Air Pollutants gridmaps dataset [80,81]. The EDGAR
V4.3.2 part II dataset provides global emission gridmaps of CO and other air pollutants
caused by all anthropogenic activities, except large-scale biomass burning, land use, land-
use change, and forestry from 1970 to 2012 [34].

The biogenic fluxes were calculated by the Model of Emissions of Gases and Aerosols
from Nature Version 2.1 (MEGAN V2.1) [82], which is coupled within the WRF-Chem
model [49,50]. The input data files [83] needed by MEGAN V2.1 [82] were downloaded
from the University Corporation for Atmospheric Research (UCAR). MEGAN V2.1 is
a global modeling system for estimating the net emission of gases and aerosols from
terrestrial ecosystems into the atmosphere at a spatial resolution of 1 km or less [82].

The biomass-burning fluxes were from the Fire Inventory from NCAR Version 1.5
(FINN V1.5) dataset [17,84]. The FINN V1.5 dataset provides global daily open biomass-
burning emission estimates at a spatial resolution of 1 km or less based on the framework
described by Wiedinmyer [17,85].

2.2.3. Chemical Initial and Boundary Conditions

The CAM-chem dateset [48,86] provided the concentration constraints of CO and
35 other gases, including atmospheric sources and sinks of CO, as the initial and boundary
conditions of the regional CO flux inversion system, respectively. The spatial and temporal
resolution of the CAM-chem outputs [86] are 0.9◦ × 1.25◦ and 6 h, respectively. The
CAM-Chem [87] model is a component of the NCAR Community Earth System Model
(CESM) [88]. The “Chemistry” in CAM-Chem is based on the Model for Ozone and
Related chemical Tracers (MOZART) [52] family of chemical mechanisms, with various
choices of complexity for simulations of global tropospheric and stratospheric atmospheric
compositions [89].

2.2.4. Meteorological Data

The Final Operational Global Analysis data (FNL) with 1◦ × 1◦ spatial resolution and 6-h
interval from the National Centers for Environmental Prediction (NCEP) [90,91] were used as
meteorological initial and boundary conditions of the regional CO flux inversion system.

The NCEP ADP Global Upper Air and Surface Weather Observations [92,93], which
are composed of a global set of surface and upper-air reports operationally collected by
NCEP, were used as meteorological observations in this research. The meteorological
observations from a total of 71 World Meteorological Organization (WMO) meteorological
stations were used in this research. Their locations are shown in Figure S4.

2.2.5. ICOS CO Observations

The ICOS consists of a network of atmosphere stations that carry out standardized,
high-precision, and long-term monitoring of atmospheric greenhouse gases in 13 European
countries [47]. Atmospheric measurements are usually taken on top of tall towers, in
mountainous terrain, or in remote environments. These sites are usually not influenced
much by local phenomena, but are rather exposed to atmospheric transport and processes
covering larger areas. A site chosen for installing an atmosphere station will typically be
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representative of a footprint area of more than 10,000 km2 [94]. The hourly averaged CO
concentrations after a final quality control [95] of 17 atmosphere stations from ICOS [47]
Atmosphere Release 2021-1 of Level 2 Greenhouse Gas Mole Fractions data product [94,96]
were used in this research to evaluate the assimilation results of CO concentrations over
western Europe. These 17 ICOS atmosphere stations are divided into four types, i.e., type
of mountain, tall tower, marine remote, and coastal. Their locations are shown in Figure 1
and their detailed information is listed in Table S1.

2.3. Experiment Design
2.3.1. Study Area and Periods

As shown in Figure 1, western Europe was chosen as the study area because: (1) west-
ern Europe is a highly industrialized region in which anthropogenic CO emissions account
for the majority of surface-CO fluxes, and biogenic CO fluxes from the ecosystem in the
winter season will not change much in a short period of several years, as shown in Table 3;
(2) western Europe has a well-developed and organized statistical infrastructure that en-
ables it to have quite accurate emission inventories with uncertainty of less than 5% [42];
(3) all western European countries are Annex I countries [97], and the annual national
emissions inventories they submitted to the UNFCCC can be used to evaluate the CO flux
inversion results, and (4) there are relatively abundant ground-based CO observations
available for evaluation.

Table 3. Prior CO fluxes from anthropogenic, biognic, and biomass-burning for each experiment.

Experiment

Prior CO Fluxes (kiloton) Prior CO
Fluxes

Anthro Biogenic Biomass
Burning Total

(mol km−2

h−1)
(EDGARV) (MEGAN) (FINN)

Exp2017 6018.59 126.14 140.93 6285.66 14.55
Exp2018 6018.59 121.26 45.84 6185.69 14.31
Exp2019 6018.59 130.58 210.82 6359.99 14.72
Exp2020 6018.59 141.97 101.10 6261.66 14.49

Four consecutive winter seasons (i.e., December–February) from 2017 to 2020 were
selected as the study periods because: in Europe, in the wintertime, the CO concentrations
and anthropogenic CO emissions are at the highest level [38,43] and ecosystem activities are
at the lowest levels, which means biogenic CO emissions and biogenic atmospheric sources
of CO, such as CH4 and NMVOC, are at their lowest levels in a year. Furthermore, wildfire
and biomass-burning CO emissions are also at their lowest levels during this period of a
year [44,45]. Therefore, according to the prior CO fluxes shown in Table 3, it was assumed
that the anthropogenic CO emissions accounted for the super majority of the winter CO
fluxes in western Europe. Based on this assumption, emission inventories submitted to the
UNFCCC [46] by western European countries were used to evaluate the accuracy of winter
CO fluxes inverted by the inversion system.

2.3.2. Experiment Setting

Four sets of experiments, namely, Exp2017, Exp2018, Exp2019, and Exp2020, were
carried out to evaluate the CO flux, XCO, and surface-CO concentrations over western
Europe in four consecutive winter seasons since 2017. Each set of experiments consisted of
three parallel experiments of DA, SIM, and SIM_anthro.

The DA experiments inverted the posterior CO fluxes by assimilating MOPITT ob-
servations on the basis of the prior CO fluxes. The final CO concentration results of the
DA experiments were generated by applying the posterior CO fluxes to the WRF-Chem
model once again and without the assimilation, similar to the approach used in the Car-
bonTracker [98]. The SIM and SIM_anthro experiments used the prior CO fluxes and the
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prior anthropogenic CO fluxes to simulate the CO concentrations by the WRF-Chem model
under the same experimental conditions as the DA experiments, respectively. There was
no assimilation process in the SIM and SIM_anthro experiments.

The duration of each experiment was from 1 December to 28 February of the following
year. The spin-up phase of each DA experiments occured two weeks before 1 December.
The simulation cycle was 6-h at 00:00, 06:00, 12:00, and 18:00 UTC, respectively, and the
advancing time step was 150 s.

The size of ensemble members of the DA experiments was set to 20, the same as
in [65,66,99]. A three-dimensional Gaspari–Cohn localization function [100] with a horizon-
tal half-width of 0.1 radian and a vertical half-width of 200 hPa was used to compensate the
under-sampling errors caused by the limited size of ensemble members, according to [101].

2.3.3. Experiment Inputs

The initial and boundary chemical conditions of the ensemble members were gen-
erated by imposing zero mean perturbations following Gaussian distributions to gas
concentrations extracted from the CAM-Chem dateset [48]. The standard deviation of these
Gaussian perturbations were 30% of the standard deviations of the gas concentrations cal-
culated from the CAM-Chem dataset [48]. The prior anthropogenic and biomass-burning
fluxes were interpolated from the EDGAR V4.3.2 dataset [80] and FINN V1.5 dataset [17] by
the existing WRF-Chem preprocessor tools [102] provided by the Atmospheric Chemistry
Observations and Modeling Lab of NCAR. The latest available monthly anthropogenic
CO emissions provided by EDGAR V4.3.2 [80] are from 2010; therefore, the same prior
anthropogenic CO emissions were used in all four experiments. The prior biogenic fluxes
were generated by MEGAN V2.1 [82] with the input files [83] downloaded from UCAR.
The prior oceanic source of CO fluxes was not considered in this study, because they are
considered to be very small compared to the anthropogenic emissions [19]. The prior CO
fluxes for each experiment are listed in Table 3 and their distributions are shown in Figure 3.
The prior CO fluxes of ensemble members were generated by a method similar to that of
the chemical condition ensembles.

Figure 3. The prior CO fluxes’ distributions for the four experiments (a–d).

The mean retrieved surface-level CO concentrations and XCO retrievals from
MOPV8J [75,76], assimilated in the four experiments, are shown in Figure 4.
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The initial and boundary meteorological conditions of ensemble members were gen-
erated by WRF variational data assimilation (WRFDA) [103] with the configure option of
“cv_options = 3”, the same as that used in Zhang’s studies [40,64].

Figure 4. The mean retrieved surface-level CO concentrations and XCO retrievals from MOPV8J
assimilated in the four experiments. (a–d) mean retrieved surface-CO concentrations, (e–h) mean
XCO retrievals.

2.3.4. Evaluation Metrics

The experimental results of the CO concentrations were evaluated by the ground-CO
observations from ICOS [47] and the external CAM-Chem results [48] corresponding to the
experiments. The distributions of mean surface CO concentrations and XCO extracted from the
external CAM-Chem results [48] corresponding to the four experiments are shown in Figure 5.

Figure 5. The distributions of mean surface-CO concentrations and XCO extracted from the external
CAM-Chem results corresponding to the four experiments. (a–d) mean surface-CO concentrations,
(e–h) mean XCO.
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The CO concentration results of the nearest four grid cells around an ICOS site [47]
were first interpolated to the location of the site and then interpolated to the same pressure
level or the same altitude of the site before evaluation. The consistency between the final
interpolated CO concentration result and the corresponding ICOS observation value [47]
was evaluated by means of MBE, RMSE, and the correlation coefficient (CORR). They were
defined in the same way as the Equations (6), (8), and (9) in Zhang’s work [64].

3. Results and Discussion
3.1. CO Concentration Experimental Results

The mean surface-CO concentrations (MSCC) and XCO distributions of the DA and
SIM experimental results are shown in Figures 6 and 7, respectively.

Figure 6. Distributions of the mean posterior surface-CO concentrations and XCO of winter seasons
in western Europe from 2017 to 2020, estimated by the DA experiments. (a–d) mean posterior
surface-CO concentrations, (e–h) mean posterior XCO.

The MSCC and XCO of the four consecutive winter seasons in western Europe
from 2017 to 2020 estimated by the DA, SIM, and SIM_anthro experiments are listed
in Tables 4 and 5, respectively. The MSCC and XCO of the same periods in western Europe,
extracted from MOPV8J [75,76] and the external CAM-Chem results [48], are also listed
in the tables for reference. The CO concentrations and XCO extracted from the external
CAM-Chem results were not used in all the experiments.

Table 4. Mean surface-CO concentrations of winter seasons in western Europe form 2017 to 2020.

Source
Mean Surface CO Concentrations (ppb)

Exp2017 Exp2018 Exp2019 Exp2020

DA experiment 160.93 134.60 130.12 122.59
SIM experiment 130.12 122.72 123.48 116.43

SIM_anthro
experiment 129.20 122.22 122.52 115.67

MOPV8J 166.47 166.56 166.43 164.46
External

CAM-Chem 126.84 111.51 112.06 104.23
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Figure 7. Distributions of the mean surface-CO concentrations and XCO of winter seasons in western
Europe from 2017 to 2020, simulated by the SIM experiments. (a–d) mean surface-CO concentrations,
(e–h) mean XCO.

Table 5. Mean XCO of winter seasons in western Europe form 2017 to 2020.

Source
Mean XCO (ppb)

Exp2017 Exp2018 Exp2019 Exp2020

DA Experiment 74.87 70.26 67.96 67.93
SIM Experiment 72.76 69.02 67.38 67.49

SIM_anthro
Experiment 72.68 68.97 67.28 67.43

MOPV8J 84.59 84.63 82.06 81.01
External

CAM-Chem 74.50 69.40 68.39 68.52

As shown in Tables 4 and 5, the average differences of MSCC and XCO between the
DA experiments and the MOPV8J data [75,76] were −28.92 ppb and −12.82 ppb, which
were 1.09-ppb and 13.87-ppb better than those of between the SIM experiments and the
MOPV8J data [75,76]. This was as expected; since the MOPV8J data were assimilated in the
DA experiments, the DA experimental results should be closer to the MOPV8J data [75,76]
than the SIM results. The differences between the DA, the SIM experimental results, and
the MOPV8J data are shown in Figures 8 and 9, respectively. The comparison of surface-CO
concentrations and XCO of the experimental results with the MOPV8J data [75,76] are listed
in Tables S2 and S3, respectively. The differences between the DA and SIM experimental
results are shown in Figure S1.

From the MSCC of the SIM experimental results, shown in Figure 7, and the differences
of the MSCC between the SIM experiments and the MOPV8J data [75,76], shown in Figure 9,
the locations of London, Paris, Berlin, Rotterdam, Antwerp, Madrid, Rome, Naples, and
other major western European cities can be clearly identified. From the same results and
differences of the DA experiments shown in Figures 6 and 8, not only the above major cities
can be identified, but also the urban agglomerations composed of cities in the Netherlands
and Belgium, northern Italy, etc., are more clearly reflected.

As shown in Figure 7, the MSCC distributions of the SIM experimental results were
roughly similar; so were the differences of the MSCC between the SIM experiments and the
MOPV8J data [75,76], as shown in Figure 9.
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However, for the DA experiments, as shown in Figures 6 and 8, the MSCC distribution,
the difference of MSCC relative to the MOPV8J data [75,76], in the winter of 2017 were
significantly different from those in the winter of the other three years. The DA exper-
imental results for the winter season of 2017 showed high MSCC across a large region
where Germany, the Czech Republic, Hungary, Poland, and other countries were located.
Furthermore, as shown in Figures 6 and 7, both the DA and SIM experiments showed
that the same region also had high mean XCO in the winter of 2017, making the mean
XCO distribution results of the DA and SIM experiments for the winter season of 2017
significantly different from those in the other three years.

Figure 8. The differences between the DA experimental results and the MOPV8J data, (DA minus
MOPV8J). (a–d) difference of mean surface-CO concentrations, (e–h) difference of mean XCO.

Figure 9. The differences between the SIM experimental results and the MOPV8J data, (SIM minus
MOPV8J). (a–d) difference of mean surface-CO concentrations, (e–h) difference of mean XCO.

The MSCC and XCO of the SIM experimental results depended on the prior CO
fluxes and the initial and boundary conditions. As shown in Table 3, the maximum
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difference between the four prior CO fluxes was 2.86%. There were also no large differences
between the prior CO flux distributions of the four winter seasons, as shown in Figure 3.
Tables 4 and 5 also confirmed that there were no large differences between the MSCC
and XCO of the MOPITT data over the four winter seasons. Therefore, the significant
differences between the SIM experimental results for the winter season of 2017 and those
for the other three winter seasons were likely due to the differences of the initial and
boundary conditions. Actually, from the MSCC and XCO distributions of the external
CAM-Chem results [48] shown in Figure 5, it is clear that the mean XCO distributions
for the winter of 2017 were significantly different from those for the other three winter
seasons, and the MSCC and mean XCO of the external CAM-Chem results [48], listed
in Tables 4 and 5, also confirmed this significant difference. Although the external CAM-
Chem results [48] were not used in all the experiments, they were derived from the same
dataset as the initial and boundary conditions; therefore, there were strong correlations
between them.

Similarly, there were no significant differences between the MSCC and mean XCO
distributions of the MOPV8J data [75,76] of the four winter seasons, as shown in Figure 4, and
Tables 4 and 5 also confirmed that there were no large differences between the MSCC and
XCO of the MOPITT data over the four winter seasons. Therefore, the significant differences
between the DA experimental results for the winter season of 2017 and those for the other
three winter seasons were also likely due to the differences of the boundary conditions.

The MSCC and XCO results of the SIM_anthro experiments are shown in Figure 10.
Since the only difference between the SIM and SIM_anthro experiments was that the prior
CO fluxes for the SIM experiments were the sum of the prior anthropogenic, biogenic, and
biomass-burning CO fluxes listed in Table 3, those for the SIM_anthro experiments were
only the prior anthropogenic CO fluxes. Furthermore, the differences between the prior CO
fluxes of the SIM and SIM_anthro experiments were less than 5.37%, as shown in Table 3.
Therefore, it was not surprising that the results of the two experiments were close to each
other; the differences of the MSCC and mean XCO results between the two experimental
results were no more than than 0.97 ppb and 0.1 ppb, respectively. The differences between
the SIM and SIM_anthro experimental results are shown in Figure S2.

Figure 10. Distributions of the mean surface-CO concentrations and XCO of winter seasons in
western Europe from 2017 to 2020, simulated by the SIM_anthro experiments. (a–d) mean surface-CO
concentrations, (e–h) mean XCO.
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3.1.1. Evaluated by the External CAM-Chem Results

The differences of the MSCC and XCO between the DA, SIM experiments, and the
external CAM-Chem results are shown in Figures 11 and 12, respectively. Comparing
Figures 11 and 12, the effects of assimilating the MOPV8J data on the MSCC and the mean
XCO results of the DA experiments can be clearly seen. The differences of the MSCC and
XCO between the MOPV8J data [75,76] and the external CAM-Chem results [48] are shown
in Figure S3.

Figure 11. Differences of the mean surface-CO concentrations and XCO between the DA experiments
and the external CAM-Chem results (DA minus CAM-Chem). (a–d) difference of mean surface-CO
concentrations, (e–h) difference of mean XCO.

Figure 12. Differences of the mean surface-CO concentrations and XCO between the SIM experiments
and the external CAM-Chem results (SIM minus CAM-Chem). (a–d) difference of mean surface-CO
concentrations, (e–h) difference of mean XCO.
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The MBE and RMSE of the MSCC and mean XCO for the DA, SIM experiments,
and the MOPV8J data [75,76], relative to the external CAM-Chem results, [48] are listed in
Tables 6 and 7, respectively. The MBE between the posterior XCO, estimated by the four DA
experiments, and the CAM-Chem results [48] were 0.38 ppb, 0.86 ppb, −0.43 ppb, and
−0.59 ppb, respectively. The DA experimental results were, on average, 0.05-ppb higher
than those of the external CAM-Chem results in the four-year experiments. The MBE
between the posterior surface-CO concentrations, estimated by the four DA experiments
and the CAM-Chem results [48], were 33.84 ppb, 20.06 ppb, 14.71 ppb, and 14.53 ppb,
respectively. The surface-CO concentrations of the DA experiments were, on average,
20.79-ppb higher than those of the external CAM-Chem results [48].

In the SIM experiments with the same initial and boundary conditions as the DA
experiments, all the mean winter seasonal XCO, simulated by the WRF-Chem model and
using the prior CO fluxes listed in Table 3, were lower than those mean posterior XCO
results of the DA experiments, and also lower than those from the external CAM-Chem
results [48]. During the four-year experiments, the Sim experimental XCO results were
2.11-ppb, 1.24-ppb, 0.57-ppb, and 0.45-ppb lower than those of the DA experiments, and
were 1.73-ppb, 0.38-ppb, 1.00-ppb, and 1.04-ppb lower than those from the external CAM-
Chem results [48], respectively. This fact implied that the prior CO fluxes used in the DA
and SIM experiments might underestimate the actual CO flux values in the winter months.
Actually, the annual anthropogenic CO emissions of western Europe in 2010, provided by
EDGAR V5.0 [104], is 38.15% higher than that provided by EDGAR V4.3.2 [80].

Table 6. Comparison of the surface-CO concentrations with the external CAM-Chem results.

Type
Exp2017 Exp2018 Exp2019 Exp2020

MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SIM 3.28 2.86 11.21 3.45 11.43 3.51 12.20 3.56
DA 33.84 5.89 20.06 4.50 14.71 3.94 14.53 3.89

MOPV8J 39.63 6.32 55.05 7.42 54.37 7.37 60.23 7.76

Table 7. Comparison of the XCO with the external CAM-Chem results.

Type
Exp2017 Exp2018 Exp2019 Exp2020

MBE RMSE MBE RMSE MBE RMSE MBE RMSE

SIM −1.73 1.46 −0.38 1.10 −1.00 1.22 −1.04 1.26
DA 0.38 1.40 0.86 2.17 −0.43 2.63 −0.59 2.63

MOPV8J 11.12 3.34 17.69 4.21 16.13 4.02 14.56 3.82

3.1.2. Evaluated by the ICOS CO Observations

The number of the ICOS CO observations used in the evaluation are listed in Table 8.
The CO concentrations measured at the highest observation point of the tall tower stations,
which are considered closer to the background, were chosen to evaluate the experimental
results. The boxplots of the DA, SIM experimental results, and CO concentrations from the
external CAM-Chem results [48], and the MOPV8J data[75,76] compared with the ICOS
CO observations [47] are shown in Figure 13. The DA and SIM experimental results, the
external CAM-Chem results [48], and the MOPV8J data [75,76] were interpolated to the
same location and the same pressure level or the same altitude of the ICOS observations [47]
before evaluation. The mean and median CO concentration values in the boxplots are listed
in Table 9.

As can be seen from Table 9, the mean and median CO concentrations observed by
the ICOS sites [47] in the winter of 2018 increased by 15.13 ppb and 8.30 ppb, respectively,
compared to the same period in 2017. After this significant increase, the mean and median
of ICOS CO concentration observations [47] had maintained a downward trend between
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the consecutive winter seasons of the following years. The variation trend in the external
CAM-Chem results [48] was a straight downward trend. Compared with 2017, the mean
and median CO concentrations from the external CAM-Chem results [48] in the winter of
2018 decreased significantly, by 27.93 ppb and 23.06 ppb, respectively. The comparison
of these two trends suggested that the boundary conditions provided by the CAM-Chem
datasets might be high in 2017.

Table 8. Number of the ICOS CO observations used in the evaluation.

Exp2017 Exp2018 Exp2019 Exp2020 Total

Number of observations 7585 18,893 25,461 30,631 82,570

Table 9. The mean and median CO concentration values in the boxplots of Figure 13.

Experiment Type
CAM-Chem SIM DA MOPITT ICOS

(ppb) (ppb) (ppb) (ppb) (ppb)

Exp2017
median 144.45 115.12 127.31 131.40 139.95
mean 158.44 130.33 175.70 146.17 157.86

Exp2018
median 121.39 114.77 121.37 142.63 148.25
mean 130.51 127.07 151.01 151.41 172.99

Exp2019
median 114.30 110.60 114.23 131.11 143.13
mean 125.94 123.48 134.43 138.27 168.72

Exp2020
median 107.10 106.52 109.92 129.20 132.92
mean 115.14 117.51 129.11 137.43 150.83

Figure 13. Boxplots of the CO concentrations from the DA, SIM experiments, and external CAM-
Chem results, and the MOPV8J data compared with the ICOS observations. The lower and upper
edges of the boxes represent the first (Q1) and third (Q3) quartiles, the lower and upper whiskers
represent the minimum and maximum values within 1.5 times the interquartile range from Q1 and
Q3, and solid lines and dots represent the median and mean values, respectively.

The evaluation results between the ICOS observations [47] and CO concentrations from
the DA, SIM experiments, and the external CAM-Chem results [48] are listed in Table 10. All
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the MBE values were negative, implying that the CO concentrations from the DA experiments
and the external CAM-Chem results [48] were, overall, lower than the ICOS observations [47],
which is consistent with Lamarque’s research [87]. The average MBE of the DA experiments
was −22.43 ppb, and was 17.52-ppb and 14.84-ppb better than that of the SIM experiments
and the external CAM-chem results [48], respectively. The RMSEs of the DA experiments
were also the best, the average RMSE was 4.17-ppb and 13.03-ppb better than that of the SIM
experiments and the external CAM-chem results [48], respectively.

Table 10. The evaluation results between the ICOS observations and CO concentrations from the DA,
SIM experiments, and the external CAM-Chem results.

Experiment

SIM Experiment DA Experiment External CAM-Chem

MBE RMSE CORR MBE RMSE CORR MBE RMSE CORR(ppb) (ppb) (ppb) (ppb) (ppb) (ppb)

Exp2017 −44.11 59.33 0.76 −26.92 51.54 0.77 −23.48 58.00 0.45
Exp2018 −43.71 67.17 0.76 −16.68 64.96 0.76 −48.03 79.76 0.59
Exp2019 −41.07 71.02 0.71 −27.80 65.48 0.70 −45.78 84.06 0.49
Exp2020 −30.91 49.53 0.79 −18.32 48.36 0.75 −31.77 60.65 0.45
Average −39.95 61.76 0.76 −22.43 57.59 0.75 −37.27 70.62 0.50

3.2. CO Flux Inversion Results

The mean posterior CO fluxes inverted by the DA experiments are listed in Table 11.
Their distributions and their differences relative to the prior CO fluxes are shown in Figure 14.
The mean posterior CO fluxes of the four consecutive winter seasons in western Europe
from 2017 to 2020 were 28.45 mol km−2 h−1, 21.79 mol km−2 h−1, 20.19 mol km−2 h−1, and
19.86 mol km−2 h−1, which increased by 13.90 mol km−2 h−1 (95.53%), 7.48 mol km−2 h−1

(52.27%), 5.47mol km−2 h−1 (37.16%), and 5.37 mol km−2 h−1 (37.06%), compared with
the prior CO fluxes, respectively. The difference percentage between the posterior and
prior fluxes of 2017 was as high as 95.53%, which was significantly larger than that of the
other three years. This unusually high difference in 2017 was thought to be caused by the
high boundary conditions discussed earlier. As shown in Figure 14, in the distribution of
differences between the posterior and prior fluxes, the areas with significant increases in
fluxes roughly coincided with the high XCO areas of the MOPV8J data [75,76], as shown in
Figure 4.

Figure 14. (a–d) Distributions of the mean posterior CO fluxes of the four DA experiments; (e–h) dif-
ferences between the posterior and prior CO fluxes of the four DA experiments.
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Table 11. The mean posterior and prior CO fluxes of the four DA experiments.

CO Flux
Exp2017 Exp2018 Exp2019 Exp2020

(mol km−2 h−1)

Posterior 28.45 21.79 20.19 19.86
Prior 14.55 14.31 14.72 14.49

Difference 13.90 7.48 5.47 5.37

3.3. Compared with the UNFCCC Inventories

The comparison results of the winter CO fluxes of 15 western European countries
inverted by the DA experiments and the corresponding anthropogenic CO emissions
extracted from the UNFCCC inventories [46] are listed in Table 12. Figure S5 shows the
map of these 15 countries. Up to now, the latest CO emission inventories available from
the UNFCCC [46] are for 2019. Using the methodology described by Crippa [43], the
winter seasonal anthropogenic CO emissions of these 15 countries from 2017 to 2019 were
extracted from their national inventories submitted to the UNFCCC [46]. Table 12 indicates
that the CO emissions inverted by the DA experiments roughly match the anthropogenic
CO emissions extracted from the UNFCCC inventories. The differences between them were
13.36%, −4.59%, and −4.76% during the winter seasons from 2017 to 2019, respectively. As
expected, the difference of 2017 was much larger than that of the other 2 years. Given the
high boundary conditions discussed earlier, a 13.36% difference for 2017 was not too bad.

The comparisons with the UNFCCC inventories [46] confirmed that the assumption in
the experimental design, i.e., that the super majority of CO emissions in the winter season
in western Europe was caused by anthropogenic emissions, was reasonable.

Table 12. Comparison of CO emissions of the winter seasons in western Europe inverted by the
DA experiments with the corresponding anthropogenic CO emissions extracted from the UNFCCC
inventories.

Winter Season CO Emissions (Kilotons) Difference
of the Year DA Experiment From UNFCCC (%)

2017 6198.15 5467.90 13.36
2018 4939.72 5177.29 −4.59
2019 4697.80 4932.55 −4.76
2020 5456.19 - -

4. Conclusions

In this study, the CO fluxes and concentrations of the four consecutive winter seasons
in western Europe from 2017 to 2020 were estimated through the assimilation of the
MOPV8J data [75,76] by a regional CO flux inversion system.

The analyses of the MOPV8J data used by the inversion system indicated that the
mean averaging kernel row sums of the surface level was about 0.25, and the difference
percentage of the surface-level retrievals relative to a priori CO-mixing ratios was 14.79%,
which was similar to that of the other levels.

The inverted CO fluxes of the four winter seasons were 6198.15 kilotons, 4939.72 kilotons,
4697.80 kilotons, and 5456.19 kilotons, respectively. Compared with the prior CO fluxes,
the inverted CO fluxes of the four winter seasons increased by 95.53%, 52.27%, 37.16%, and
37.06%, respectively.

Based on the assumption that the anthropogenic CO emissions accounted for the super
majority of the winter CO fluxes in western Europe, the UNFCCC inventories [46] were
used to evaluate the accuracy of the above inverted CO fluxes. The evaluation results
indicate that the differences between the inverted CO fluxes and UNFCCC inventories [46]
of the three winter seasons of 2017 to 2019 were 13.36%, −4.59%, and −4.76%, respec-
tively. Considering the influence of boundary conditions on the uncertainty of the CO
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fluxes’ inversion results, the evaluation results suggested that the above assumption was
reasonable.

Detailed surface-CO concentrations and XCO comparative analyses between the DA
and SIM experimental results, the external CAM-Chem results [48], and the MOPV8J
data [75,76] were conducted. The comparative analysis results indicated that the DA and
SIM experimental results of 2017 were obviously affected by the high boundary conditions.

The CO concentrations results of the experiments were also evaluated by the ICOS
CO concentration observations [47]. The evaluation results showed that the average MBEs
and RMSEs of the DA experiments were better than those of the SIM experiments and the
external CAM-Chem results [48]. The average MBE of the DA experiments was −22.43 ppb,
and was 17.52-ppb and 14.84-ppb better than that of the SIM experiments and the external
CAM-chem results [48], respectively. The average RMSE was 4.17-ppb and 13.03-ppb better
than that of the SIM experiments and the external CAM-chem results [48], respectively. The
comparison of the ICOS data [47] with the external CAM-Chem results [48] also confirms
that the boundary conditions might be high in 2017.
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