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Abstract: The pansharpening (PS) of remote-sensing images aims to fuse a high-resolution panchro-
matic image with several low-resolution multispectral images for obtaining a high-resolution multi-
spectral image. In this work, a two-stage PS model is proposed by integrating the ideas of component
replacement and the variational method. The global sparse gradient of the panchromatic image is
extracted by variational method, and the weight function is constructed by combining the gradi-
ent of multispectral image in which the global sparse gradient can provide more robust gradient
information. Furthermore, we refine the results in order to reduce spatial and spectral distortions.
Experimental results show that our method had high generalization ability for QuickBird, Gaofen-1,
and WorldView-4 satellite data. Experimental results evaluated by seven metrics demonstrate that
the proposed two-stage method enhanced spatial details subjective visual effects better than other
state-of-the-art methods do. At the same time, in the process of quantitative evaluation, the method
in this paper had high improvement compared with that other methods, and some of them can reach
a maximal improvement of 60%.

Keywords: component substitution; global sparse gradient; pansharpening; two-stage

1. Introduction

To overcome the trade-off between the spatial and spectral resolutions of remote-
sensing images, pansharpening (PS) fuses geometric details of a panchromatic (PAN) image
with the spectral information of a multispectral (MS) image to obtain a high-resolution
MS image where the PAN image is the high-resolution image and the MS image is the
low-resolution image. PS methods mainly include the following categories: component
substitution (CS), multiresolution analysis (MRA), variational optimization (VO), and deep
learning (DL).

The class of CS methods first projects the MS image into a new space on the basis of a
spectral transformation and then substitutes the matching spatial part by the PAN image,
and finally obtains the fused MS image through the inverse projection. The representa-
tive works of CS methods include the intensity hue saturation (IHS) method, principal
component analysis (PCA) [1], and the Gram–Schmidt adaptive (GSA) [2] method. The
main idea of the IHS method, as a classical work in CS methods, is to first perform IHS
transform on an upsampled MS image, replace the I intensity part in the IHS space using
the histogram-matched PAN image, and perform inverse IHS transform to obtain a fusion
result. The IHS method runs with fast efficiency and low computational complexity. There
are many improved methods based on IHS, such as the generalized IHS (GIHS) [3], matting
model [4], adaptive IHS (AIHS) [5], and improved adaptive IHS (IAIHS) [6], evolutionary
optimization IHS (EIHS) [7], and multiobjective IHS (MIHS) [8] methods, in addition to the
band-dependent spatial detail (BDSD) [9,10] method, the adaptive fusion method based
on component replacement [11], clustering method based on mixed pixels [12], and the
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combination of IHS and PCA [13]. The CS method has the advantage of fast computational
efficiency, but problems such as spectral distortion usually arise because of the difference
in PAN images and the inclusion of spatially detailed parts.

The class of MRA methods is to keep composite approaches that use multiscale de-
composition. The classical methods are wavelet-transform-based [14], high pass filter
(HPF) fusion [15], generalized Laplacian pyramids (GLP) based [16], GLP with robust
regression [17], morphological operator-based fusion (MF) [18], and smoothing filter based
intensity modulation (SFIM) [19] methods. The HPF method mainly uses box filter and
additive injection image for fusion, but different filter sizes produce serious spectral distor-
tion. The GLP method mainly relies on MTF filter using MS sensor. The MF method mainly
uses nonlinear method for image fusion. The SFIM method adopts the same box filter as
the HPF method. The difference is that the weight coefficient is the ratio of the number of
bands of MS image to the pan image after downsampling. Due to the redundancy of the
spatial details extracted by MRA methods, there are problems such as spatial degradation
in the fusion process.

The VO method mainly uses the prior knowledge of the image to show target energy
function and solves it by using an optimization algorithm. Some classical methods are
proposed for PS [20–22], these methods are based on the linear relationship between the
input image and the fused image. Others build models based on a variety of prior informa-
tion [22,23]. In addition, there are some methods based on tensor decomposition [24,25],
super-resolution methods [26,27] and other variational methods [28–32]. Since the VO
method uses an optimization algorithm to get the optimal solution, it can effectively reduce
the spectral distortion to a certain extent, but to select parameters in the optimization
process easily leads to a non-global optimal solution, which greatly impacts the quality of
the fused image.

DL-based studies were applied to the PS method. The PS method employs deep neural
networks (DNNs) [33], which are mainly used it to the depth networks utilizing image
blocks from the input images. There are also the neural network method (PNN) [34] and
adaptive CNN-based pansharpening (A-PNN) [35] dedicated to PS. The residual-network-
based PS method [36] is sampled from the input image without other training images,
and the method uses the trained network to reconstruct the fused image. The progressive
cascade deep residual network (PCDRN) model [37] is trained on the basis of image
patches and uses residual-learning to optimize the network. The unsupervised generative
adversarial network (PAN-GAN) method [38], this process does not depend on the so-called
ground truth images in the network training, but uses the new images generated by the
GAN for PS. A new deep detail network architecture based on packet multiscale extended
convolution was proposed in [39]; the structure uses an end-to-end network to directly
fuse MS and PAN images to produce fusion results. Deep convolutional neural networks
(DCNNs) [40] mainly combine a neural network with CS and MRA fusion schemes and
use these two algorithms to estimate the fused image for the nonlinear injection model. A
Laplacian pyramid PS network structure was proposed in [41] in which the input image
is first decomposed into pyramids, and the fusion convolution neural network is used
to fuse the results of pyramid decomposition.A deep spatial–spectral global reasoning
network is proposed to consider the local and global information of the image is proposed
in [42]. PS with spatial and spectral gradient difference-induced nonconvex sparsity priors
(PSSGDNSP) [43] uses the eigenband correlation of MS images to process MS images as
third-order tensors. In addition, there are some fusion methods based on DL [44–54]. The
DL method’s main disadvantages are the lack of ideal PS samples for training, it relies on
generating reference samples from unlabeled real data (such as MS images).

For an image, the gradient can best describe the shape and portray the edges of the
target. Commonly used gradients are total variation [55], higher-order, and global gradients,
where the global gradient is mainly considered to fully use the overall information of the
image, such as the nonlocal TV model [56] and global sparse gradient (GSG) [57].
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In addition, according to existing research, the global extraction of information from
input images is unstable. The main contributions of this paper can be summarized as follows.

(1) We developed a two-stage PS method based on the CS and variational models, namely,
the global sparse gradient-based improved adaptive IHS (GIAIHS) method, and
reduced the instability of fused image global information.

(2) We used the GSG information of the image to construct the weight function. GSG is a
better representation of the accuracy and robustness gradient information of an image,
and we used variational ideas to obtain the optimal solution for the GSG information
of the image.

(3) As all existing methods currently use a one-stage direct fusion method to obtain fusion
results, loss of information during the fusion process is not considered. In this paper,
a two-stage PS fusion algorithm was designed on this basis, which further refines the
image for direct fusion, greatly improving the null spectral information of the image.
In addition, the method can meet different satellite data needs and maintain a balance
between spatial enhancement and spectral fidelity.

The remainder of this paper is organized as follows. Section 2 presents the basic
knowledge needed to frame this paper. Section 3 describes our proposed framework
in detail. Section 4 shows both the qualitative and the quantitative analyses through
experimental results. Lastly, this paper draws conclusions and discusses future work in
Section 5.

2. Related Works

The CS method is popular because of its fast operation efficiency. GIHS [3] can process
multichannel images, but it needs many calculations during processing. At the same time,
this method only considers the influence of partial information of an MS image on the
fused image, so it is not only inefficient but also prone to spectral distortion. AIHS [5]
mainly uses the gradient information of PAN image to constrain the spatial details. After
that, IAIHS [6] considers the gradient information of PAN and MS images, builds a new
weighting matrix, and obtains better spatial information fusion capability than the AIHS
method. The EIHS [7] method considers the relationship between fused and given images
by objective function, and obtains the best control parameters for rebuilding the high-
resolution MS image according to the optimization algorithm. MIHS [8] transforms the
PS problem into a multiobjective optimization problem by showing an objective function.
Although CS is efficient, it produces serious spectral distortion in the process of fusion.

Most VO methods are from model construction to model solution. The P + XS method [20]
uses image gradient features to characterize the spatial information of PAN image, build
an optimization model, and solve it with variational ideas. In contrast to the spatial
information used in the aforementioned methods, the reduced-rank (RR) method [21]
considers the spectral low-rank relationship between PAN and fused images by using l2
norm to construct regularization terms, and the consistency of PAN and fusion images is
simulated. In order to maintain spectral similarity while eliminating blur, prior knowledge
of the original image is introduced using total variation (TV) [22], sparse representation [58],
and nonlocal prior [23]. There are some methods based on tensor decomposition mainly
using the representation of MS image as three-dimensional tensors, and using spectral
dictionaries to approximate the fusion results, such as image fusion methods based on
coupled sparse tensor decomposition [24] and low-rank tensor-based methods [25]. A
special class of variational based super-resolution methods [26,27] has also been widely
studied in recent years. In addition, the LGC [28] method mainly uses the local gradient
information of the image to transform it into a convex optimization problem. The method
proposed in [29] mainly uses Toeplitz to express the correlation between adjacent bands.
The method proposed in [30] was mainly based on the assumption of the sparsity of the
fused image under B-spline frame transformation, and uses the linear correlation between
the fused image and MS image to fuse. The method proposed in [31] decomposes the image
into a sparse kernel tensor based on tensor decomposition, and then multiplies it with
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the three modal dictionary to get the fusion result. The method proposed in [32] obtains
the fusion result based on the super Laplace error distribution between the upsampled
MS image and the fused image in the gradient domain. However, the above variational
methods are based on model construction and finally get the fused image. Due to different
constraint structures, different fusion results and different degradation levels are produced.

Combined with the above analysis, to obtain better fusion results and avoid degra-
dation due to constraints, we transformed the model-based variational into data-based
variational, that is, the GSG obtained through the variational idea further characterizes the
image. At the same time, to speed up efficiency, the CS method was selected for fusion.

A two-stage remote-sensing image PS fusion method (GIAIHS) was designed here.
First, GSG information about PAN images is solved, and the weighted matrix is defined by
the gradient information on MS image, which is substituted into the fusion framework to
obtain the first stage fusion result. Second, GSG information of the first-stage fusion image
is solved, and a new weighting matrix is defined by the GSG information on PAN image,
which is substituted into the fusion framework to obtain the second-stage fusion results.
Algorithm 1 show the algorithm pseudocode and of the method proposed in this paper.

Algorithm 1: GIAIHS algorithm. Proposed algorithm for two-stage restoration.
Input: MS image: M, PAN image: P.
Output: Fusion image: Mz

k .
QP(x)←PAN image ;
ωP ← QP(x);
ωMone

k
←MS image gradient;

ωone
k ← ωMone

k
and ωP;

MP
k ← Mk + ωone

k (P− I);
QM(x)← MP

k
ωMtwo

k
← QM(x);

ωtwo
k ← ωMtwo

k
and ωP;

Mz
k ← MP

k + ωtwo
k (P− I).

3. Proposed Method
3.1. GIAIHS Fusion Model

The GIAIHS method can be expressed as

MP
k = Mk + ωk(P− I), k = 1, 2, · · · , N. (1)

where MP
k is the k band of the fused image, Mk is the k band of the MS image after

upsampling (in the process of upsampling, the MS image needs to be upsampled to the
same size of the PAN image, such as a cubic spline interpolation algorithm), P is the PAN
image, I = ∑N

k=1 βk Mk, N is the total number of bands in the image, βk is the weight
parameter of the MS image band after upsampling. ωk is the weighting matrix and is
obtained by the equation.

ωk =
Mk

1
N ∑N

k=1 Mk
(αωP + (1− α)ωMk ), (2)

where α is the weight parameter. ωMk and ωP are weighted matrices guided by gradient
information of MS image and PAN image.

ω = exp(
−λ

|Q(x)|4 + ε
), (3)
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where Q(x) represents the gradient. If Q(x) represents the gradient of the input MS image,
the result is ωMk . If Q(x) represents the gradient of the input PAN image, the result is ωP.
λ and ε are nonzero normal numbers to avoid too-large molecules and zero denominators.

For input image f (x), x ∈ Ω ⊂ R2, Ω is a bounded region; for gradient Q(x), the
following equation is given by

Q∗(x) = arg min
Q(x)=(q1(x),q2(x))

(D(Q(x)) + λR(Q(x))), (4)

where λ > 0 is the regularization parameters, Q(x) is the image gradient, D(Q(x)) is the
fidelity item; the first-order Taylor expansion is used to construct and estimate the gradient
with estimation points with the help of the points in the neighborhood of the point to be
estimated. R(Q(x)) is a regularization term.The above formula can also be simplified to
this equation:

Q∗(x) = arg min
Q(x)=(q1(x),q2(x))

{ 1
|Ω|

∫ ∫
Ω×Ω

wS
xy( f (x)− f (y) + Q(x)(y− x))2dydx + λ‖Q(x)‖L1)}, (5)

where wS
xy = exp(− |y−x|2

S2 ) is the weight function that keeps local similarity, S is the control
decay rate parameter of the weight function, and Q(x) is the optimal solution. For the
calculation of the optimal solution of the equation, readers are referred to [57].

3.2. Weight Function

The gradient had a good description of the edge of the target, we used the data
from the IKONOS satellite for gradient comparison Figure 1. Figure 1a is the original
PAN image, Figure 1b is the gradient map of Figure 1a, and Figure 1c is the GSG map of
Figure 1a. The small red box in the figure is the local image, and the large red box is the
local enlarged image.

(a) (b) (c)

Figure 1. Panchromatic image and gradient maps. (a) PAN; (b) IAIHS; (c) GIAIHS.

The figure shows that the edge of the original image is very obvious, which shows
that the edge description of the original image had to be relatively close to the PAN image
to better reflect the edge details of the pan image. From the GSG and original PAN images
in Figure 1a, it is obvious that the two images had good similarities on the global edge of
the image, especially in the relatively unobvious places, which can also show good edges
and reflect the details. However, there is a serious blur phenomenon in the gradient image
of Figure 1b, which had low similarity compared with the PAN image and could show
less edge information. The comparative observation of Figure 1b,c shows that the GSG
graph in Figure 1c had a significant increase in the extraction of edge information relative
to Figure 1b.
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3.3. Results

Because the model proposed in this paper is a two-stage PS model, to verify its
effectiveness, an ablation experiment was preliminarily carried out.

For the proposed GIAIHS model, the IKONOS satellite contained a high-resolution
PAN image (1 m resolution) and a low-resolution MS image (4 m resolution). IKONOS
satellite data were selected for preliminary fusion analysis, and results are shown in Figure 2.
The PAN image size of IKONOS satellite data was 400 × 400 pixels, and the MS image
size was 100 × 100 pixels. The used MS image included four channels: red, blue, green,
and near-infrared bands. Figure 2 shows that, through the effective fusion in the first stage
compared with the IAIHS method, the quality of the fused image was greatly improved,
especially for details such as boundaries.

(a) (b) (c)

(d) (e) (f)

Figure 2. Results of IKONOS satellite data fusion. (a) Upsampled MS. (b) PAN. (c) AIHS. (d) IAIHS.
(e) First stage. (f) Second stage.

Analyzing the fusion results in Figure 2 showed that they were better in the first stage
than those in the IAIHS method in terms of edge details; fusion results in the second stage
were simultaneously better than those in the first stage in terms of edge details.

Ds, Dλ and QNR are used for objective evaluation. Ds can measure the spatial in-
formation of the fused image, and Dλ can measure the spectral information of the fused
image, but their description of the overall information of the image is poor. The lower
its value is, the better the spatial and spectral information of the fused image is. QNR
can better measure the overall information of the fused image, and the higher the value
is, the better the fusion effect. Figure 3 shows the comparison results of the three above
indicators, where lower the purple and blue columns indicate better results, and yellow
columns indicate better results. Figure 3 shows that the evaluation indices in the second
stage had better results than those in the first stage. At the same time, the AIHS and IAIHS
methods in the same CS method were compared to test the effectiveness of the model. The
comparison showed hat the fusion results of the second stage of the GIAIHS model were
better than those of the two methods regarding visual effect and evaluation index. To verify
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the feasibility of the model on the remaining satellite data, experiments with the MRA, VO,
and ML methods were carried out.

AIHS IAIHS First stage Second stage
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3. Comparative results of three indicators Dλ, Ds, and QNR.

To better illustrate the model in this paper, the flow chart of the algorithm is given in
Figure 4, where ωone

k and ωtwo
k are different weighting functions, as detailed in Algorithm 1.

Figure 4. GIAIHS flow chart.

4. Experiments and Analysis
4.1. Experimental Setup

All experiments were run on Windows 10 (64 bit) PC-Intel(R) Core (TM) i5-4210U
CPU 2.40 GHz, 4 GB of RAM using MATLAB R2018b. We selected five different methods
to compare with the GIAIHS method, namely, two CS methods (IAIHS and GSA), an
MRA method (HPF), a VO method (RR), and a DL method (A-PNN). Due to the lack of
corresponding high-spatial-resolution MS images in the experiment, the commonly used
objective evaluation method is to downsample the fused image to the same size as the
original MS image, and use the original MS image as the reference image for evaluation. In
this paper, dimensionless global relative error of synthesis (ERGAS) [59], Q4 [60], relative
average spectral error (RASE) [61], root mean squared error (RMSE), quality with no



Remote Sens. 2022, 14, 1121 8 of 19

reference (QNR) [62], spectral distortion index Dλ, and spatial distortion index Ds were
used to evaluate the quality of the fused image.

The ERGAS index is a normalized dissimilarity index:

ERGAS = 100
dh
dl

√√√√ 1
N

N

∑
k=1

(
RMSE(k)

µ(k)
)2, (6)

where dh
dl

is the ratio between the pixel sizes of PAN and MS, N is the total number of bands
in the image, and µ(k) refers to the mean value of K band. The lower the value of ERGAS
was, the higher the correlation between fused and MS images, that is, the better the quality
of the fused image.

The Q4 index was derived from Q2n index, and formula Q2n is as follows:

Q =
σzz̃

σzσz̃
· 2σzσz̃

σ2
z + σ2

z̃
· 2 | z || z̃ |
| z |2| z̃ |2

, (7)

where z = z(m, n) and z̃ = z̃(m, n) represent the pixel spectral vector of MS and fused
images, and Q2n refers to the average value of the whole image, which is usually divided
into N × N block.

The RASE index is defined as

RASE =
100
M

√√√√ 1
N

N

∑
k=1

RMSE2(Fk, MSk), (8)

where Fk represents the k band of the fused image, and MSk represents the k band of the
MS image, which is used to calculate the global spectral quality of the fused image. The
smaller the value of RASE is, the better the quality of the fused image.

The RMSE index is defined as

RMSE(I, J) =
√
(I − J)2, (9)

When I = J, RMSE reaches the ideal value of zero. It is used to calculate the average
difference between fused and MS images. The smaller the value of RMSE is, the better the
quality of the fused image.

The assumption of the QNR index is that the similarity between each MS band and
PAN should remain unchanged before and after fusion. Before calculating QNR, spectral
distortion index Dλ and spatial distortion index Ds need to be calculated.

Spectral distortion index Dλ is estimated by

Dλ = P

√√√√ 1
N(N − 1)

N

∑
i=1

N

∑
j=1,j 6=i

|Q(M̃Si, MSj)| − |Q(M̃Si, M̃Sj)|P, (10)

the closer the value of Dλ is to 0, the greater the spectral distortion of the fused image and
the better the quality of the fused image are.

Spatial distortion index Ds is estimated by

Ds =
P

√√√√ 1
N

N

∑
i=1
|Q(M̃Si, P)| − |Q(MSi, PL)|P, (11)

where PL is the image with the same size from the PAN image downsampling to MS image.
The closer the value of Ds is to 0, the greater the spatial distortion of the fused image and
the better the quality of the fused image are.
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The QNR index is estimated by

QNR = (1− Dλ)
α(1− Ds)

β. (12)

it is obtained by weighting Dλ and Ds by α and β; the higher the QNR value is, the better
the quality of the fused image. When both Dλ and Ds are 0, QNR theoretically reaches the
optimal value of 1.

4.2. Datasets

To further verify the effectiveness of the proposed model, experimental comparison
and analysis were carried out on QuickBird, Gaofen-1, and Worldview-4 satellite data.
The QuickBird satellite contains a high-resolution PAN image (0.7 m resolution) and
a low-resolution MS image (2.8-m resolution). The Gaofen-1 satellite contains a high-
resolution PAN image (2-m resolution) and a low-resolution MS image (8-m resolution).
The Worldview-4 satellite contains a high-resolution PAN image (0.31-m resolution) and
a low-resolution MS image (1.24-m resolution). The PAN image size used by QuickBird
satellite data is 800 × 800 pixels, and the MS image size is 200 × 200 pixels. The PAN
image size of Gaofen-1 satellite data is 1024 × 1024 pixels, and the MS image size is
256 × 256 pixels. In worldview-4 satellite data, the PAN image size is 1024 × 1024 pixels,
and the MS image size is 256 × 256 pixels. The MS images used include four channels:
red, blue, green, and near-infrared. The image was corrected for radiation and sensor
distortion, and the acquisition effect was eliminated. In addition, collected satellite images
were corrected for viewing angle and ground effect so that they can be superimposed on
the map. In addition, orthophoto correction is carried out to eliminate the perspective effect
on the ground. The best input format of data is the TIF format.

4.3. Experiments and Analysis

The subjective visual comparison results of three different satellite data fusion are
shown in Figures 5–7, and a local map is also given for further observation. The red block
diagram on the left is the selected local terrain, and the lower right corner is the local
enlarged view corresponding to the left side.

Because the resolution of the MS image used in this paper was inconsistent with that
of the PAN image, the resolution of the MS image needed to be upsampled to be consistent
with that of the PAN image, and then fused by PS method. The resolution of the fused
image was consistent with that of the PAN image. In the process of visual analysis, to better
reflect the advantages of this method, the upsampled image of MS image was compared
with other fused images, which could better reflect the differences of various methods in
quasitube vision. In quantitative analysis, there was a lack of high-resolution reference
images. According to Wald’s protocol [63], the fused image was downsampled to the
same size as the original MS image, and the downsampled fused image is quantitatively
analyzed with MS image.

These three sets of satellite data were chosen for the following reason: the terrain
shown in QuickBird satellite data includes urban roads, rural areas, and a large number
of forestry areas. The terrain shown in the Gaofen-1 satellite data is mainly waterways
with a large number of urban areas beside it, which is complex. The terrain displayed in
Worldview-4 satellite data is mainly forestry, which can highlight the details.

Remote-sensing images obtained by QuickBird satellite include rural and forestry
areas. Fusion results are shown in Figure 5. PS results obtained by the HPF and RR
methods lost a lot of spectral information, resulting in overall color changing. GSA and
IAIHS showed that the visual effect of these two methods is too bright in some areas. For
example, the color of the boundary in the enlarged image (Figure 5c,d) was significantly
different from the actual color. Fusion results obtained by the A-PNN method had similar
visual effects. It can be seen from the enlarged image that the method proposed in this
paper can obtain clearer PS results. The objective evaluation results of rural areas are shown
in Table 1. The best performance is shown in bold.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Fusion results of six different PS fusion methods in QuickBird data fusion. (a) Upsampled
MS. (b) PAN. (c) IAIHS. (d) GSA. (e) HPF. (f) RR. (g) A-PNN. (h) GIAIHS.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Fusion results of six different PS fusion methods in Gaofen-1 data fusion. (a) Upsampled
MS. (b) PAN. (c) IAIHS. (d) GSA. (e) HPF. (f) RR. (g) A-PNN. (h) GIAIHS.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Fusion results of six different PS fusion methods in Worldview-4 data. (a) Upsampled MS.
(b) PAN. (c) IAIHS. (d) GSA. (e) HPF. (f) RR. (g) A-PNN. (h) GIAIHS.
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Table 1. Experiment with six PS methods on QuickBird satellite data.

Method RMSE RASE ERGAS Q4 Dλ Ds QNR

IAIHS 26.92 8.20 1.95 0.81 0.17 0.10 0.75
GSA 34.50 10.50 2.72 0.68 0.31 0.28 0.49
HPF 60.47 18.40 4.88 0.42 0.17 0.19 0.67
RR 33.19 10.10 2.28 0.78 0.16 0.11 0.75

A-PNN 28.85 8.78 2.28 0.74 0.21 0.04 0.76
GIAIHS 25.54 7.77 1.84 0.88 0.11 0.05 0.85

In the city image taken by Gaofen-1 satellite, the comparison diagram between this
method and five other methods is given in Figure 6, which shows that the description of
the outline of urban areas by the IAIHS and RR methods was not clear enough, and the
roofs of some buildings turned gray. At the same time, details of the house showed that the
GSA method had serious spatial distortion. The outline produced by the HPF method was
too enhanced, and the image color was too bright, which produced artifacts. However, the
middle road of the A-PNN method was close to white, and there is no strong color display.
This method preserves a lot of spectral information in the experiment and fully uses the
spatial information of PAN images. The objective evaluation of the city image is shown in
Table 2. The best performance is shown in bold.

Table 2. Experiment with six PS methods on Gaofen-1 satellite data.

Method RMSE RASE ERGAS Q4 Dλ Ds QNR

IAIHS 27.47 7.36 1.86 0.84 0.14 0.29 0.61
GSA 47.27 12.67 3.24 0.68 0.33 0.50 0.33
HPF 46.05 12.34 3.10 0.71 0.09 0.32 0.62
RR 33.36 8.94 2.28 0.81 0.13 0.23 0.67

A-PNN 31.09 8.33 2.15 0.83 0.07 0.27 0.68
GIAIHS 23.66 6.34 1.61 0.89 0.07 0.15 0.79

Figure 7 is a forest vegetation image taken by the WV-4 satellite. The fused image
obtained by the HPF method was severely distorted, and the color of the trees tended
to be blue. This method loses a lot of spectral information when balancing spatial and
spectral information. In addition, spectral information of the GSA method was distorted
due to the mismatch of spectral ranges. The spectra of the IAIHS and RR methods were
relatively well-preserved, but some spatial details were lost. Spectral information of fusion
results obtained by the A-PNN method was good, but some fuzzy effects could be found
from the vegetation region. The method in this paper can fully use spectral information
in MS images and spatial information in PAN images. The objective evaluation of forest
vegetation is shown in Table 3. The best performance is shown in bold.

Table 1 shows the comparison result of QuickBird satellite data. Table 1 shows that
the GIAIHS method showed great improvement compared with other methods. For the
RASE index, the GIAIHS method improved by approximately 26% compared with the
GSA method. For the ERGAS index, the GIAIHS method improved by approximately 19%
compared with the RR method. For Q4, GIAIHS method improved by approximately 20%
over the A-PNN method. For Dλ, GIAIHS method improved by approximately 35% over
IAIHS method.
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Table 3. Experiment with six PS methods on WorldView-4 satellite data.

Method RMSE RASE ERGAS Q4 Dλ Ds QNR

IAIHS 28.38 7.61 1.40 0.75 0.16 0.10 0.76
GSA 36.15 9.69 1.91 0.78 0.14 0.16 0.72
HPF 38.08 10.21 3.26 0.48 0.19 0.18 0.66
RR 35.38 9.49 1.80 0.68 0.16 0.14 0.72

A-PNN 26.35 7.07 1.65 0.77 0.09 0.10 0.82
GIAIHS 26.90 7.21 1.27 0.83 0.11 0.04 0.86

Table 2 shows the comparison result of Gaofen-1 satellite data. Table 2 shows that,
for the RASE index, the GIAIHS method improved by approximately 50% compared with
the GSA method. For the ERGAS index, the GIAIHS method improved by approximately
29% compared with the RR method. For Q4, GIAIHS method improved by approximately
7% over A-PNN method. For Ds, GIAIHS method improved by approximately 48% over
IAIHS method.

Table 3 shows the comparison result of Worldview-4 satellite data. Table 3 shows that,
for the RASE index, the GIAIHS method improved by approximately 26% compared with
the GSA method. For the ERGAS index, the GIAIHS method improved by approximately
29% compared with the RR method. For Q4, GIAIHS method improved by approximately
8% over A-PNN method. For Ds, GIAIHS method improved by approximately 60% over
IAIHS method.

Table 1 shows that, for Ds, the GIAIHS method differed from the A-PNN method
by only approximately 0.01 in the QuickBird data, but GIAIHS was greatly improved
compared with other methods. At the same time, for the QNR index, GIAIHS method
improved by approximately 12% over A-PNN method. Table 2 shows that, for Dλ, the
GIAIHS and A-PNN methods achieved the same performance level in Gaofen-1 data; for
the QNR index, GIAIHS method improved by approximately 16% over A-PNN method.
Table 3 shows that, for Dλ, the GIAIHS method differed from the A-PNN method by only
approximately 0.02 in Worldview-4 data; for the QNR index, GIAIHS method improved by
approximately 4% over A-PNN method.

Figure 8 shows the RMSE and ERGAS evaluation results of the six methods for three
different satellites’ data. The method had good stability, which was maintained in the
evaluation of three different satellite data in this paper. RMSE evaluation results and the
fluctuation of ERGAS displayed in Figure 8 show that the method had good robustness.
This method is highly competitive with the rest of the methods. In addition, from a
statistical point of view, the method proposed in this paper is better than other methods.

To better illustrate the spectral effect of the method in this paper, QB satellite data
results were selected for comparative analysis. Because the resolution of the fused image
was different from that of the original MS image, the downsampling of the fused image
was consistent with that of the original MS image for comparative analysis. Figure 9 shows
the comparative analysis of the original MS image and the results of six PS methods, in
which the x axis represents the 61 selected pixels (because image resolution was 256 × 256,
61 pixels were selected in the middle part of the image), and the y axis represents the
pixel value corresponding to the pixels. The fusion experiment in this paper was carried
out in four bands. Figure 9a shows the comparison results of pixels selected by different
methods in the R band, Figure 9b shows the comparison results of pixels selected in G
band, Figure 9c shows the comparison results of pixels selected in B band, and Figure 9d
shows the comparison results of pixels selected in NIR band.
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Figure 8. RMSE and ERGAS evaluation results of GIAIHS method and five other methods in
three groups of different satellite data of QuickBird, Gaofen-1 and WorldView-4. (a) RMSE results.
(b) ERGAS results.

The black line segment in Figure 9 is marked with 61 pixel values corresponding to the
original MS image, and the six other line segments are pixel values corresponding to the
IAIHS, GSA, HPF, RR, A-PNN, and GIAIHS methods, respectively. Figure 9a shows that
the obtained results by the GIAIHS method were very close to the results of the original
MS image, followed by A-PNN results and RR results. In Figure 9b, some pixel values of
GIAIHS method are consistent with those of the original MS. There was not much difference
between the GSA and HPF methods, but they are still very different from the pixel value
curve of MS. Although the A-PNN method was better than the GIAIHS method, there were
still some differences. Figure 9c shows that the results of the RR method and A-PNN were
not very good. There was large deviation in some points, which was better than IAIHS.
Only a few points deviated from the Ms results, while GIAIHS almost had a small gap with
MS. The above analysis proves that GIAIHS had good performance in the spectrum.

In general, the GIAIHS method not only outperformed state-of-the-art methods, but
also had some competitiveness with the DL method of A-PNN method, which also shows
that the objective evaluation of the GIAIHS method is well consistent with the subjective
evaluation.
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Figure 9. Results of spectral comparison and analysis of QuickBird satellite data. (a) R band. (b) G
band. (c) B band. (d) NIR band.
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5. Conclusions

In this paper, we proposed a two-stage fusion method for PS by combining the CS
method with the variational idea. We used a GSG that could more fully reflect the image
texture and edge information for the construction of the weight function, and further refine
the fusion results to improve the PS results effectively. The GIAIHS method significantly
improves the quality of the fused images, and also improves the generalization ability of
the method to data from different satellites.

In performing PS, the main objective is to maintain the integrity of spectral information
of MS images and spatial information of PAN images. First, we chose GSG as the weight
function to fully extract the information of the image. Second, for obtained results by direct
fusion, we used IKONOS data to analyze them, and performed a two-stage thinning process.
Results showed that it was necessary to perform this thinning process. Experimenting
on different datasets demonstrated that our proposed two-stage PS method is effective in
obtaining better-quality fused images compared to other methods. Since our proposed
method is required to extract more detailed information from the images, better results
could be obtained when processing higher dimensional as well as more complex images.
The method is better at processing spectral and spatially informative images, while it can
effectively capture rich features from dense buildings and dense vegetation, which helps in
generating satisfactory high-quality fusion images.

The method proposed in this paper combines the classical CS and variational methods.
Experimental results showed that the idea proposed in this paper is effective. The advantage
of this model is that it produced good experimental results for different satellite data from
both subjective vision and quantitative indicators, and had strong generalization ability.
The disadvantage is that the proposed model had more parameters. In the next step, it was
changed into an adaptive parameter model. For a future research direction, because the
methods that could describe image features in detail are very limited, and remote-sensing
image PS based on deep learning have developed rapidly in recent years, future classical
methods can be integrated into deep learning and models driven for PS. Next, we also aim
to apply the plug-and-play idea [64] to the classical method. Since the MS images used in
this paper had four bands, more bands of images will be PS-fused.
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